JP2007000737A - Solid-liquid separator of combined sewer system and sewage treatment method effectively using existing treatment facility - Google Patents

Solid-liquid separator of combined sewer system and sewage treatment method effectively using existing treatment facility Download PDF

Info

Publication number
JP2007000737A
JP2007000737A JP2005182157A JP2005182157A JP2007000737A JP 2007000737 A JP2007000737 A JP 2007000737A JP 2005182157 A JP2005182157 A JP 2005182157A JP 2005182157 A JP2005182157 A JP 2005182157A JP 2007000737 A JP2007000737 A JP 2007000737A
Authority
JP
Japan
Prior art keywords
solid
filtration
unit
existing
combined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005182157A
Other languages
Japanese (ja)
Inventor
Yasuki Sekine
康記 関根
Hitoshi Kawajiri
斉 川尻
Shigeki Kobayashi
茂樹 小林
Kiyoaki Kitamura
清明 北村
Akihiko Miyamoto
彰彦 宮本
Koji Ogata
孝次 緒方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Tokyo Metropolitan Government
Original Assignee
Hitachi Plant Technologies Ltd
Tokyo Metropolitan Government
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd, Tokyo Metropolitan Government filed Critical Hitachi Plant Technologies Ltd
Priority to JP2005182157A priority Critical patent/JP2007000737A/en
Publication of JP2007000737A publication Critical patent/JP2007000737A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To reduce a construction term for installation and a cost, while using functions of an existing primary settling tank. <P>SOLUTION: This solid-liquid separator 20 is constructed by reconstructing the existing primary settling tank installed in a combined sewage treatment plant, and is provided with a filtering part 22 filtering treating object water 28 disposed in the upper layer area 11 of the primary settling tank, a thickening part 24 disposed in the lower layer area 12 of the primary settling tank, an opening/closing valve 44 with which the filtering part 22 communicates with the thickening part 24, or they are shut off, and a communication pipe 42 which makes drain from the filtering part 22 flow down to to the thickening 24 by gravity by opening the valve 44. The filtering part 22 is formed by juxtaposing a plurality of upper flow filtering tanks 26 having filtering medium layers 30 of floating filtering medium formed therein, and is provided with air jetting means 32 at the lower parts of the respective filtering medium layers 30. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は固液分離装置及び下水処理方法に係り、特に既存の処理施設を有効利用した合流式下水道の固液分離装置及び下水処理方法に関する。   The present invention relates to a solid-liquid separation device and a sewage treatment method, and more particularly to a solid-liquid separation device and a sewage treatment method for a combined sewer that effectively uses an existing treatment facility.

汚水と雨水が同一の管渠に流れ込む合流式下水道の端末側には合流式下水処理場が設置されている。合流式下水処理場は図10に示したように一般に最初沈殿池1と生物反応槽2と最終沈殿池3とを備えている。最初沈殿池1では流入した下水4中の懸濁物質を沈降分離する。生物反応槽2では下水5中の有機性成分や窒素、リンを生物学的な処理によって除去する。最終沈殿池3では処理水6から活性汚泥を沈降分離し、上澄水を処理水7として河川や海に放流する。   A combined sewage treatment plant is installed on the terminal side of the combined sewer where sewage and rainwater flow into the same pipe. As shown in FIG. 10, the combined sewage treatment plant generally includes a first sedimentation tank 1, a biological reaction tank 2, and a final sedimentation tank 3. First, in the settling basin 1, the suspended matter in the sewage 4 that has flowed in is settled and separated. In the biological reaction tank 2, organic components, nitrogen, and phosphorus in the sewage 5 are removed by biological treatment. In the final sedimentation basin 3, activated sludge is settled and separated from the treated water 6, and the supernatant water is discharged as treated water 7 into rivers and the sea.

この種の下水処理場では流入する下水の設計水量は晴天時を基準として定められており、雨天時において雨水が多量に合流すると正規の処理ができなくなる。したがって、設計水量を超過した下水については最初沈殿池1を通しただけか、又はこれに塩素消毒を付加した簡易処理のままで放流する場合が多い。しかしながら、最初沈殿池1は元々、晴天時を基準として水面積負荷が定められているので、多量の雨水が合流した下水を最初沈殿池1に通しても十分な沈澱処理を施すことは不可能であり、微細な懸濁物質はその大部分が放流水に同伴することになる。このため、雨天時には形式的に簡易処理しただけの汚濁物質の多い下水の放流による公共水域の汚染が問題視されている。   In this type of sewage treatment plant, the design amount of inflowing sewage is determined based on the time of fine weather, and regular treatment cannot be performed if a large amount of rainwater joins in rainy weather. Therefore, in many cases, the sewage exceeding the design water quantity is discharged through the settling basin 1 at first, or as a simple treatment with chlorination added thereto. However, since the initial sedimentation basin 1 is originally designed with a water area load based on the time of fine weather, it is impossible to perform sufficient sedimentation treatment even if sewage combined with a large amount of rainwater passes through the first sedimentation basin 1 And most of the fine suspended solids will accompany the discharged water. For this reason, in rainy weather, pollution of public water areas due to the discharge of sewage containing a large amount of pollutant that has been simply treated in a formal manner is regarded as a problem.

特許文献1には上記合流式下水処理場の問題点を改善する方策として、高速ろ過槽を採用した下水処理方法が開示されている。この高速ろ過槽は従来の最初沈殿池に代替するものであり、浮上ろ材を充填した上向流式のろ過槽である。この高速ろ過槽はろ過速度を100〜1000m/日とした高速ろ過が可能であり、従来の最初沈殿池に比べて数倍〜十数倍の水面積負荷を確保することができる。したがって、特許文献1に記載の下水処理方法は合流式下水処理場における雨天時対策として有効であると考えられる。   Patent Document 1 discloses a sewage treatment method that employs a high-speed filtration tank as a measure for improving the problems of the combined sewage treatment plant. This high-speed filtration tank replaces the conventional first sedimentation basin, and is an upward flow type filtration tank filled with a floating filter medium. This high-speed filtration tank is capable of high-speed filtration with a filtration rate of 100 to 1000 m / day, and can ensure a water area load several to ten and several times that of the conventional first sedimentation basin. Therefore, the sewage treatment method described in Patent Document 1 is considered to be effective as a measure against rain in a combined sewage treatment plant.

特許文献2にも浮上ろ材を充填した上向流式のろ過槽が開示されており、同様に合流式下水処理場における最初沈殿池の代替装置として有効であると考えられる。
特開2003−136088号公報 特開平7−289812号公報
Patent Document 2 also discloses an upward flow type filtration tank filled with a floating filter medium, and is considered to be effective as an alternative device for the first sedimentation basin in a combined sewage treatment plant.
JP 2003-136088 A Japanese Patent Laid-Open No. 7-289812

しかしながら、既設の合流式下水処理場における雨天時対策として上記特許文献1又は特許文献2に記載された高速ろ過槽を採用する場合には、新たな用地の確保が必要である。用地の確保が困難な場合には、既設の最初沈殿池を撤去したスペースに当該高速ろ過槽を新設する必要がある。このため、高速ろ過槽の設置に多大な工事期間と費用を要する。既設の最初沈殿池の躯体部分を利用して高速ろ過槽を設置することも考えられるが、新設の場合と五十歩百歩であり、同様に多大な工事期間と費用を要する。   However, when adopting the high-speed filtration tank described in Patent Document 1 or Patent Document 2 as a countermeasure against rain in an existing combined sewage treatment plant, it is necessary to secure a new site. When it is difficult to secure the site, it is necessary to newly install the high-speed filtration tank in the space where the existing first sedimentation basin has been removed. For this reason, installation of a high-speed filtration tank requires a great construction period and cost. It is conceivable to install a high-speed filtration tank using the body of the existing first sedimentation basin, but it is 50 steps and 50 steps as compared with the case of a new construction.

本発明の目的は前記従来技術の問題点を改善し、既設の最初沈殿池の機能を生かしつつ、当該最初沈殿池の設置スペース内にろ過速度の大きいろ過部を配置することによって、設置のための工事期間と費用を節減するとともに既設の合流式下水処理場における雨天時対策として有効な固液分離装置及び下水処理方法を提供することにある。   The purpose of the present invention is to improve the problems of the prior art, and by making use of the function of the existing first sedimentation basin, by arranging a filtration section having a high filtration rate in the installation space of the first sedimentation basin, It is intended to provide a solid-liquid separation device and a sewage treatment method that are effective as a countermeasure against rain in an existing combined sewage treatment plant.

上記目的を達成するために、本発明に係る既存の処理施設を有効利用した合流式下水道の固液分離装置は、合流式下水処理場に設置された既設の最初沈殿池を改造して製作した固液分離装置であって、前記最初沈殿池の上層エリアに配置されて被処理水をろ過するろ過部と、前記最初沈殿池の下層エリアに配置された濃縮部と、前記ろ過部と濃縮部とを連通又は遮断する開閉手段を備え当該開閉手段を開くことによって前記ろ過部からの排水を濃縮部に自然流下させる連通部とを具備したことを特徴とする。   In order to achieve the above object, a solid-liquid separation device for a combined sewer system that effectively uses an existing treatment facility according to the present invention was manufactured by modifying an existing first settling basin installed in a combined sewage treatment plant. A solid-liquid separator, a filtration unit arranged in the upper layer area of the first sedimentation basin and filtering water to be treated, a concentration unit arranged in a lower layer area of the first sedimentation basin, the filtration unit and the concentration unit, And an open / close means for communicating or blocking the water, and the open / close means is opened to allow the drainage from the filtration part to naturally flow down to the concentrating part.

また、本発明に係る上記固液分離装置は、前記最初沈殿池が2階層式沈殿池であり、当該最初沈殿池の上層エリアに設置されていた既設の上層汚泥掻き寄せ手段を撤去した後のスペースに前記ろ過部が配置されたことを特徴とする。この構成の固液分離装置は、前記濃縮部の水面が前記ろ過部の底面よりも高く保持されたことが望ましい。   In the solid-liquid separation device according to the present invention, the first sedimentation basin is a two-layer sedimentation basin, and the space after removing the existing upper sludge scraping means installed in the upper layer area of the first sedimentation basin The filtration part is arranged in the above. In the solid-liquid separator having this configuration, it is desirable that the water surface of the concentrating unit is held higher than the bottom surface of the filtering unit.

また、本発明に係る上記固液分離装置は、前記ろ過部は浮上ろ材のろ材層が形成された上向流式のろ過部であり、前記ろ材層の下方にエア噴出手段を備えたことを特徴とする。この構成の固液分離装置は、前記エア噴出手段を間欠的に作動させるとともに、当該エア噴出手段の作動に連動して前記開閉手段を開閉させる制御手段を具備したことが望ましい。   Further, in the solid-liquid separation device according to the present invention, the filtration unit is an upward flow type filtration unit in which a filter medium layer of a floating filter medium is formed, and air jetting means is provided below the filter medium layer. Features. The solid-liquid separation device having this configuration preferably includes a control unit that intermittently operates the air ejection unit and opens and closes the opening / closing unit in conjunction with the operation of the air ejection unit.

また、本発明に係る既存の処理施設を有効利用した合流式下水道の下水処理方法は、上記構成の固液分離装置のろ過部から排出された処理水と濃縮部から排出された上澄水の合流水を当該固液分離装置の後段に配置された生物反応槽に供給することを特徴とする。また、前記合流水の水量が前記生物反応槽の受入量許容値を超過する場合には、超過分の合流水を前記生物反応槽に流入させずにバイパス放流することを特徴とする。   Further, the combined sewer sewage treatment method that effectively utilizes the existing treatment facility according to the present invention is a merging of the treated water discharged from the filtration unit and the supernatant water discharged from the concentration unit of the solid-liquid separator having the above-described configuration. Water is supplied to a biological reaction tank disposed in the subsequent stage of the solid-liquid separator. In addition, when the amount of the combined water exceeds the allowable amount of the biological reaction tank, the excess combined water is discharged by bypass without flowing into the biological reaction tank.

本発明に係る固液分離装置によれば、合流式下水道によって集められた下水である被処理水は、最初沈殿池の上層エリアに配置されたろ過部に通水され、ろ過後の処理水が後段の生物反応槽に送られる。ろ過部で捕捉された懸濁物質は排水に同伴させ連通部を介して最初沈殿池の下層エリアに配置された濃縮部に自然流下させることができる。濃縮部ではろ過部から排出された懸濁物質を沈降させるとともに、沈降した懸濁物質(汚泥)を装置外へ排出することができる。   According to the solid-liquid separator according to the present invention, the water to be treated, which is sewage collected by the combined sewer, is first passed to the filtration unit disposed in the upper layer area of the settling basin, and the treated water after filtration is downstream. Sent to the bioreactor. Suspended matter trapped in the filtration unit can be entrained in the wastewater and allowed to flow naturally to the concentration unit disposed in the lower layer area of the first sedimentation basin through the communication unit. In the concentration unit, the suspended matter discharged from the filtration unit is allowed to settle, and the suspended suspended matter (sludge) can be discharged out of the apparatus.

ろ過部として浮上ろ材のろ材層が形成された上向流式のろ過部を採用すると、ろ過速度(水面積負荷)を400m/日程度までに上げた高速ろ過が可能である。既設の最初沈殿池の水面積負荷は通常、30〜40m/日で設計されているから、本発明の固液分離装置によれば通常の最初沈殿池に比べて10倍程度の高速処理が可能である。改造前の最初沈殿池が2階層式沈殿池である場合でも、本発明の固液分離装置は改造前の2階層式沈殿池に比べて少なくとも3倍程度の処理能力を有する。このため、雨天時において多量の雨水が合流した被処理水が当該固液分離装置に流入した場合でも、所望のろ過機能を発揮させることができる。   When an upward flow type filtration unit in which a filter medium layer of floating filter media is formed as the filtration unit, high-speed filtration with a filtration rate (water area load) increased to about 400 m / day is possible. Since the water area load of the existing first sedimentation basin is usually designed at 30 to 40 m / day, the solid-liquid separation device of the present invention can perform high-speed treatment about 10 times as compared with the normal first sedimentation basin. It is. Even when the first settling basin before remodeling is a two-level settling basin, the solid-liquid separation device of the present invention has a processing capacity at least about three times that of the two-level settling basin before remodeling. For this reason, even when the to-be-processed water which a lot of rainwater joined at the time of rain flows in into the said solid-liquid separator, a desired filtration function can be exhibited.

しかも、既設の沈殿池を部分的に改造し、濃縮部は既設の沈殿池構造をそのまま利用した構造にできるので、改造のための工事期間と費用を最小限に抑えることができる。すなわち、本発明の固液分離装置は既設の最初沈殿池の機能を生かしつつ、最初沈殿池の設置スペース内にろ過速度の大きいろ過部を配置したので、設置、改造のための工事期間と費用を節減するとともに既設の合流式下水処理場における雨天時対策に有効である。   In addition, the existing sedimentation basin can be partially remodeled, and the concentrating section can be constructed using the existing sedimentation basin structure as it is, so that the construction period and cost for remodeling can be minimized. That is, the solid-liquid separation device of the present invention has a function of the existing first sedimentation basin, and a filtration section having a high filtration rate is arranged in the installation space of the first sedimentation basin. It is effective for measures against rain in the existing combined sewage treatment plant.

また、本発明に係る下水処理方法によれば、固液分離装置のろ過部では高速ろ過が可能であるため、雨天時対策として有効である。また、固液分離装置は既設の最初沈殿池の機能を生かしつつ、最初沈殿池の設置スペース内にろ過部を配置した構造であり、改造のための工事期間と費用を節減できる。   In addition, according to the sewage treatment method according to the present invention, high-speed filtration is possible in the filtration unit of the solid-liquid separator, which is effective as a measure against rain. In addition, the solid-liquid separation device has a structure in which a filtration section is arranged in the installation space of the first settling basin while making use of the function of the existing first settling basin, and the construction period and cost for remodeling can be saved.

図1は本発明に係る固液分離装置の第1実施形態を示す側断面図、図2は図1のA−A矢視図、図3は平面図である。この固液分離装置20は図11に示した合流式下水処理場における既設の最初沈殿池10を改造して製作したものである。既設の最初沈殿池10は、上層エリア11と下層エリア12からなる2階層式沈殿池である。上層エリア11にはフライトスクレーパ式の上層汚泥掻き寄せ機13が、下層エリア12にはフライトスクレーパ式の下層汚泥掻き寄せ機14がそれぞれ装備されている。各エリアに流入した下水中の懸濁物質が沈降して、各エリアの底面11A,12Aに堆積する。この底面11A,12Aに堆積した汚泥をそれぞれ上層汚泥掻き寄せ機13及び下層汚泥掻き寄せ機14によって汚泥溜め15側に掻き寄せる。汚泥溜め15に掻き集めた汚泥を吸引ポンプ16によって排出する。上層エリア11の上澄水は溢流樋17から、下層エリア12の上澄水は溢流樋18からそれぞれ排出され、図10に示した生物反応槽2に送られる。   FIG. 1 is a side sectional view showing a first embodiment of a solid-liquid separation device according to the present invention, FIG. 2 is a view taken along the line AA in FIG. 1, and FIG. 3 is a plan view. This solid-liquid separator 20 is manufactured by modifying the existing first sedimentation tank 10 in the combined sewage treatment plant shown in FIG. The existing first sedimentation basin 10 is a two-level sedimentation basin composed of an upper layer area 11 and a lower layer area 12. The upper layer area 11 is equipped with a flight scraper type upper sludge scraper 13 and the lower layer area 12 is equipped with a flight scraper type lower sludge scraper 14. Suspended substances in the sewage flowing into each area settle and deposit on the bottom surfaces 11A and 12A of each area. The sludge accumulated on the bottom surfaces 11A and 12A is scraped to the sludge reservoir 15 side by the upper sludge scraper 13 and the lower sludge scraper 14, respectively. The sludge collected in the sludge reservoir 15 is discharged by the suction pump 16. The supernatant water of the upper layer area 11 is discharged from the overflow basin 17 and the supernatant water of the lower layer area 12 is discharged from the overflow basin 18 and sent to the biological reaction tank 2 shown in FIG.

図1に示した本発明に係る固液分離装置20は図11に示した既設の最初沈殿池10の上層エリア11に設置されていた上層汚泥掻き寄せ機13を撤去した後のスペースにろ過部22を配置した構成とされる。また、下層エリア12は既設の下層汚泥掻き寄せ機14をそのままの状態で配置した濃縮部24とされる。汚泥溜め15や吸引ポンプ16も既設の構造がそのまま利用されている。   The solid-liquid separation device 20 according to the present invention shown in FIG. 1 has a filtration unit in the space after removing the upper sludge scraper 13 installed in the upper layer area 11 of the existing first sedimentation tank 10 shown in FIG. 22 is arranged. In addition, the lower layer area 12 is a concentration unit 24 in which the existing lower layer sludge scraper 14 is arranged as it is. The existing structures of the sludge reservoir 15 and the suction pump 16 are used as they are.

ろ過部22には複数基のろ過槽26、26、……が並設されている。各ろ過槽26には被処理水28よりも比重が小さい浮上ろ材のろ材層30が形成され、被処理水28がろ材層30に対して上向流となるように各ろ過槽26に供給される。各ろ材層30の下方にはエア噴出手段32が装備され、ブロア34から供給された圧縮空気36がエア噴出手段32から噴き出し可能とされている。圧縮空気36を導く各管路には電磁開閉式の開閉弁38が取付けられており、これらの開閉弁38は制御器40からの動作信号によって開閉される。各ろ過槽26の底部には連通管42の一端が接続しており、連通管42の他端が濃縮部24内に開口している。各連通管42には電磁開閉式の開閉弁44が取付けられており、これらの開閉弁44も制御器40からの動作信号によって開閉される。   A plurality of filtration tanks 26, 26,... In each filtration tank 26, a filter medium layer 30 of a floating filter medium having a specific gravity smaller than that of the water to be treated 28 is formed, and the water to be treated 28 is supplied to each filter tank 26 so as to flow upward with respect to the filter medium layer 30. The Below each filter medium layer 30, air ejection means 32 is provided, and compressed air 36 supplied from the blower 34 can be ejected from the air ejection means 32. An electromagnetic open / close valve 38 is attached to each pipeline that guides the compressed air 36, and the open / close valve 38 is opened / closed by an operation signal from the controller 40. One end of the communication pipe 42 is connected to the bottom of each filtration tank 26, and the other end of the communication pipe 42 opens into the concentration unit 24. Each communication pipe 42 is provided with an electromagnetic open / close valve 44, and these open / close valves 44 are also opened / closed by an operation signal from the controller 40.

ろ過槽26の上部にはスクリーン50が配設されており、浮上ろ材の流出を防止している。すなわち、上向流によって浮上した浮上ろ材がスクリーン50によって、それ以上の浮上を制限され、スクリーン50の配設位置を上面とした一定高さのろ材層30が安定に形成される。   A screen 50 is disposed on the upper portion of the filtration tank 26 to prevent the floating filter medium from flowing out. That is, the floating filter medium that has floated due to the upward flow is restricted by the screen 50 from rising further, and the filter medium layer 30 having a fixed height with the screen 50 as the upper surface is stably formed.

被処理水28は流入樋46から各ろ過槽26の下降流路48を経て、ろ過槽26の下部に流れ込んだ後に方向転換し、上向流としてろ材層30を通過する。この方向転換時に被処理水28中の比較的粒径の大きい懸濁物質がろ過槽26の下部に沈降し、堆積する。また、被処理水28中の比較的粒径の小さい懸濁物質はろ材層30を通過する過程で浮上ろ材に捕捉される。このため、ろ材層30を通過後の処理水52は懸濁物質の大部分が除去されることになり、ろ過槽26は一次処理としての作用効果を十分に発揮する。処理水52は流出樋54を介して当該固液分離装置20から排出され、後段の生物反応槽などに送られる。   The treated water 28 flows from the inflow trough 46 to the lower part of the filtration tank 26 via the descending flow path 48 of each filtration tank 26 and then changes direction, and passes through the filter medium layer 30 as an upward flow. During this change of direction, suspended substances having a relatively large particle size in the water to be treated settle and deposit in the lower part of the filtration tank. Further, suspended substances having a relatively small particle diameter in the water to be treated 28 are captured by the floating filter medium in the process of passing through the filter medium layer 30. For this reason, most of the suspended solids are removed from the treated water 52 after passing through the filter medium layer 30, and the filtration tank 26 sufficiently exhibits the effect of the primary treatment. The treated water 52 is discharged from the solid-liquid separation device 20 via the outflow tank 54 and sent to a biological reaction tank or the like at the subsequent stage.

図4は浮上ろ材60の一例を示しており、(1)は側面図、(2)は正面図である。素材としては比重が1未満の耐候性に優れたプロピレンなどが使われる。基本形状は網目状円筒体であり、内部に複数本の突起62を有する。直径と高さは10〜30mmであり、網目を形成する線材の太さは2〜4mmの範囲とされ、好ましくは空隙率が80%以上とされる。ろ材層30の高さは高い方が好ましい。ただし、本実施形態では上記したように既設の2階層式沈殿池の上層エリアを利用してろ過槽26を設置するので、構造上の制限がある。したがって、ろ材層30の高さは1〜2mとなるように設計される。   FIG. 4 shows an example of the floating filter medium 60, where (1) is a side view and (2) is a front view. As a material, propylene having a specific gravity of less than 1 and excellent weather resistance is used. The basic shape is a mesh-like cylindrical body having a plurality of protrusions 62 inside. The diameter and height are 10 to 30 mm, the thickness of the wire forming the mesh is in the range of 2 to 4 mm, and the porosity is preferably 80% or more. The height of the filter medium layer 30 is preferably higher. However, in this embodiment, since the filtration tank 26 is installed using the upper layer area of the existing two-level sedimentation tank as described above, there are structural limitations. Therefore, the height of the filter medium layer 30 is designed to be 1 to 2 m.

ろ過槽26における被処理水28のろ過速度(上向流速)が小さいほどろ過槽26での懸濁物質の除去率が高くなる。被処理水28のろ過速度を1000m/日程度にまで上げてもろ材層30では懸濁物質の除去機能を発揮する。しかし、効率のよい安定したろ過操作を実行するためには、ろ過速度を400m/日以下にして運転することが望ましい。   The smaller the filtration rate (upward flow rate) of the water to be treated 28 in the filtration tank 26, the higher the suspended matter removal rate in the filtration tank 26. Even if the filtration rate of the water to be treated 28 is increased to about 1000 m / day, the filter medium layer 30 exhibits the function of removing suspended substances. However, in order to perform an efficient and stable filtration operation, it is desirable to operate at a filtration rate of 400 m / day or less.

ろ過操作の過程で前記したように被処理水28中の比較的粒径の大きい懸濁物質がろ過槽26の底部に汚泥として堆積する。この底部に堆積した汚泥を排出するために汚泥排出操作を行う。この汚泥排出操作では、まず被処理水28の流入を停止させる。次に開閉弁44を開放する。すると、ろ過槽26下部内の被処理水が連通管42を介して濃縮部24側に排水として自然流下し、この排水に同伴してろ過槽26の底部に堆積した汚泥も濃縮部24側に移行する。   As described above, suspended substances having a relatively large particle size in the water to be treated accumulate as sludge at the bottom of the filtration tank 26 in the course of the filtration operation. Sludge discharge operation is performed to discharge the sludge accumulated at the bottom. In this sludge discharging operation, first, the inflow of the water to be treated 28 is stopped. Next, the on-off valve 44 is opened. Then, the water to be treated in the lower part of the filtration tank 26 naturally flows as drainage to the concentration unit 24 side through the communication pipe 42, and sludge accumulated along the drainage at the bottom of the filtration tank 26 also enters the concentration unit 24 side. Transition.

図5はろ過槽26における上記汚泥排出操作状況を示した説明図である。(1)は初期段階を示しており、連通管42からの排水の抜き出しによって、ろ過槽26の底部に堆積した汚泥が排出される。さらに、ろ材層30には下向流が生じており、この下向流によりろ材層30の浮上ろ材は弱い流動状態を呈しているため、浮上ろ材に捕捉されていた懸濁物質の一部が浮上ろ材から離れて下向流に同伴し、排水に同伴して濃縮部24側に移行する。この汚泥排出操作はろ過槽26内の被処理水の液面が所定の位置に達するまで行われる。(2)は汚泥排出操作の最終段階を示しており、ろ材層30の上面は液面と一致しており、液面の低下に伴ってろ材層30も下降し、その上面がスクリーン50から離れる。この最終段階で開閉弁44を閉止して汚泥排出操作を終了させる。次に、ろ過槽26に対する被処理水28の流入を再開することによってろ過操作に戻る。上記の汚泥排出操作を3時間に1回程度の頻度で間欠的に行う。   FIG. 5 is an explanatory view showing the state of the sludge discharge operation in the filtration tank 26. (1) shows an initial stage, and the sludge accumulated at the bottom of the filtration tank 26 is discharged by extracting the drainage from the communication pipe 42. Furthermore, since a downward flow is generated in the filter medium layer 30 and the floating filter medium of the filter medium layer 30 is in a weak flow state due to this downward flow, a part of the suspended matter trapped in the floating filter medium is partly. It moves away from the floating filter and is accompanied by the downward flow, and is accompanied by the drainage and moves to the concentration unit 24 side. This sludge discharging operation is performed until the level of the water to be treated in the filtration tank 26 reaches a predetermined position. (2) shows the final stage of the sludge discharging operation. The upper surface of the filter medium layer 30 coincides with the liquid level, and the filter medium layer 30 also descends as the liquid level decreases, and the upper surface leaves the screen 50. . At this final stage, the on-off valve 44 is closed to end the sludge discharge operation. Next, the flow returns to the filtration operation by restarting the inflow of the water to be treated 28 into the filtration tank 26. The sludge discharging operation is intermittently performed at a frequency of about once every 3 hours.

ろ過部22でのろ過操作を長時間継続すると、各ろ過槽26のろ材層30には懸濁物質が次第に蓄積し、ろ過作用が低下してくる。そこで、ろ材洗浄操作を実施する。このろ材洗浄操作では、まず、液面をスクリーン50まで下げた状態にした後に、エア噴出手段32から空気を噴き出すことによって行われる。   When the filtration operation in the filtration unit 22 is continued for a long time, suspended substances gradually accumulate in the filter medium layer 30 of each filtration tank 26, and the filtration action is lowered. Therefore, a filter medium cleaning operation is performed. In this filter medium cleaning operation, first, the liquid level is lowered to the screen 50 and then air is blown out from the air blowing means 32.

図6はろ材洗浄操作の状況を示す説明図である。エア噴出手段32から噴き出した空気の動エネルギーによって、ろ過槽26内には渦流が形成される。この渦流によって浮上ろ材60が激しく流動し、浮上ろ材60に付着、堆積していた懸濁物質が浮上ろ材60から剥離し、懸濁物質が液側に移行する。エア噴出手段32によるろ材洗浄を所定時間実施した後に、エア噴出手段による空気の噴出を継続しながら開閉弁44を開放し、ろ過槽26下部内の懸濁物質を含む被処理水のほぼ全量を連通管42を介して濃縮部24側に排水として自然流下させる。次に、開閉弁44を閉止した後に被処理水28の流入を再開し、スクリーン50まで液面を上げる。以降、上述のろ材洗浄を必要回数、繰り返すことによって、浮上ろ材60の清浄度が更新される。   FIG. 6 is an explanatory diagram showing the state of the filter medium cleaning operation. A vortex is formed in the filtration tank 26 by the kinetic energy of the air ejected from the air ejection means 32. Due to this vortex flow, the floating filter medium 60 flows vigorously, and the suspended substances attached and deposited on the floating filter medium 60 are separated from the floating filter medium 60, and the suspended substances move to the liquid side. After the filter medium cleaning by the air ejection means 32 is performed for a predetermined time, the on-off valve 44 is opened while continuing the air ejection by the air ejection means, and almost all of the water to be treated including suspended substances in the lower part of the filtration tank 26 is discharged. It is allowed to flow down naturally as drainage to the concentrating part 24 side through the communication pipe 42. Next, after the on-off valve 44 is closed, the inflow of the water to be treated 28 is resumed and the liquid level is raised to the screen 50. Thereafter, the cleanliness of the floating filter medium 60 is updated by repeating the above-described filter medium cleaning as many times as necessary.

図7は上述の汚泥排出操作とろ材洗浄操作の状況をモデル化して示したタイムチャートである。時間tのろ過操作aを実施するごとに時間tの汚泥排出操作bを繰り返した後に、時間tのろ材洗浄操作cを実施する。このa→b→a→b→a→b→a→cの一連の操作を1サイクルとし、1サイクルの時間を12時間で運転すると1日当たり2サイクルのろ過処理がろ過部22で実施される。この1サイクルの一連の操作を実行するためには、被処理水28の流入と流入停止、開閉弁44の開閉、エア噴出手段32からの空気の噴出と停止の動作切り替えが必要であり、これらの動作切り替えは制御器40からの動作信号によって制御される。図7に示した被処理水流入d、開閉弁44の開e、空気の噴出fは1サイクルにおける一連の動作を概括的に示したものである。制御器40ではこれら一連の動作を所定のタイムスケジュールに基いて実行させる。 FIG. 7 is a time chart that shows a model of the sludge discharge operation and the filter medium cleaning operation described above. Each time the filtration operation a at time t 1 is performed, the sludge discharge operation b at time t 2 is repeated, and then the filter medium cleaning operation c at time t 3 is performed. When the series of operations of a → b → a → b → a → b → a → c is set to one cycle and the time of one cycle is operated for 12 hours, filtration processing of two cycles per day is performed in the filtration unit 22. . In order to execute this series of operations in one cycle, it is necessary to switch the operation of the inflow and inflow stop of the water to be treated 28, the opening and closing of the on-off valve 44, and the ejection and stop of air from the air ejection means 32. The operation switching is controlled by an operation signal from the controller 40. The treated water inflow d, the opening e of the on-off valve 44, and the air ejection f shown in FIG. 7 generally show a series of operations in one cycle. The controller 40 executes these series of operations based on a predetermined time schedule.

上述の汚泥排出操作とろ材洗浄操作によって下層の濃縮部24にはろ過部22からの懸濁物質を多く含んだ排水が排出される。これらの排水中の懸濁物質は濃縮部24で沈降する。濃縮部24の底面に沈降した懸濁物質(汚泥)は下層汚泥掻き寄せ機14によって汚泥溜め15側に掻き寄せられる。汚泥溜め15に掻き集めた濃縮汚泥は吸引ポンプ16によって装置外へ排出する。懸濁物質の沈降分離によって清澄化した上澄水63は流出樋64を介して当該固液分離装置20から排出され、ろ過部22からの処理水52と合流して後段の生物反応槽などに送られる。   By the above-described sludge discharging operation and filter medium cleaning operation, waste water containing a large amount of suspended matter from the filtering unit 22 is discharged to the lower concentration unit 24. These suspended substances in the wastewater settle in the concentration section 24. Suspended matter (sludge) settled on the bottom surface of the concentration unit 24 is scraped to the sludge reservoir 15 side by the lower layer sludge scraper 14. The concentrated sludge collected in the sludge reservoir 15 is discharged out of the apparatus by the suction pump 16. The supernatant water 63 clarified by the sedimentation and separation of the suspended matter is discharged from the solid-liquid separation device 20 through the outflow trough 64, and is combined with the treated water 52 from the filtration unit 22 and sent to a biological reaction tank or the like at the subsequent stage. It is done.

濃縮部24の水面はろ過部22の底面よりも高く保持することが好ましい。本実施形態の固液分離装置20は既設の2階層式沈殿池における上層エリアを利用してろ過部22を設置したものであり、この際に2階層式沈殿池の上層エリアと下層エリアを仕切る上層エリアの底面を、ろ過部22の底面として利用している。しかしながら、上層エリアの底面は元来、ろ過部22全体の荷重を受けるように設計されていない。このため、改造によって設置したろ過部22の荷重を支持するには上層エリアの底面強度が不足する恐れがある。濃縮部24の水面をろ過部22の底面(すなわち、上層エリアの底面)よりも高く保持すれば、高くした水頭差に相当する浮力がろ過部22の底面に作用して強度不足を解消又は緩和する。したがって、上層エリアの底面に対する補強工事を不必要又は最小限に抑えることができる。   It is preferable to keep the water surface of the concentration unit 24 higher than the bottom surface of the filtration unit 22. The solid-liquid separation device 20 of the present embodiment has a filtration unit 22 installed using an upper layer area in an existing two-layer sedimentation basin, and in this case, an upper layer that separates the upper layer area and the lower layer area of the two-layer sedimentation basin. The bottom surface of the area is used as the bottom surface of the filtration unit 22. However, the bottom surface of the upper layer area is not originally designed to receive the load of the entire filtration unit 22. For this reason, in order to support the load of the filtration part 22 installed by remodeling, there exists a possibility that the bottom face intensity | strength of an upper layer area may be insufficient. If the water surface of the concentration unit 24 is kept higher than the bottom surface of the filtration unit 22 (that is, the bottom surface of the upper layer area), the buoyancy corresponding to the increased water head difference acts on the bottom surface of the filtration unit 22 to eliminate or alleviate the strength shortage. To do. Therefore, the reinforcement work for the bottom surface of the upper layer area can be unnecessary or minimized.

本実施形態の固液分離装置20によれば、合流式下水道によって集められた下水である被処理水28は、最初沈殿池の上層エリアに配置されたろ過部22に通水され、ろ過後の処理水52が後段の生物反応槽に送られる。ろ過部22で捕捉された懸濁物質は排水に同伴して連通管42を介して最初沈殿池の下層エリアに配置された濃縮部24に自然流下させることができる。濃縮部24ではろ過部22から排出された懸濁物質を沈降させるとともに、沈降した懸濁物質(汚泥)を既設の下層汚泥掻き寄せ機14によって既設の汚泥溜め15側に掻き寄せる。汚泥溜め15に掻き集めた濃縮汚泥は既設の吸引ポンプ16によって装置外へ排出する。   According to the solid-liquid separator 20 of this embodiment, the to-be-processed water 28 which is the sewage collected by the combined sewer system is first passed through the filtration unit 22 disposed in the upper layer area of the settling basin, and processed after filtration. Water 52 is sent to the biological reaction tank in the subsequent stage. Suspended substances captured by the filtration unit 22 can be naturally flowed to the concentration unit 24 disposed in the lower layer area of the settling basin through the communication pipe 42 along with the drainage. In the concentration unit 24, the suspended matter discharged from the filtering unit 22 is settled, and the settled suspended matter (sludge) is scraped to the existing sludge reservoir 15 side by the existing lower layer sludge scraper 14. The concentrated sludge collected in the sludge reservoir 15 is discharged out of the apparatus by the existing suction pump 16.

ろ過部22は浮上ろ材60のろ材層30が形成された上向流式のろ過部であり、ろ過速度(水面積負荷)を前記したように400m/日程度までに上げた高速ろ過が可能である。既設の最初沈殿池の水面積負荷は通常、30〜40m/日で設計されているから、本実施形態の固液分離装置20によれば通常の最初沈殿池に比べて10倍程度の高速処理が可能である。改造前の最初沈殿池が2階層式沈殿池であり単層式沈殿池に比べて敷地効率が高いことを考慮しても、本実施形態の固液分離装置20は改造前の2階層式沈殿池に比べて少なくとも3倍程度の処理能力を有する。このため、雨天時において多量の雨水が合流した被処理水28が当該固液分離装置20に流入した場合でも、所望のろ過機能を発揮させることができる。   The filtration unit 22 is an upward flow type filtration unit in which the filter medium layer 30 of the floating filter medium 60 is formed, and high-speed filtration with a filtration rate (water area load) increased to about 400 m / day as described above is possible. is there. Since the water area load of the existing first sedimentation basin is normally designed at 30 to 40 m / day, the solid-liquid separation device 20 of the present embodiment is about 10 times faster than the normal first sedimentation basin. Is possible. Even considering that the first sedimentation basin before remodeling is a two-layer sedimentation basin and the site efficiency is higher than that of a single-layer sedimentation basin, the solid-liquid separation device 20 of this embodiment has a two-layer sedimentation before modification. Compared to ponds, it has at least 3 times the processing capacity. For this reason, even when the to-be-processed water 28 which a lot of rainwater merged at the time of rain flows into the said solid-liquid separation apparatus 20, a desired filtration function can be exhibited.

しかも、既設の2階層式沈殿池を部分的に改造し、濃縮部24は既設の沈殿池構造をそのまま利用した構造であるから、改造のための工事期間と費用を最小限に抑えることができる。すなわち、本実施形態の固液分離装置20は既設の最初沈殿池の機能を生かしつつ、最初沈殿池の設置スペース内にろ過速度の大きいろ過部22を配置したので、設置、改造のための工事期間と費用を節減するとともに既設の合流式下水処理場における雨天時対策に有効である。   In addition, the existing two-level sedimentation basin is partially remodeled, and the enrichment unit 24 is a structure that uses the existing sedimentation basin structure as it is, so that the construction period and cost for modification can be minimized. . That is, since the solid-liquid separation device 20 of the present embodiment makes use of the function of the existing first sedimentation basin, the filtration unit 22 having a high filtration rate is disposed in the installation space of the first sedimentation basin. It saves time and cost, and is effective for measures against rain in existing combined sewage treatment plants.

図8は本発明に係る固液分離装置の第2実施形態を示す側断面図である。図8において図1と同一の符号を付した要素は、前記第1実施形態で説明した要素と同一の機能を有しており、その説明を省略する。この第2実施形態は既設の単層式最初沈殿池の上部に複数基のろ過槽26からなる上層のろ過部22を増設した構造である。既設の単層式最初沈殿池はそのまま、下層の濃縮部24として利用される。開閉弁を備えた連通管42の構成も第1実施形態と同様である。この第2実施形態の固液分離装置は、既設の最初沈殿池が単層式である場合に適合している。   FIG. 8 is a side sectional view showing a second embodiment of the solid-liquid separation device according to the present invention. In FIG. 8, elements denoted by the same reference numerals as those in FIG. 1 have the same functions as those described in the first embodiment, and the description thereof is omitted. The second embodiment has a structure in which an upper filtration section 22 composed of a plurality of filtration tanks 26 is added to the upper part of an existing single-layer first sedimentation basin. The existing single-layer first sedimentation basin is used as it is as the lower concentration section 24. The configuration of the communication pipe 42 provided with the on-off valve is the same as that of the first embodiment. The solid-liquid separation device of the second embodiment is suitable for the case where the existing first sedimentation basin is a single layer type.

図9は本発明に係る下水処理方法の実施形態を示す系統図である。固液分離装置70は既設の最初沈殿池を改造して製作した装置であって、上層エリアに配置されて被処理水78をろ過するろ過部72と、下層エリアに配置された濃縮部74と、ろ過部72と濃縮部74とを連通又は遮断する開閉手段を備え当該開閉手段を開くことによってろ過部72からの排水を濃縮部74に自然流下させる連通部76とを具備している。合流式下水道によって集水された被処理水78は、固液分離装置70のろ過部72でろ過され、処理水80とされる。ろ過部72で除去された被処理水78中の懸濁物質は、ろ過部72の排水に同伴して連通部76から濃縮部74に移送され、濃縮処理を受ける。濃縮された汚泥82は濃縮部74の汚泥溜め84から系外に排出される。濃縮部74の上澄水86はろ過部72の処理水80と合流して、後段の生物反応槽88で浄化処理される。生物反応槽88の処理水90は最終沈殿池92に送られ、汚泥94が沈澱分離される。最終沈殿池92の上澄水は処理水96として放流される。   FIG. 9 is a system diagram showing an embodiment of the sewage treatment method according to the present invention. The solid-liquid separation device 70 is a device manufactured by modifying an existing first sedimentation basin, and includes a filtration unit 72 that is disposed in the upper layer area and filters the treated water 78, and a concentration unit 74 that is disposed in the lower layer area. In addition, an opening / closing means for communicating or blocking the filtering section 72 and the concentrating section 74 is provided, and a communicating section 76 for allowing the drainage from the filtering section 72 to naturally flow down to the concentrating section 74 by opening the opening / closing means. The treated water 78 collected by the combined sewer system is filtered by the filtration unit 72 of the solid-liquid separator 70 to be treated water 80. The suspended substance in the water to be treated 78 removed by the filtration unit 72 is transferred to the concentration unit 74 from the communication unit 76 along with the drainage of the filtration unit 72 and is subjected to a concentration process. The concentrated sludge 82 is discharged out of the system from the sludge reservoir 84 of the concentration unit 74. The supernatant water 86 of the concentrating unit 74 joins with the treated water 80 of the filtering unit 72 and is purified in the subsequent biological reaction tank 88. The treated water 90 in the biological reaction tank 88 is sent to the final sedimentation basin 92, and the sludge 94 is precipitated and separated. The supernatant water of the final sedimentation basin 92 is discharged as treated water 96.

この下水処理方法によれば、固液分離装置70のろ過部72での高速ろ過が可能であるため、雨天時対策として有効である。また、固液分離装置70は既設の最初沈殿池の機能を生かしつつ、当該最初沈殿池の設置スペース内にろ過部72を配置した構造であり、改造のための工事期間と費用を節減できる。   According to this sewage treatment method, high-speed filtration is possible in the filtration unit 72 of the solid-liquid separator 70, which is effective as a measure against rain. In addition, the solid-liquid separation device 70 has a structure in which the filtration unit 72 is arranged in the installation space of the first settling basin while making use of the function of the existing first settling basin, and the construction period and cost for modification can be reduced.

なお、固液分離装置70のろ過部72のろ過能力には限界あるため、ろ過速度の上限を例えば400m/日と定めて運転する。したがって、大雨時などにおいて合流式下水道から流入する被処理水78の水量がろ過部72のろ過能力を越える場合には、超過分の被処理水98は緊急措置としてバイパス放流する。また、生物反応槽88にも処理能力に限界がある。したがって、前記したろ過部72の処理水80と濃縮部74の上澄水86とが合流した合流水の水量が生物反応槽88の受入量許容値を超過する場合には、超過分の合流水100を同様にバイパス放流する。ただし、超過分の合流水100は前段の固液分離装置70でのろ過処理によって相応に浄化されている。このため、バイパス放流による公共水域の汚染を最小限に抑えることができる。   In addition, since there is a limit in the filtration capability of the filtration part 72 of the solid-liquid separator 70, it sets and operates the upper limit of the filtration rate as 400 m / day, for example. Therefore, when the amount of treated water 78 flowing from the combined sewer system exceeds the filtration capacity of the filtration unit 72 during heavy rain, the excess treated water 98 is discharged by bypass as an emergency measure. The biological reaction tank 88 also has a limited processing capacity. Therefore, when the amount of combined water in which the treated water 80 of the filtration unit 72 and the supernatant water 86 of the concentrating unit 74 merge exceeds the allowable amount of acceptance in the biological reaction tank 88, the excess combined water 100 In the same way. However, the excess combined water 100 is correspondingly purified by the filtration process in the solid-liquid separator 70 in the previous stage. For this reason, it is possible to minimize contamination of public water areas due to bypass discharge.

本発明に係る固液分離装置の第1実施形態を示す側断面図である。It is a sectional side view showing a 1st embodiment of a solid-liquid separation device concerning the present invention. 図1のA−A矢視図である。It is an AA arrow line view of FIG. 第1実施形態の平面図である。It is a top view of a 1st embodiment. 浮上ろ材の一例を示しており、(1)は側面図、(2)は平面図である。An example of a floating filter medium is shown, (1) is a side view and (2) is a plan view. ろ過槽26における汚泥排出操作状況を示した説明図であり、(1)は初期段階、(2)は最終段階を示す。It is explanatory drawing which showed the sludge discharge | release operation condition in the filtration tank 26, (1) shows an initial stage, (2) shows the last stage. ろ材洗浄操作の状況を示す説明図である。It is explanatory drawing which shows the condition of filter medium washing | cleaning operation. 汚泥排出操作とろ材洗浄操作の状況をモデル化して示したタイムチャートである。It is the time chart which modeled and showed the situation of sludge discharge operation and filter media washing operation. 本発明に係る固液分離装置の第2実施形態を示す側断面図である。It is a sectional side view which shows 2nd Embodiment of the solid-liquid separator which concerns on this invention. 本発明に係る下水処理方法の実施形態を示す装置系統図である。It is an apparatus system diagram showing an embodiment of a sewage treatment method according to the present invention. 従来技術に係る合流式下水処理場の装置系統図である。It is an apparatus system diagram of a combined sewage treatment plant according to the prior art. 従来技術に係る既設の2階層式沈殿池の側断面図である。It is a sectional side view of the existing two-tiered sedimentation basin which concerns on a prior art.

符号の説明Explanation of symbols

10……最初沈殿池、11……上層エリア、12……下層エリア、13……上層汚泥掻き寄せ機、14……下層汚泥掻き寄せ機、15……汚泥溜め、16……吸引ポンプ、20……固液分離装置、22……ろ過部、24……濃縮部、26……ろ過槽、28……被処理水、30……ろ材層、32……エア噴出手段、34……ブロア、36……圧縮空気、38……開閉弁、40……制御器、42……連通管、44……開閉弁、46……流入樋、48……下降流路、50……スクリーン、52……処理水、54……流出樋、60……浮上ろ材、63……上澄水、64……流出樋、70……固液分離装置、72……ろ過部、74……濃縮部、76……連通部、78……被処理水、80……処理水、82……汚泥、86……上澄水、88……生物反応槽、92……最終沈殿池、96……処理水。   10 …… First sedimentation basin, 11 …… Upper area, 12 …… Lower area, 13 …… Upper sludge scraper, 14 …… Lower sludge scraper, 15 …… Sludge reservoir, 16 …… Suction pump, 20 …… Solid-liquid separator, 22 …… Filtering section, 24 …… Concentration section, 26 …… Filter tank, 28 …… Water to be treated, 30 …… Filter medium layer, 32 …… Air ejecting means, 34 …… Blower, 36 .... Compressed air, 38 ... Open / close valve, 40 ... Controller, 42 ... Communication pipe, 44 ... Open / close valve, 46 ... Inlet, 48 ... Down flow path, 50 ... Screen, 52 ... ... treated water, 54 ... spillage, 60 ... floating filter, 63 ... supernatant water, 64 ... spillage, 70 ... solid-liquid separator, 72 ... filtration part, 74 ... concentration part, 76 ... ... communication part, 78 ... treated water, 80 ... treated water, 82 ... sludge, 86 ... supernatant water, 88 ... biological reactor 92 ...... final sedimentation pond, 96 ...... treated water.

Claims (7)

合流式下水処理場に設置された既設の最初沈殿池を改造して製作した固液分離装置であって、前記最初沈殿池の上層エリアに配置されて被処理水をろ過するろ過部と、前記最初沈殿池の下層エリアに配置された濃縮部と、前記ろ過部と濃縮部とを連通又は遮断する開閉手段を備え当該開閉手段を開くことによって前記ろ過部からの排水を濃縮部に自然流下させる連通部とを具備したことを特徴とする既存の処理施設を有効利用した合流式下水道の固液分離装置。   A solid-liquid separation device manufactured by remodeling an existing first settling basin installed in a combined sewage treatment plant, the filtration unit being disposed in an upper layer area of the first settling basin, and filtering the treated water, A concentrating part arranged in the lower layer area of the settling basin, and a communication means for allowing the drainage from the filtering part to flow down to the concentrating part by opening and closing the opening / closing means for communicating or blocking the filtering part and the concentrating part. A solid-liquid separation device for a combined sewer system that effectively utilizes an existing processing facility. 前記最初沈殿池が2階層式沈殿池であり、当該最初沈殿池の上層エリアに設置されていた既設の上層汚泥掻き寄せ手段を撤去した後のスペースに前記ろ過部が配置されたことを特徴とする請求項1に記載の既存の処理施設を有効利用した合流式下水道の固液分離装置。   The first sedimentation basin is a two-level sedimentation basin, and the filtration unit is disposed in a space after removing the existing upper sludge scraping means installed in the upper layer area of the first sedimentation basin. A solid-liquid separator for a combined sewer that effectively uses the existing processing facility according to claim 1. 前記濃縮部の水面が前記ろ過部の底面よりも高く保持されたことを特徴とする請求項2に記載の既存の処理施設を有効利用した合流式下水道の固液分離装置。   The solid-liquid separation device for a combined sewer system utilizing the existing processing facility according to claim 2, wherein the water surface of the concentrating unit is held higher than the bottom surface of the filtering unit. 前記ろ過部は浮上ろ材のろ材層が形成された上向流式のろ過部であり、前記ろ材層の下方にエア噴出手段を備えたことを特徴とする請求項1又は請求項2に記載の既存の処理施設を有効利用した合流式下水道の固液分離装置。   The said filtration part is an upward flow type filtration part in which the filter medium layer of the floating filter medium was formed, and was equipped with the air ejection means under the said filter medium layer, The Claim 1 or Claim 2 characterized by the above-mentioned. A solid-liquid separator for combined sewers that makes effective use of existing treatment facilities. 前記エア噴出手段を間欠的に作動させるとともに、当該エア噴出手段の作動に連動して前記開閉手段を開閉させる制御手段を具備したことを特徴とする請求項4に記載の既存の処理施設を有効利用した合流式下水道の固液分離装置。   5. The existing processing facility according to claim 4, further comprising a control unit that operates the air ejection unit intermittently and opens and closes the opening / closing unit in conjunction with the operation of the air ejection unit. Used solid-liquid separator for combined sewerage. 請求項1〜請求項5のいずれかに記載された固液分離装置の前記ろ過部から排出された処理水と前記濃縮部から排出された上澄水の合流水を当該固液分離装置の後段に配置された生物反応槽に供給することを特徴とする既存の処理施設を有効利用した合流式下水道の下水処理方法。   The treated water discharged from the filtration unit of the solid-liquid separation device according to any one of claims 1 to 5 and the combined water of the supernatant water discharged from the concentration unit are disposed downstream of the solid-liquid separation device. A sewage treatment method for a combined sewer that effectively utilizes an existing treatment facility, which is supplied to a biological reaction tank disposed. 前記合流水の水量が前記生物反応槽の受入量許容値を超過する場合には、超過分の合流水を前記生物反応槽に流入させずにバイパス放流することを特徴とする請求項6に記載の既存の処理施設を有効利用した合流式下水道の下水処理方法。   When the amount of the combined water exceeds the allowable amount of the biological reaction tank, the excess combined water is discharged by bypass without flowing into the biological reaction tank. Sewage treatment method for combined sewerage that effectively utilizes existing treatment facilities.
JP2005182157A 2005-06-22 2005-06-22 Solid-liquid separator of combined sewer system and sewage treatment method effectively using existing treatment facility Pending JP2007000737A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005182157A JP2007000737A (en) 2005-06-22 2005-06-22 Solid-liquid separator of combined sewer system and sewage treatment method effectively using existing treatment facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005182157A JP2007000737A (en) 2005-06-22 2005-06-22 Solid-liquid separator of combined sewer system and sewage treatment method effectively using existing treatment facility

Publications (1)

Publication Number Publication Date
JP2007000737A true JP2007000737A (en) 2007-01-11

Family

ID=37686818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005182157A Pending JP2007000737A (en) 2005-06-22 2005-06-22 Solid-liquid separator of combined sewer system and sewage treatment method effectively using existing treatment facility

Country Status (1)

Country Link
JP (1) JP2007000737A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008000697A (en) * 2006-06-23 2008-01-10 Ngk Insulators Ltd Primary treatment method of combined sewage
JP2012061426A (en) * 2010-09-16 2012-03-29 Nippon Solid Co Ltd Method of treating raw water
JP2014018735A (en) * 2012-07-18 2014-02-03 Metawater Co Ltd Operation method of filtration system and filtration system
CN110180256A (en) * 2019-05-10 2019-08-30 华电电力科学研究院有限公司 A kind of coal water sedimentation pond of automatic collection coal slime and its working method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008000697A (en) * 2006-06-23 2008-01-10 Ngk Insulators Ltd Primary treatment method of combined sewage
JP4674188B2 (en) * 2006-06-23 2011-04-20 メタウォーター株式会社 Primary treatment method for combined sewage
JP2012061426A (en) * 2010-09-16 2012-03-29 Nippon Solid Co Ltd Method of treating raw water
JP2014018735A (en) * 2012-07-18 2014-02-03 Metawater Co Ltd Operation method of filtration system and filtration system
CN110180256A (en) * 2019-05-10 2019-08-30 华电电力科学研究院有限公司 A kind of coal water sedimentation pond of automatic collection coal slime and its working method

Similar Documents

Publication Publication Date Title
KR101495675B1 (en) Nonpoint pollution decrease apparatus and nonpoint pollution decrease material method
KR100905693B1 (en) Treatment apparatus for first flush rainwater
US9908067B2 (en) Floatables and scum removal apparatus for a waste water treatment system
KR101141698B1 (en) Rainwater reusing system
KR100904177B1 (en) Device and method for purifying the first rainwater containing non-point source
KR100800559B1 (en) First flush stormwater treatment apparatus including cartridge screw type screen
KR200431389Y1 (en) Rainwater purify device
KR101494296B1 (en) A Non-power Automatic Back-washing Type Equipment for Decreasing Non-point Pollution of First Flush
KR101562757B1 (en) Non-point sources pollutants removal facility
KR102361496B1 (en) Apparatus for filtering nonpoint pollution source
KR101484030B1 (en) Purifying device of storm overflow chamber
US7182856B2 (en) Stormwater treatment train
KR100991836B1 (en) Apparatus of reducing the nonpoint pollution source
KR100906453B1 (en) Storm runoff treatment apparatus with auto back washing for filter
KR101527005B1 (en) A pollutant purification apparatus
KR101580859B1 (en) Water treatment apparatus and Water treatment methods using the same
KR101842653B1 (en) Filter cartridge and the non-point polution reducing system
KR100784496B1 (en) Rainwater purify device
KR101878395B1 (en) Purifying device of storm overflow chamber
KR20160010952A (en) Non-point sources pollutants removal facility
JP2007000737A (en) Solid-liquid separator of combined sewer system and sewage treatment method effectively using existing treatment facility
KR101608043B1 (en) The aequipmenr of reducing non-point pollution material in rainwater
KR101262194B1 (en) Device for treating combined sewer overflows
KR101085199B1 (en) Floating removal and filtering system of branch stream
KR101799513B1 (en) Filter cartridge and the non-point polution reducing system