JPH0141393B2 - - Google Patents

Info

Publication number
JPH0141393B2
JPH0141393B2 JP58239666A JP23966683A JPH0141393B2 JP H0141393 B2 JPH0141393 B2 JP H0141393B2 JP 58239666 A JP58239666 A JP 58239666A JP 23966683 A JP23966683 A JP 23966683A JP H0141393 B2 JPH0141393 B2 JP H0141393B2
Authority
JP
Japan
Prior art keywords
water
air
collection device
water collection
crud
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58239666A
Other languages
Japanese (ja)
Other versions
JPS60132691A (en
Inventor
Kanroku Naganami
Fumihiro Ootsubo
Yoshikazu Takehata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Infilco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Infilco Co Ltd filed Critical Ebara Infilco Co Ltd
Priority to JP58239666A priority Critical patent/JPS60132691A/en
Publication of JPS60132691A publication Critical patent/JPS60132691A/en
Publication of JPH0141393B2 publication Critical patent/JPH0141393B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)
  • Filtration Of Liquid (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 原水の通水により充填層内に捕捉された鉄酸化
物等のけん濁物を除去する方法に関する。 〔従来技術〕 充填層、特にイオン交換樹脂の充填層に水を通
水することにより水を精製する場合、充填層内に
捕捉された比重の大きい酸化鉄等のクラツドを除
去する方法として種々の方法が提案されている。 例えば発電用ボイラの復水脱塩装置において
は、脱塩塔に一定時間通水した後イオン交換樹脂
を再生塔に移送し、イオン交換樹脂を逆洗するこ
とによりクラツドを除去することが行われてい
る。 以下図面に基いて従来法を説明する。 第1図は通常行われているクラツドの除去方法
を示すための概略図であつて、符号1は再生塔、
2は沈静した状態のイオン交換樹脂層、3はスク
ラビング状態のイオン交換樹脂層、4は逆洗状態
のイオン交換樹脂層、5は下部集水装置、6は上
部集水装置、7,8,9,10は空気又は水を導
入又は排水するための配管、11,12,13,
14は前記配管上に設けた弁を示し、はドレン
工程、は空気スクラビング工程、は逆洗工程
を示す。 以下、第1図に基いて説明するが、第1図の
,については説明上必要な部分にのみ符号を
付した。 第1図に示す方法においては、イオン交換樹脂
(以下単に樹脂という)を再生塔1に移送した後、
管7の弁11及び管9の弁13を開き管9より空
気を圧送して樹脂層2の上部のある位置L1に水
面が達するまで管7を通じて水をドレンし(第1
図)、ついで弁11及び弁13を閉じ弁12及
び弁14を開いて上部集水装置6を経て管10か
ら排気しながら管8から下部集水装置5より樹脂
層の下部に空気を導入して樹脂のスクラビングを
行つた後(第1図)、弁12を閉じ弁11を開
いて管7より下部集水装置を経て逆洗水を樹脂層
の下部に導入し、上部集水装置6を経て管10よ
り逆洗廃水を排出しながら樹脂の逆洗を行う(第
1図)。この方法においてはクラツド除去率を
あげるために3回程度前記工程(ドレン−空気ス
クラビング−逆洗)がくり返される。 この方法では、(1)逆洗水の流速に制限があり
(max.15m/h程度)、かつ再生塔上部の集水装
置から逆洗水を排出するためクラツドの分離(排
出)に要する時間が長いこと、(2)逆洗水の流速に
制限があるため重質のクラツドは塔上部まで運搬
されにくいこと、(3)逆洗後再度空気スクラビング
を行うため水をドレンする必要がありこの分だけ
廃液量が多くなること等の欠点がある。 第2図は、重質のクラツドを除去するために改
良された方法を説明するための概略図であつて、
装置自体及び符号は第1図に示したものと同一で
あり、符号はこの改良方法を説明するのに必要な
符号のみを記入した。第2図においてはドレン
工程、は空気スクラビング工程、は急速ドレ
ン工程、は水張り工程を示す。 第2図においてのドレン工程は第1図に説明
したのと同じであるが、の空気スクラビング工
程において一定の時間空気スクラビングを行つた
後、下部から導入される空気による樹脂層の展開
中に弁12及び弁14を閉じ管8から樹脂層3へ
の空気の導入を止めると同時に、弁11及び弁1
3を急開すると共に管9より空気を圧送して管7
を通して一気に排水するものである(第2図の
急速ドレン工程)。ついで弁11を閉じ弁14を
開き管10から水をL1の高さまで補給した後
(第3図の水張り工程)空気スクラビング工程
に戻る。この方法は重質のクラツド除去に有効で
あるが1回当りの排水量が少なく(第2図中L1
とL0の差の分しか排水できない)、従つて空気ス
クラビング、急速ドレン及び水張りの〜の工
程を10〜30回程度くり返す必要があり工程が複雑
である。 第3図は、第1図に示す方法を改良し、逆洗後
中間集水装置より排水するようにした方法を説明
するためのもので、符号1〜14は第1図で示し
た符号と同じ意味を有し、符号15は中間集水装
置、16はその配管、17は弁を示し、はドレ
ン工程、は空気スクラビング工程、は逆洗工
程、は中間集水装置からのドレン工程を示す。 第3図に示す方法において、のドレン工程と
の空気スクラビング工程は第1図に示す方法と
同じであるが、の逆洗工程において管7から導
入される逆洗水をL3の高さまで導入した後、弁
11及び14を閉じ、弁13及び17を開き管9
から空気を圧送して中間集水装置から上に存在す
る逆洗水を中間集水装置15及びドレン抜出し管
16から排水するようにしたものである。この方
法は、第1図に示す方法よりはクラツドの分離に
要する時間が短縮され廃液量も少なくてすむが、
重質クラツドの除去は第2図に示す方法程十分で
はない。 第4図は、第3図に示す方法を改良した方法を
説明するための図であつて、各符号は第3図に示
す符号と同じ意味を有し、はドレン工程、は
空気スクラビング工程、は逆洗工程、は中間
集水装置からのドレン工程、は水張り工程を示
す。 第4図に示す方法においては、逆洗工程にお
いて弁14を閉じ管10を通して排気することな
く、再生塔1内を逆洗水を導入することにより加
圧状態とし、或る一定の圧力に達したら弁17を
開きこの圧力を利用して中間集水装置15及び管
16から排水する(工程)。ついで弁17を閉
じ弁13及び14を開き管9から排気しながら管
14を通して補給水を給水した後再び〜の工
程をくり返し行う。 第4図に示す方法においては、逆洗水の導入時
に排気しないため、初期の逆洗流速を大きくして
も塔内の圧力の上昇と共に逆洗水の流速は極端に
小さくなり、いつたん分離したクラツドも重質の
ものは中間集水装置より下部にきてしまい排出で
きないことになつてしまう。このことを避けるた
めには、逆洗水の供給ポンプに特別の考慮が必要
となり設備的に高くなる。 以上説明した従来の逆洗法によつては、逆洗水
の上向きの流れと共に樹脂層上部、更に樹脂層を
越えて排出口である塔上部あるいは塔中間部の集
水装置までの運搬が難しい粒径の大きい重質のク
ラツドに対しては第2図に示す方法が好ましい。 〔発明の目的〕 本発明の目的は、上記従来法の欠点を改善し、
分離時間が短かくてすみ、かつ廃液量の少ない重
質クラツドの分離方法を提供することにある。 〔発明の構成〕 本発明は、充填層の下部より空気と水とを同時
に導入しつつスクラビングを行いながら、(1)該ス
クラビングにより展開している充填層の表層に設
けられた充填材を通過させず、けん濁物のみを通
過させる構造を有する中間集水装置から排水及び
排気する工程と、(2)前記中間集水装置からの排水
及び排気を停止し該中間集水装置の上部に設けら
れた排気装置から排気のみを行う工程との両工程
をくり返し行うことを特徴とする充填層中のけん
濁物を除去する方法である。 本発明者等は前に述べたような従来法の欠点を
改良するため、粒径の大きい、重質のクラツドす
なわち沈降速度の大きいクラツドに対しても有効
であり、かつ分離時間も短かく廃液量も少なくて
すむクラツドの除去方法を鋭意研究した結果本発
明をなすにいたつたものである。 本発明の方法を第5図及び第6図に基いて説明
する。第5図は中間集水装置を1系列用いる場
合、第6図は2系列用いる場合を示す。第5図中
符号1〜17は第3図に示す符号と同じ意味を有
し、第6図においては15a,15bは中間集水
装置、16a,16bはその配管、17a,17
bは弁を示す外、他の符号は第3図に示す符号と
同じ意味を有する。第5図においてはのドレン
工程により水のレベルを中間集水装置15のレベ
ルL1までドレンする。次いで空気スクラビング
を、管8から下部集水装置5を通して空気を導入
し、上部集水装置6より排気しながら行う(工程
)。空気スクラビング工程により樹脂に捕捉
されているクラツドの樹脂からの剥離及び大きい
クラツドの微細化が行われる。工程,は従来
から行われている方法である。次いで本発明の
及びの空気−水スクラビング及び中間集水装置
の洗浄工程を行う。本発明は空気と水を同時に下
部集水装置5から導入しながら中間集水装置15
により弁17及び管16を通じて空気及び水を排
出することを基本としており、沈降速度の大きい
重質のクラツドを空気と水の高流速の上向き流に
よつて、樹脂層下部から、中間集水装置15に運
搬し管16を通して除去するものである。第5図
に示す空気−水スクラビング工程においては、
弁13及び14は閉じられているので塔上部から
排気は行われず、従つて水と空気の流れは常に中
間集水装置15に集中し、該中間集水装置15か
ら管16を経て系外に排出される。 水のみを用いる通常の逆洗においては中間集水
装置から排水する場合樹脂が中間集水装置に堆積
してクラツドの排出がしにくくなつてしまう。し
かし水と空気を同時に導入してスクラビングを行
う本発明による場合は樹脂層、特にその表層が激
しくゆれ動いているため、一度中間集水装置に樹
脂が堆積してもこの堆積した樹脂層はすぐこわ
れ、常に中間集水装置は排水及び排気する“面”
が更新されるので、クラツド排出上何ら問題のな
いことが実験の結果確かめられた。 下部集水装置からの空気の流速は通常エアスク
ラビング工程で用いられているLV50〜100m/h
よりは小さいLV15〜50m/hが適当であり、水
の流速はLV5〜15m/hが好ましい。本発明方法
においてはクラツドの運搬除去は水のみによつて
行われるのでなく空気によつても行われており、
水の流速は従来の逆洗時程大きくする必要はな
い。 更にクラツドの除去状況を詳細に説明すると、
中間集水装置の管の断面下半分からは水と空気が
排出され、大部分は水である。一方管の断面上半
分からは主に空気が排出されている。又樹脂層の
表層はスクラビングのため突沸的動きを示すこと
があり、この時管の断面上半分に樹脂が少しずつ
堆積していく現象が見られる。この現象は空気の
流量をLV50〜100m/hと大きくする程大となる
が通常用いている中間集水装置の設計条件でも20
〜30m/hの間は空気の排出上何ら問題は生じな
い。すなわち管の断面下半分は展開している樹脂
層自身によつて排水、排気する“面”が更新され
ているのに対し、上半分にはの工程の間水、空
気の排出上問題とはならないが少しずつ樹脂が堆
積する。又水−空気スクラビング工程においては
展開している樹脂層の表層から100〜300mm程度の
部分にクラツドが濃厚に集中することが実験の結
果わかつた。それ故この部分からクラツドを効率
的に除くため、又中間集水装置の管断面の上半分
に樹脂が蓄積するのを防止するため水−空気スク
ラビング工程を一定時間(3〜10分間)行つた
後弁17を閉じ中間集水装置からの排水、排気を
停止すると共に、弁14を開き塔上部の上部集水
装置6及び管10から排気のみを行い展開してい
る樹脂層を中間集水装置より100〜300mmの高さ
(L2の位置)まで上昇させる中間集水装置の洗浄
工程を行い、ついで弁14を閉じ、弁17を開
いて再度の水−空気スクラビング工程を行うこ
とによつて、第5図中L2とL1の差の分の100〜
300mmのクラツドが濃厚に集中している部分を排
出させるのである。そして必要に応じて−の
工程をくり返すことによつてクラツドの効率的除
去及び中間集水装置への樹脂の堆積防止を行うこ
とができる。このように空気−水スクラビング工
程においては下部集水装置5から連続して水、
空気が導入されるため、通常の水逆洗では樹脂層
下部に存在して、排出しにくい、粒径の大きい重
質のクラツドも空気と水の上昇流にのつて常に樹
脂層上部、すなわち中間集水装置15へと運搬さ
れ効率的に除去される。 第6図は中間集水装置を2系列設ける場合を示
すものであり、第5図の場合より更に流速の高い
条件、水流速LV6〜25m/h、空気流速LV30〜
70m/hで使用できる。このような高流速で行つ
た場合中間集水装置への樹脂の堆積が多くなるが
中間集水装置が2系列ありこれを交互に使用する
ことによつて、片方の系列が排気、排水を行つて
樹脂の蓄積が多くなつても片方の系列はその間に
蓄積した樹脂がほぐされ排水、排気に十分な
“面”が更新されており、十分に使用可能状態と
なつている。それ故第5図で示すの空気−水ス
クラビング工程がより効果的に行われその分この
工程の時間が短縮される。即ち、第6図において
弁17aを開き中間集水装置15aから管16a
を通して空気及び水が排出されている時は片方の
中間集水装置15−bに集中して堆積した樹脂層
がほぐされ、15−aからクラツドが出にくくな
つた時は単にバルブを切りかえて即ち17aを閉
じ17bを開いて15−bから空気及び水の排出
を行うようにするものである。切りかえの時間は
3〜5分毎程度の短時間で行つた方がクラツドの
排出は効果的である。第5図、第6図に用いる中
間集水装置15,15a,15bは従来の混床式
に使用されているフリーボードドレンのような単
に一本の配管でよく、これに35〜60meshに相当
するサランネツト等を取付けたもの、又は200〜
400μmのスリツトを切つた集水管でよい。 以下本発明を図面に基いて詳しく説明する。 先づ中間集水装置を1系列用いる第5図につい
て説明する。,のドレン工程及び空気スクラ
ビング工程は従来法と同じであり樹脂層3の表面
から250〜400mmの高さになるように水をドレンし
(工程)ついて空気スクラビングを行う。 この時の空気流量はLV50〜100m/h空気圧力
2〜3Kgf/cm2で行う。続いて本発明のの空気
−水スクラビング工程に移り下部集水装置5から
空気流入弁12スルージング水流入弁11を開と
し、また中間集水装置15の排水弁17を開とし
空気と水を管8及び7から下部集水装置5を通じ
て再生塔1に導入し、中間集水装置15から排
水、排気を行いながら空気と水によるスクラビン
グを行う。この時塔上部からの排気は行わない。
空気流量はLV15〜50m/h程度との空気スク
ラビング時の流量より低目がよいが対象とする樹
脂の汚れ程度及び樹脂層のクラツドの性状、樹脂
の種類等によつて空気流入弁12を2ケ設け適宜
,及びの各工程の空気の流量を調整しても
よい。 スルージング水の流量はLV3〜15m/h程度で
行う。 の工程を行う時は空気と水の排出が中間集水
装置からだけで行われるため樹脂が中間集水装置
のまわりに多少堆積するが空気が導入されている
ため、樹脂層3の表層近くが相当に波うつので一
度堆積した樹脂も次々とくずれるし、また、堆積
している部分は前述の如く中間集水装置15の管
断面の上半分であり、その量も少く排水、排気上
問題になることは殆んどない。 しかしクラツドの排出を安全確実にするため
の工程を3〜10分行つた後は上部集水装置6の排
水弁14を開とし、中間集水装置15の排水弁1
7を閉としの工程である中間集水装置の洗浄工
程に移行する。の工程時も下部集水装置からス
ルージング水及び空気の導入が続いており塔内の
水位は上昇する。それ故樹脂層3の表層は中間集
水装置15の位置より高くなる。の工程は中間
集水装置15に堆積した樹脂をほぐすと共に、展
開している樹脂層の上部にクラツドを濃厚に集中
させ、次の工程のをくり返す時に効率的にクラ
ツドを排出するためでありL2とL1の差は100〜
300mmで十分であり、の工程は1〜5分の短時
間でよい。 そして再度の空気−水スクラビング工程にも
どる。との工程は必要に応じて3〜10回くり
返す。そして最後のの工程終了後は空気導入管
8の弁12を閉じ下部集水装置から逆洗水のみを
通し満水工程を兼ねて逆洗を行いクラツドの除去
操作を終了する。 つぎに本発明の中間集水装置を2系列設けた第
6図について示す場合について説明する。 ,のドレン工程及び空気スクラビング工程
は第5図に示す場合と同じである。の空気−水
スクラビングの工程において下部集水装置5の空
気流入弁12、スルージング水流入弁11を開と
して第5図について説明した場合と同様な流速で
空気及びスルージング水を導入する。そして中間
集水装置15−aの排水弁17−aを3〜5分間
開とし管16aより排水と排気を行い、クラツド
が出にくくなつた時点で17−aを閉としもう1
つの中間集水装置15−bの排水弁17−bを開
とする。このように数分毎に17−aと17−b
を開閉し空気と水の排出、すなわちクラツドの排
出を効率的に行う。 中間集水装置15−a,15−bの設定位置は
沈静した樹脂層2の表層より200〜500mmの高さの
位置でよい。15−a,15−bの設定位置は同
じ高さであつてもよいが、高低差を設けてもよ
い。高低差を設ける場合15−aは樹脂層2の表
層より200〜300mmの位置になるように即ちの空
気スクラビングにおいて樹脂からのクラツドの剥
離、及びクラツドの微細化が行われ樹脂スラリー
が濃縮される位置になるよう位置をきめる。 もう一方の15−bはの空気−水のスクラビ
ング時にクラツドの排出が良好になるように樹脂
層2の表層から300〜500mmと15−aの上部に設
置し樹脂層の展開率を大きくするようにするのが
好ましい。そして必要に応じ−−工程をく
り返し最後に満水工程を兼ねて通常の逆洗を行い
クラツド除去操作を終了する。次に第1図及び第
2図に示した従来法と本発明の第5図、第6図に
示した方法の効果の差を表−1に示す。
[Industrial Application Field] The present invention relates to a method for removing suspended substances such as iron oxides trapped in a packed bed by passing raw water through the bed. [Prior art] When water is purified by passing water through a packed bed, especially a packed bed of ion exchange resin, various methods are used to remove crud such as iron oxide with a high specific gravity trapped in the packed bed. A method is proposed. For example, in a condensate demineralization system for a power generation boiler, after water is passed through a demineralization tower for a certain period of time, the ion exchange resin is transferred to a regeneration tower, and crud is removed by backwashing the ion exchange resin. ing. The conventional method will be explained below based on the drawings. FIG. 1 is a schematic diagram showing a commonly used crud removal method, in which reference numeral 1 indicates a regeneration tower;
2 is an ion exchange resin layer in a settled state, 3 is an ion exchange resin layer in a scrubbed state, 4 is an ion exchange resin layer in a backwash state, 5 is a lower water collection device, 6 is an upper water collection device, 7, 8, 9, 10 are pipes for introducing or discharging air or water, 11, 12, 13,
14 indicates a valve provided on the pipe, 14 indicates a drain process, 14 indicates an air scrubbing process, and 14 indicates a backwashing process. Hereinafter, explanation will be given based on FIG. 1, and in FIG. 1, only the parts necessary for explanation are given reference numerals. In the method shown in FIG. 1, after the ion exchange resin (hereinafter simply referred to as resin) is transferred to the regeneration tower 1,
The valve 11 of the pipe 7 and the valve 13 of the pipe 9 are opened, air is pumped through the pipe 9, and water is drained through the pipe 7 until the water surface reaches a position L1 at the top of the resin layer 2 (the first
Then, valves 11 and 13 are closed, valves 12 and 14 are opened, and air is introduced into the lower part of the resin layer from the lower water collecting device 5 through the pipe 8 while exhausting air from the pipe 10 via the upper water collecting device 6. After scrubbing the resin (Fig. 1), close the valve 12 and open the valve 11 to introduce backwash water into the lower part of the resin layer from the pipe 7 through the lower water collection device, and then the upper water collection device 6. Then, the resin is backwashed while discharging the backwash wastewater from the pipe 10 (FIG. 1). In this method, the above steps (drain-air scrubbing-backwashing) are repeated about three times to increase the crud removal rate. In this method, (1) the flow rate of backwash water is limited (max. 15 m/h), and the time required to separate (discharge) the crud because the backwash water is discharged from the water collection device at the top of the regeneration tower; (2) Due to the limited flow rate of backwash water, it is difficult for heavy crud to be transported to the top of the tower; (3) After backwashing, air scrubbing is performed again, so the water must be drained. There are drawbacks such as an increase in the amount of waste liquid. FIG. 2 is a schematic diagram illustrating an improved method for removing heavy crud,
The apparatus itself and the symbols are the same as those shown in FIG. 1, and only the symbols necessary to explain this improved method are written. In FIG. 2, the drain process, the air scrubbing process, the rapid drain process, and the water filling process are shown. The drain process in Figure 2 is the same as that explained in Figure 1, but after air scrubbing for a certain period of time in the air scrubbing process, a valve is opened while the resin layer is being expanded by the air introduced from the bottom. 12 and valve 14 are closed to stop the introduction of air from pipe 8 to resin layer 3, and at the same time, valve 11 and valve 1 are closed.
3 is suddenly opened and air is forced into the pipe 9 to open the pipe 7.
(Rapid drain process in Figure 2). Then, the valve 11 is closed, the valve 14 is opened, and water is replenished from the pipe 10 to a height of L1 (water filling step in FIG. 3), and then the process returns to the air scrubbing step. Although this method is effective for removing heavy crud, the amount of drainage per operation is small (L 1 in Figure 2).
Therefore, it is necessary to repeat the steps of air scrubbing, rapid draining, and water filling about 10 to 30 times, making the process complicated. Figure 3 is for explaining a method that is an improvement on the method shown in Figure 1 and drains water from an intermediate water collection device after backwashing. They have the same meaning, 15 is an intermediate water collection device, 16 is its piping, 17 is a valve, is a drain process, is an air scrubbing process, is a backwash process, and is a drain process from the intermediate water collection device . In the method shown in Figure 3, the air scrubbing process with the drain process is the same as the method shown in Figure 1, but in the backwashing process the backwash water introduced from pipe 7 is introduced to the height of L 3 . After that, valves 11 and 14 are closed, valves 13 and 17 are opened, and pipe 9 is opened.
Backwash water existing above the intermediate water collection device is drained from the intermediate water collection device 15 and drain extraction pipe 16 by pumping air from the intermediate water collection device. This method requires less time to separate the crud and less waste liquid than the method shown in Figure 1, but
Removal of heavy crud is not as efficient as the method shown in FIG. FIG. 4 is a diagram for explaining a method that is an improvement on the method shown in FIG. 3, in which each symbol has the same meaning as the symbol shown in FIG. indicates the backwashing process, indicates the draining process from the intermediate water collection device, and indicates the water filling process. In the method shown in FIG. 4, in the backwashing process, the valve 14 is closed and the inside of the regeneration tower 1 is brought into a pressurized state by introducing backwash water, without exhausting through the pipe 10, and a certain pressure is reached. Then, the valve 17 is opened and this pressure is used to drain water from the intermediate water collecting device 15 and pipe 16 (step). Then, the valve 17 is closed, the valves 13 and 14 are opened, and while exhausting air from the pipe 9, make-up water is supplied through the pipe 14, and the steps 1 to 2 are repeated again. In the method shown in Figure 4, the backwash water is not exhausted when it is introduced, so even if the initial backwash flow rate is increased, the flow rate of the backwash water becomes extremely low as the pressure inside the column increases, and once the water is separated Even if the crud is heavy, it will be located below the intermediate water collection device and cannot be discharged. To avoid this, special consideration is required for the backwash water supply pump, which increases the equipment cost. With the conventional backwashing method described above, it is difficult to transport the backwash water upward to the top of the resin layer and further beyond the resin layer to the discharge outlet at the top of the tower or to the water collection device in the middle of the tower. For heavy crusts with large particle sizes, the method shown in FIG. 2 is preferred. [Object of the invention] The object of the present invention is to improve the drawbacks of the above conventional method,
It is an object of the present invention to provide a method for separating heavy crusts which requires a short separation time and produces a small amount of waste liquid. [Structure of the Invention] The present invention provides a method of scrubbing while simultaneously introducing air and water from the lower part of the packed bed, and (1) passing through the filler provided on the surface layer of the packed bed that is expanded by the scrubbing. (2) stopping the drainage and exhaust from the intermediate water collecting device and installing it above the intermediate water collecting device; This is a method for removing suspended matter in a packed bed, which is characterized by repeatedly carrying out both steps, including a step of only evacuation from an evacuation device. In order to improve the drawbacks of the conventional method as described above, the present inventors have developed a method that is effective even for heavy crusts with large particle sizes, that is, crusts that have a high sedimentation rate, and that requires a short separation time and is effective for waste liquid. The present invention was developed as a result of intensive research into a method for removing crud that requires only a small amount. The method of the present invention will be explained based on FIGS. 5 and 6. FIG. 5 shows the case where one series of intermediate water collection devices is used, and FIG. 6 shows the case where two series are used. Reference symbols 1 to 17 in FIG. 5 have the same meanings as those shown in FIG. 3, and in FIG.
Except for b indicating a valve, other symbols have the same meanings as those shown in FIG. In FIG. 5, the water level is drained to the level L1 of the intermediate water collection device 15 by the drain step. Next, air scrubbing is performed while introducing air from the pipe 8 through the lower water collection device 5 and exhausting it from the upper water collection device 6 (step). The air scrubbing step removes the resin-entrained crud from the resin and atomizes large cruds. The process is a conventional method. The air-water scrubbing and intermediate water collection device cleaning steps of the present invention are then carried out. In the present invention, air and water are simultaneously introduced from the lower water collection device 5 while the intermediate water collection device 15
Basically, air and water are discharged through the valve 17 and the pipe 16, and the heavy crud with a high settling velocity is transported from the lower part of the resin layer to the intermediate water collection device by the upward flow of air and water at a high velocity. 15 and removed through a pipe 16. In the air-water scrubbing process shown in Figure 5,
Since the valves 13 and 14 are closed, there is no evacuation from the top of the column, so that the flow of water and air is always concentrated in the intermediate water collection device 15, from which it exits the system via the pipe 16. It is discharged. In normal backwashing using only water, when draining water from an intermediate water collection device, resin accumulates in the intermediate water collection device, making it difficult to drain the crud. However, in the case of the present invention, in which scrubbing is carried out by simultaneously introducing water and air, the resin layer, especially its surface layer, is shaken violently, so even if resin is deposited in the intermediate water collecting device, the deposited resin layer will be removed immediately. The intermediate water collection device is always used as a “surface” for drainage and exhaust.
As a result of the experiment, it was confirmed that there is no problem in ejecting crud since the information is updated. The air flow rate from the lower water collection device is usually LV50~100m/h, which is used in the air scrubbing process.
A smaller LV of 15 to 50 m/h is appropriate, and the water flow rate is preferably LV of 5 to 15 m/h. In the method of the present invention, transportation and removal of crud is carried out not only by water but also by air,
The water flow rate does not need to be as high as in conventional backwashing. Furthermore, to explain in detail the removal status of crud,
Water and air are discharged from the lower half of the cross-section of the pipe of the intermediate water collection device, the majority of which is water. On the other hand, air is mainly exhausted from the upper half of the tube's cross section. Furthermore, the surface layer of the resin layer may exhibit bumping movements due to scrubbing, and at this time a phenomenon is observed in which the resin gradually accumulates on the upper half of the cross section of the tube. This phenomenon becomes larger as the air flow rate increases from LV50 to 100m/h, but even under the design conditions of the intermediate water collection device normally used,
There are no problems with air evacuation between 30 m/h and 30 m/h. In other words, in the lower half of the cross section of the pipe, the "surface" for drainage and exhaust has been updated by the developed resin layer itself, whereas in the upper half, there is no problem with the discharge of water and air during the process. The resin will accumulate little by little. Experiments have also shown that in the water-air scrubbing process, crud is concentrated in a region approximately 100 to 300 mm from the surface of the developed resin layer. Therefore, a water-air scrubbing process was carried out for a certain period of time (3 to 10 minutes) in order to efficiently remove crud from this area and to prevent resin from accumulating in the upper half of the pipe cross-section of the intermediate water collector. The rear valve 17 is closed to stop drainage and exhaust from the intermediate water collection device, and the valve 14 is opened to only exhaust air from the upper water collection device 6 and pipe 10 at the top of the tower, and the developed resin layer is transferred to the intermediate water collection device. by carrying out a cleaning step of the intermediate water collection device which is raised to a height of 100 to 300 mm (L 2 position), then closing valve 14, opening valve 17 and carrying out another water-air scrubbing step. , 100 to the difference between L 2 and L 1 in Figure 5
This is to drain the area where 300mm of crud is concentrated. By repeating the steps (-) as necessary, the crud can be efficiently removed and the resin can be prevented from accumulating in the intermediate water collecting device. In this way, in the air-water scrubbing process, water is continuously collected from the lower water collection device 5.
Because air is introduced, heavy crud with large particle sizes that exist at the bottom of the resin layer and are difficult to remove in normal water backwashing are always transported to the top of the resin layer, in other words, in the middle, by the upward flow of air and water. The water is transported to the water collection device 15 and efficiently removed. Figure 6 shows the case where two intermediate water collection systems are provided, and the conditions are higher flow velocity than in the case of Figure 5, water flow rate LV6~25m/h, air flow rate LV30~
Can be used at 70m/h. When running at such a high flow rate, a large amount of resin will accumulate in the intermediate water collection device, but since there are two series of intermediate water collection devices and they are used alternately, one series can perform exhaust and drainage. Even though a large amount of resin has accumulated in one series, the resin accumulated in the other series has been loosened and the "surface" has been updated to be sufficient for drainage and exhaust, making it fully usable. Therefore, the air-water scrubbing step shown in FIG. 5 is performed more effectively and the time required for this step is reduced accordingly. That is, in FIG. 6, the valve 17a is opened and the pipe 16a is drained from the intermediate water collecting device 15a.
When air and water are being discharged through the intermediate water collecting device 15-b, the resin layer concentrated on one intermediate water collecting device 15-b is loosened, and when it becomes difficult for crud to come out from the intermediate water collecting device 15-a, simply switch the valve, i.e. 17a is closed and 17b is opened to discharge air and water from 15-b. It is more effective to remove crud if the switching time is short, about every 3 to 5 minutes. The intermediate water collection devices 15, 15a, and 15b used in Figures 5 and 6 can be simply a single pipe like the freeboard drain used in the conventional mixed bed system, which corresponds to 35 to 60 mesh. Those with a saran net etc. installed, or 200 ~
A water collection pipe with a 400μm slit will suffice. The present invention will be explained in detail below based on the drawings. First, FIG. 5, which uses one series of intermediate water collection devices, will be explained. The drain step and air scrubbing step are the same as the conventional method, and water is drained (step) to a height of 250 to 400 mm from the surface of the resin layer 3, followed by air scrubbing. The air flow rate at this time is LV50-100m/h, and the air pressure is 2-3Kgf/ cm2 . Next, the air-water scrubbing step of the present invention is started, and the air inflow valve 12 and sluicing water inflow valve 11 are opened from the lower water collection device 5, and the drain valve 17 of the intermediate water collection device 15 is opened to remove air and water. The water is introduced into the regeneration tower 1 from the pipes 8 and 7 through the lower water collection device 5, and is scrubbed with air and water while being drained and exhausted from the intermediate water collection device 15. At this time, no exhaust is performed from the top of the tower.
The air flow rate should be lower than the flow rate during air scrubbing, about LV15 to 50 m/h, but depending on the degree of contamination of the target resin, the properties of the cladding of the resin layer, the type of resin, etc. The flow rate of air in each step of and may be adjusted as appropriate. The flow rate of sluicing water is approximately LV3~15m/h. When carrying out the process, air and water are discharged only from the intermediate water collection device, so some resin accumulates around the intermediate water collection device, but since air is introduced, the surface layer of resin layer 3 is Because of the considerable undulation, the resin that has been deposited is broken down one after another, and the deposited part is the upper half of the pipe cross section of the intermediate water collection device 15, as mentioned above, and the amount is small, causing problems in terms of drainage and exhaust. There is very little that will happen. However, after carrying out the process for safely and securely discharging the crud for 3 to 10 minutes, the drain valve 14 of the upper water collecting device 6 is opened, and the drain valve 1 of the intermediate water collecting device 15 is opened.
Step 7 is closed and the process moves to the cleaning process of the intermediate water collecting device. During the process, sluicing water and air continue to be introduced from the lower water collection device, and the water level in the tower rises. Therefore, the surface layer of the resin layer 3 is higher than the position of the intermediate water collection device 15. The purpose of this step is to loosen the resin accumulated in the intermediate water collecting device 15, concentrate the crud in the upper part of the developing resin layer, and efficiently discharge the crud when repeating the next step. The difference between L 2 and L 1 is 100 ~
300 mm is sufficient, and the process may take a short time of 1 to 5 minutes. Then return to the air-water scrubbing step again. Repeat the process 3 to 10 times as necessary. After the final step, the valve 12 of the air introduction pipe 8 is closed, and only the backwash water is passed through the lower water collection device to carry out backwashing, which also serves as a water filling step, and the crud removal operation is completed. Next, the case shown in FIG. 6 in which two lines of intermediate water collection devices of the present invention are provided will be explained. , the draining process and air scrubbing process are the same as shown in FIG. In the air-water scrubbing step, the air inlet valve 12 and sluicing water inlet valve 11 of the lower water collecting device 5 are opened, and air and sluicing water are introduced at the same flow rate as described with reference to FIG. Then, the drain valve 17-a of the intermediate water collection device 15-a is opened for 3 to 5 minutes to drain and exhaust water from the pipe 16a, and when it becomes difficult for crud to come out, close the drain valve 17-a.
The drain valve 17-b of the two intermediate water collection devices 15-b is opened. 17-a and 17-b every few minutes like this
Opens and closes to efficiently discharge air and water, that is, exhaust the cladding. The intermediate water collection devices 15-a and 15-b may be set at a height of 200 to 500 mm above the surface layer of the settled resin layer 2. The setting positions of 15-a and 15-b may be at the same height, or may be set at different heights. When creating a height difference, 15-a is set at a position 200 to 300 mm from the surface layer of the resin layer 2. In other words, air scrubbing is performed to separate the crud from the resin and make the crud finer, thereby concentrating the resin slurry. Decide on the position so that it is in the correct position. The other 15-b is installed 300 to 500 mm from the surface of the resin layer 2 and above 15-a to increase the expansion rate of the resin layer so that the crud can be well discharged during air-water scrubbing. It is preferable to Then, if necessary, the process is repeated, and finally, normal backwashing is performed, which also serves as a water filling process, to complete the crud removal operation. Next, Table 1 shows the difference in effectiveness between the conventional method shown in FIGS. 1 and 2 and the method of the present invention shown in FIGS. 5 and 6.

【表】 表1の値は両再生塔のトータルであ
る。
表−1は火力発電所の通常運転時連続30日間通
水した後脱塩塔から再生塔に移送し、カチオン樹
脂はカチオン再生塔でアニオン樹脂はアニオン再
生塔でクラツド除去操作を行つた場合の結果を示
すものである。本発明方法による場合、洗浄時
間、洗浄廃水量、及び空気量共に大巾に少なくな
つている。又これらの洗浄後、両樹脂を混合し脱
塩塔に移送した時の樹脂移送水中の鉄濃度は第1
図に示す従来方法で35ppm(Feとして)であるの
に対し第2図に示す従来法並びに第5図、第6図
に示す本発明方法によるときはいずれも5ppm
(Feとして)以下であつた。以上の結果から本発
明の方法は従来法にくらべ短時間で少ない水量、
空気量でクラツドを除去できしかもクラツドの除
去率もよいことがわかる。 本発明は最も重質のクラツドの除去に効果があ
るといわれる従来法の第2図の方法に比しクラツ
ドの除去率では同等であり、操作方法はより簡単
に又使用空気量も少くなくなつておりその効果は
大きい。
[Table] The values in Table 1 are the total for both regeneration towers.
Table 1 shows the results when water is passed through a thermal power plant during normal operation for 30 consecutive days and then transferred from the desalination tower to the regeneration tower, and the cation resin is removed in the cation regeneration tower and the anion resin is removed in the anion regeneration tower. This shows the results. In the case of the method of the present invention, the cleaning time, the amount of cleaning waste water, and the amount of air are significantly reduced. Also, after these washings, when both resins were mixed and transferred to the desalination tower, the iron concentration in the resin transfer water was the first.
The conventional method shown in the figure is 35 ppm (as Fe), while the conventional method shown in Fig. 2 and the method of the present invention shown in Figs. 5 and 6 are 5 ppm.
(As Fe) It was as follows. From the above results, the method of the present invention can reduce the amount of water in a shorter time than the conventional method.
It can be seen that crud can be removed by changing the amount of air, and the crud removal rate is also good. The present invention has the same crud removal rate as the conventional method shown in Fig. 2, which is said to be effective in removing the heaviest crud, and the operation method is simpler and the amount of air used is smaller. The effect is significant.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図、第3図及び第4図は従来方法
を説明するための図面であり、第5図及び第6図
は本発明方法を説明するための図面である。 1……再生塔、5……下部集水装置、6……上
部集水装置、15,15a,15b……中間集水
装置。
1, 2, 3 and 4 are drawings for explaining the conventional method, and FIGS. 5 and 6 are drawings for explaining the method of the present invention. 1... Regeneration tower, 5... Lower water collection device, 6... Upper water collection device, 15, 15a, 15b... Intermediate water collection device.

Claims (1)

【特許請求の範囲】 1 充填層の下部より空気と水とを同時に導入し
つつ、スクラビングを行いながら(1)該スクラビン
グにより展開している充填層の表層に設けられた
充填材を通過させず、けん濁物のみを通過させる
構造を有する中間集水装置から排水及び排気する
工程と、(2)前記中間集水装置からの排水及び排気
を停止し該中間集水装置の上部に設けられた排気
装置から排気のみを行う工程との両工程をくり返
し行うことを特徴とする充填層中のけん濁物を除
去する方法。 2 中間集水装置を2系列設け、各系列から交互
に排水及び排気を行う特許請求の範囲第1項記載
のけん濁物を除去する方法。
[Scope of Claims] 1 While scrubbing is performed while simultaneously introducing air and water from the lower part of the packed bed, (1) the filling material provided on the surface layer of the packed bed being expanded by the scrubbing is not allowed to pass through; , a step of draining and exhausting water from an intermediate water collection device having a structure that allows only suspended matter to pass; A method for removing suspended matter in a packed bed, characterized by repeatedly carrying out both steps, including a step of only exhausting air from an exhaust device. 2. The method for removing suspended matter according to claim 1, wherein two lines of intermediate water collection devices are provided, and drainage and exhaust are carried out alternately from each line.
JP58239666A 1983-12-21 1983-12-21 Removal of suspended substance in packed bed Granted JPS60132691A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58239666A JPS60132691A (en) 1983-12-21 1983-12-21 Removal of suspended substance in packed bed

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58239666A JPS60132691A (en) 1983-12-21 1983-12-21 Removal of suspended substance in packed bed

Publications (2)

Publication Number Publication Date
JPS60132691A JPS60132691A (en) 1985-07-15
JPH0141393B2 true JPH0141393B2 (en) 1989-09-05

Family

ID=17048095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58239666A Granted JPS60132691A (en) 1983-12-21 1983-12-21 Removal of suspended substance in packed bed

Country Status (1)

Country Link
JP (1) JPS60132691A (en)

Also Published As

Publication number Publication date
JPS60132691A (en) 1985-07-15

Similar Documents

Publication Publication Date Title
JP3273665B2 (en) Hollow fiber membrane filtration device and cleaning method thereof
US3847805A (en) Ion exchange vessel
US2773829A (en) Process and apparatus for subsurface washing
JPH0318483B2 (en)
JPS6032499B2 (en) How to clean particulate impurities
US5653944A (en) Slurry filtration device and flue-gas desulfurization system
EP0273339B1 (en) Method of separating and transferring ion-exchange resin
JPH0141393B2 (en)
JPH09215942A (en) Apparatus and method for separating ion exchange resin particles therefor
CN209537160U (en) A kind of multistage medium sanitary sewage filter
RU2206520C1 (en) Method of cleaning water to remove dissolved and undissolved impurities
JP2007000737A (en) Solid-liquid separator of combined sewer system and sewage treatment method effectively using existing treatment facility
JP2000056084A (en) Precipitating/separating tank for liquid waste processing system
JPH0512978B2 (en)
JP3907012B2 (en) Counter-current regenerative ion exchange apparatus and regeneration method thereof
JPH078001Y2 (en) Settling equipment for sludge treatment
JP3496280B2 (en) Filtration device
CN215962535U (en) A purifier for washing penetrating water of filter cloth of tilting disk filter
JPS6219898B2 (en)
JPS59309A (en) Method and apparatus for washing filter apparatus
JPH0677687B2 (en) Regeneration method of ion exchange resin
JPH0326899Y2 (en)
EP0532212A1 (en) Solids removal
SU1088809A1 (en) Installation for cleaning liquids
CN115869672A (en) Washing water purification device and washing water purification system

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees