JPS60132691A - Removal of suspended substance in packed bed - Google Patents

Removal of suspended substance in packed bed

Info

Publication number
JPS60132691A
JPS60132691A JP58239666A JP23966683A JPS60132691A JP S60132691 A JPS60132691 A JP S60132691A JP 58239666 A JP58239666 A JP 58239666A JP 23966683 A JP23966683 A JP 23966683A JP S60132691 A JPS60132691 A JP S60132691A
Authority
JP
Japan
Prior art keywords
air
water
water collection
collection device
scrubbing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58239666A
Other languages
Japanese (ja)
Other versions
JPH0141393B2 (en
Inventor
Kanroku Naganami
長南 勘六
Fumihiro Otsubo
大坪 文博
Yoshikazu Takehata
竹端 義和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Infilco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Infilco Co Ltd filed Critical Ebara Infilco Co Ltd
Priority to JP58239666A priority Critical patent/JPS60132691A/en
Publication of JPS60132691A publication Critical patent/JPS60132691A/en
Publication of JPH0141393B2 publication Critical patent/JPH0141393B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Filtration Of Liquid (AREA)
  • Treatment Of Water By Ion Exchange (AREA)

Abstract

PURPOSE:To shorten separation time and to reduce the amount of a waste solution, by performing an air-water scrubbing process and the washing process of an intermediate water collection apparatus to be performed after a drain process and an air scrubbing process. CONSTITUTION:Water is drained in a drain process so as to bring the level of water to the level L1 of an intermediate water collection apparatus 15. Subsequently, air scrubbing is performed in an air scrubbing process in such a way that air is introduced from a pipe 8 through a lower water collection apparatus 5 and exhausted through an upper water collection apparatus 6. In the next step, an air-water scrubbing process III is performed to convey heavy clad high in a precipitation speed from the lower part of a resin bed to the intermediate water collection apparatus 15 by a high flow speed upward stream of air and water and to remove the same through a pipe 16. After the process III is perofrmed for a definite time, the washing process IV of the intermediate water collection apparatus 15 and the process III is subsequently performed again. By repeating processes III, IV, if necessary, the efficient removal of clad and the prevention of the accumulation of the resin to the intermediate water collection apparatus 15 are performed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 原水の通水により充填層内に捕捉された鉄酸化物等のけ
ん濁物を除去する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for removing suspended substances such as iron oxides trapped in a packed bed by passing raw water through the bed.

〔従来技術〕[Prior art]

充填層、特にイオン交換樹脂の充填層に水を通水するこ
とによシ水を精製する場合、充填層内に捕捉された比重
の大きい酸化鉄等のクラッドを除去する方法として種々
の方法が提案されている。
When purifying water by passing water through a packed bed, especially a packed bed of ion exchange resin, various methods are available to remove crud such as iron oxide with a high specific gravity trapped in the packed bed. Proposed.

例えば発電用ボイラの復水脱塩装置においては、脱塩塔
に一定時間通水した後イオン交換樹脂を再生塔に移送し
、イオン交換樹脂を逆洗することによシフラッドを除去
することが行われている。
For example, in a condensate demineralization system for a power generation boiler, after water is passed through the demineralization tower for a certain period of time, the ion exchange resin is transferred to the regeneration tower, and the ion exchange resin is backwashed to remove shifrad. It is being said.

以下図面に基いて従来法を説明する。The conventional method will be explained below based on the drawings.

第1図は通常行われているクラッドの除去方法を示すだ
めの概略図であって、符号1は再生塔、2は沈静した状
態のイオン交換樹脂層、3はスクラビング状態のイオン
交換樹脂層、4は逆洗状態のイオン交換樹脂層、5は下
部集水装置、6は上部集水装置、7,8,9.10は空
気又は水を導入又は排水するための配管、11゜12,
13.14は前記配管上に設けた弁を示し、(1)はド
レン工程、(■)は空気スクラビング工程、Qll)は
逆洗工程を示す。
FIG. 1 is a schematic diagram showing a commonly used crud removal method, where 1 is a regeneration tower, 2 is an ion exchange resin layer in a settled state, 3 is an ion exchange resin layer in a scrubbed state, 4 is an ion exchange resin layer in a backwashed state, 5 is a lower water collection device, 6 is an upper water collection device, 7, 8, 9.10 is piping for introducing or draining air or water, 11゜12,
Reference numerals 13 and 14 indicate the valves provided on the piping, (1) indicates the draining process, (■) indicates the air scrubbing process, and Qll) indicates the backwashing process.

以下、第1図に基いて説明するが、第1図の(II)、
 @5については説明上必要な部分にのみ符号を付した
The following will explain based on FIG. 1, but (II) in FIG.
As for @5, only the parts necessary for explanation are labeled.

第1図に示す方法においては、イオン交換樹脂(以下単
に樹脂という)を再生塔1に移送した後、管7の弁11
及び管9の弁13を開き管9よシ空気を圧送して樹脂層
2の上部のある位置L1 に水面が達するまで管7を通
じて水をドレンしく第1図K)、ついで弁11及び弁1
3を閉じ弁12及び弁14を開いて上部集水装置6を経
て管10から排気しながら管8から下部集水装置5よシ
樹脂層の下部に空気を導入して樹脂のスクラビングを行
った後(第1図■)、弁12を閉じ弁11を開いて管7
よシ下部集水装置を経て逆洗水を樹脂層の下部に導入し
、上部集水装置6を経て管10よシ逆洗廃水を排出しな
がら樹脂の逆洗を行う(第1図■)。この方法において
はクラッド除去率をあげるために3回程度前記工程(ド
レン−空気スクラビング−逆洗)がくシ返される。
In the method shown in FIG. 1, after the ion exchange resin (hereinafter simply referred to as resin) is transferred to the regeneration tower 1,
Then open the valve 13 of the pipe 9 and force air through the pipe 9 to drain the water through the pipe 7 until the water surface reaches a position L1 on the upper part of the resin layer 2 (Fig. 1K), and then open the valve 11 and the valve 1.
3 was closed, valves 12 and 14 were opened, and air was exhausted from the pipe 10 via the upper water collection device 6, while air was introduced into the lower part of the resin layer from the pipe 8 through the lower water collection device 5, thereby scrubbing the resin. After that (Fig. 1 ■), close the valve 12, open the valve 11, and open the pipe 7.
The backwash water is introduced into the lower part of the resin layer through the lower water collection device, and the resin is backwashed while the backwash wastewater is discharged through the upper water collection device 6 and into the pipe 10 (Fig. 1 ■). . In this method, the steps (drain-air scrubbing-backwashing) are repeated about three times to increase the crud removal rate.

この方法では、(1)逆洗水の流速に制限があり(ma
x、15 m/ h程度)、かつ再生塔上部の集水装置
から逆洗水を排出するためクラッドの分離C聯出)に要
する時間が長いこと、(2)逆洗水の流速に制限がある
ため重質のクラッドは塔上部まで運搬されにくいこと、
(3)逆洗後再度空気スクラビングを行うため水をドレ
ンする必要がありこの分だけ廃液量が多くなること等の
欠点がある。
In this method, (1) there is a limit to the flow rate of backwash water (ma
x, approximately 15 m/h), and the time required to separate the cladding is long because the backwash water is discharged from the water collection device at the top of the regeneration tower (2) there is a restriction on the flow rate of the backwash water. Because of this, heavy cladding is difficult to transport to the top of the tower.
(3) Since air scrubbing is performed again after backwashing, it is necessary to drain the water, which has disadvantages such as an increase in the amount of waste liquid.

第2図は、重質のクラッドを除去するために改良された
方法を説明するための概略図であって、装置自体及び符
号は第1図に示したものと同一であり、符号はこの改良
方法を説明するのに必要な符号のみを記入した。第2図
において(1)はドレビ工程、(II)は空気スクラビ
ング工程、佃)は急速ドレン工程、(ロ)は水張シ工程
を示す。
FIG. 2 is a schematic diagram for explaining an improved method for removing heavy crud; the apparatus itself and the reference numerals are the same as those shown in FIG. 1; Only the symbols necessary to explain the method have been entered. In FIG. 2, (1) shows the Drevi process, (II) shows the air scrubbing process, Tsukuda) shows the rapid drain process, and (B) shows the water filling process.

第2図において(1)のドレン工程は第1図に説明した
のと同じであるが、(ll)の空気スクラビング工程に
おいて一定の時間空気スクラビングを行った後、下部か
ら導入される空気による樹脂層の展開中に弁12及び弁
14を閉じ管8から樹脂層3への空気の導入を止めると
同時に、弁11及び弁13を急開すると共に管9よシ空
気を圧送して管7を通して一気に排水するものである(
第2図■の急速ドレン工程)。ついで弁11を閉じ弁1
4を開き管10から水をり、の高さまで補給した後(第
3図■の水張シ工程)空気スクラビング工程に戻る。こ
の方法は重質のクラッド除去に有効であるが1回当シの
排水量が少なく(第2図中Llとり、の差の分しか排水
できない)、従って空気スクラビング、急速ドレン及び
水張シの(n)〜Mの工程を10〜30回程度くシ返す
必要があり工程が複雑である。
In Fig. 2, the drain step (1) is the same as that explained in Fig. 1, but after air scrubbing for a certain period of time in the air scrubbing step (ll), the resin is removed by the air introduced from the bottom. While the layer is being developed, the valves 12 and 14 are closed to stop the introduction of air from the tube 8 into the resin layer 3, and at the same time, the valves 11 and 13 are suddenly opened and the air is forced through the tube 9 and passed through the tube 7. It drains water all at once (
Rapid drain process in Figure 2 ■). Then close valve 11 and close valve 1.
4 is opened and water is poured from the pipe 10 to the height of (water filling process shown in Fig. 3), and then the process returns to the air scrubbing process. Although this method is effective for removing heavy crud, the amount of water discharged per step is small (only the difference between Ll and L in Figure 2 can be drained), and therefore air scrubbing, rapid draining, and water filling ( It is necessary to repeat steps n) to M about 10 to 30 times, making the process complicated.

第3図は、第1図に示す方法を改良し、逆洗後中間集水
装置より排水するようにした方法を説明するためのもの
で、符号1〜14は第1図で示した符号と同じ意味を有
し、符号15は中間集水装置、16はその配管、17は
弁を示し、(1)はドレン工程、(■)は空気スクラビ
ング工程、@)は逆洗工程、(転)は中間集水装置から
のドレン工程を示す。
Figure 3 is for explaining a method that is an improvement on the method shown in Figure 1 and drains water from an intermediate water collection device after backwashing. They have the same meaning, 15 is an intermediate water collection device, 16 is its piping, 17 is a valve, (1) is a drain process, (■) is an air scrubbing process, @) is a backwash process, (transfer) shows the drain process from the intermediate water collection device.

縞3図に示す方法において、(■)のドレン工程と(n
)の空気スクラビング工程は第1図に示す方法と同じで
あるが、(至)の逆洗工程において管7から導入される
逆洗水をL3 の高さまで導入した後、弁11及び14
を閉じ、弁13及び17を開き管9がら空気を圧送して
中間集水装置から上に存在する逆洗水を中間集水装置1
5及びドレン抜出し管16から排水するようにしたもの
である。この方法は、第1図に示す方法よシはクラッド
の分離に要する時間が短縮され廃液量も少なくてすむが
、重質クラッドの除去は第2図に示す方法程十分ではな
い。
In the method shown in Figure 3, the drain process (■) and (n
) The air scrubbing process is the same as the method shown in FIG.
is closed, valves 13 and 17 are opened, and air is pumped through pipe 9 to remove the backwash water existing above from the intermediate water collection device to the intermediate water collection device 1.
5 and drain pipe 16. Although this method reduces the time required to separate the crud and requires less waste liquid than the method shown in FIG. 1, the removal of heavy crud is not as sufficient as the method shown in FIG.

第4図は、第3図に示す方法を改良した方法を説明する
だめの図であって、各符号は第3図に示す符号と同じ意
味を有し、(■)はドレーン工程、(If)は空気スク
ラビング工程、(IIl)は逆洗工程、(財)は中間集
水装置からのドレン工程、(ト)は水張り工程を示す。
FIG. 4 is a diagram for explaining a method improved from the method shown in FIG. 3, in which each symbol has the same meaning as the symbol shown in FIG. ) indicates the air scrubbing process, (IIl) indicates the backwashing process, (F) indicates the draining process from the intermediate water collection device, and (G) indicates the water filling process.

第4図に示す方法においては、逆洗工程(III)にお
いて弁14を閉じ管10を通して排気することなく、再
生塔1内を逆洗水を導入することにより加圧状態とし、
成る一定の圧力に達したら弁17を開きこの圧力を利用
して中間集水装置15及び管16から排水する(工程■
)。ついで弁17を閉じ弁13及び14を開き管9から
排気しながら管14を通して補給水を給水した後再び(
It)〜(V)の工程をくり返し行う。
In the method shown in FIG. 4, in the backwash step (III), the valve 14 is closed and the inside of the regeneration tower 1 is brought into a pressurized state by introducing backwash water without exhausting through the pipe 10.
When a certain pressure is reached, the valve 17 is opened and this pressure is used to drain water from the intermediate water collection device 15 and the pipe 16 (step
). Next, valve 17 is closed, valves 13 and 14 are opened, and while exhausting air from pipe 9, make-up water is supplied through pipe 14, and then (
It) to (V) are repeated.

第4図に示す方法においては、逆洗水の導入時に排気し
ないため、初期の逆洗流速を大きくしても塔内の圧力の
上昇と共に逆洗水の流速は極端に小さくなシ、いったん
分離したクラッドも重質のものは中間集水装置よシ下部
にきてしまい排出できないことになってしまう。このこ
とを避けるためには、逆洗水の供給ポンプに特別の考慮
が必要となシ設備的に高くなる。
In the method shown in Figure 4, the backwash water is not exhausted when it is introduced, so even if the initial backwash flow rate is increased, the flow rate of the backwash water becomes extremely small as the pressure inside the column increases. If the crud is heavy, it will end up at the bottom of the intermediate water collection device and cannot be discharged. To avoid this, special consideration is required for the backwash water supply pump, which is expensive in terms of equipment.

以上説明した従来の逆洗法によっては、逆洗水の上向き
の流れと共に樹脂層上部、更に樹脂層を越えて排出口で
ある塔上部あるいは塔中間部の集水装置までの運搬が離
しい粒径の大きい重質のクラッドに対しては第2図に示
す方法が好ましい。
Depending on the conventional backwashing method described above, particles are difficult to transport as the backwash water flows upward to the top of the resin layer, further beyond the resin layer to the discharge outlet at the top of the tower or to the water collection device in the middle of the tower. For heavy cladding with a large diameter, the method shown in FIG. 2 is preferred.

〔発明の目的] 本発明の目的は、上記従来法の欠点を改善し、分離時間
が短かくてすみ、かつ廃液量の少ない重質クラッドの分
離方法を提供することにある。
[Object of the Invention] An object of the present invention is to provide a method for separating heavy cladding, which improves the drawbacks of the above-mentioned conventional methods, requires a short separation time, and produces a small amount of waste liquid.

〔発明の構成] 本発明は、充填層の下部より空気と水とを同時に導入し
つつスクラビングを行いながら、(1)該スクラビング
により展開している充填層の表層に設けられた充填材を
通過させず、けん濁物のみを通過させる構造を有する中
間集水装置から排水及び排気する工程と、(2)前記中
間集水装置からの排水及び排気を停止し該中間集水装置
の上部に設けられた排気装置から排気のみを行う工程と
の両工程をくり返し行うことを特徴とする充填層中のけ
ん濁物を除去する方法である。
[Structure of the Invention] The present invention provides a method of scrubbing while simultaneously introducing air and water from the lower part of the packed bed, and (1) passing through the filler provided on the surface layer of the packed bed that is expanded by the scrubbing. (2) discharging and discharging water from an intermediate water collection device having a structure that allows only suspended matter to pass through without causing any This is a method for removing suspended matter in a packed bed, which is characterized by repeatedly carrying out both steps, including a step of only evacuation from an evacuation device.

本発明者等は前に述べたような従来法の欠点を改良する
ため、粒径の大きい、重質のクラッドすなわち沈降速度
の大きいクラッドに対しても有効であり、かつ分離時間
も、短かく廃液量も少なくてすむクラッドの除去方法を
鋭意研究した結果本発明をなすにいたったものである。
In order to improve the drawbacks of the conventional method as described above, the present inventors have developed a method that is effective even for heavy crud with a large particle size, that is, crud with a high sedimentation rate, and that the separation time is short. The present invention was developed as a result of intensive research into a crud removal method that requires less waste liquid.

本発明の方法を第5図及び第6図に基いて説明する。第
5図は中間集水装置を1系列用いる場合、第6図(d2
2系用いる場合を示す。第5図中符号1〜17は第3図
に示す符号と同じ意味を有し、第6図においては15a
、15bは中間集水装置、16a、16bはその配管、
17a、17bは弁を示す外、他の符号は第3図に示す
符号と同じ意味を有する。第5図においては(1)のド
レン工程によシ水のレベルを中間集水装置15のレベル
(Lt)tでドレンする。次いで空気スクラビングを、
管8から下部集水装置5を通して空気を導入し、上部集
水装置6よシ排気しながら行う(工程n)。空気スクラ
ビング工程(n)により樹脂に捕捉されているクラッド
の樹脂からの剥離及び大きいクラッドの微細化が行われ
る。工程(I)(■)は従来から行われている方法であ
る。次いで本発明の(ill)及び(社)の空気−水ス
クラビング及び中間集水装置の洗浄工程を行う。本発明
は空気と水を同時に下部集水装置5から導入しながら中
間集水装置15より弁17及び管16を通じて空気及び
水を排出することを基本としており゛、沈降速度の大き
い重質のクラッドを空気と水の高流速の上向き流によっ
て、樹脂層下部から、中間集水装置15に運搬し管16
を通して除去するものである。第5図に示す空気−水ス
クラビング工程Q[l)においては、弁13及び14は
閉じられているので塔上部から排気は行われず、従って
水と空気の流れは常に中間集水装置15に集中し、該中
間集水装置15から管16を経て系外に排出される。
The method of the present invention will be explained based on FIGS. 5 and 6. Figure 5 shows the case where one series of intermediate water collection device is used, Figure 6 (d2
The case where two systems are used is shown. Reference numerals 1 to 17 in FIG. 5 have the same meanings as the reference numerals shown in FIG. 3, and in FIG.
, 15b is an intermediate water collection device, 16a and 16b are its piping,
17a and 17b indicate valves, and other symbols have the same meanings as those shown in FIG. 3. In FIG. 5, in the drain step (1), the level of water is drained at the level (Lt)t of the intermediate water collecting device 15. Then air scrubbing,
Air is introduced from the pipe 8 through the lower water collection device 5 and is carried out while being exhausted through the upper water collection device 6 (step n). The air scrubbing step (n) separates the crud trapped in the resin from the resin and atomizes the large crud. Step (I) (■) is a conventional method. The air-water scrubbing and intermediate water collection device cleaning steps of the present invention are then carried out. The present invention is based on simultaneously introducing air and water from the lower water collection device 5 and discharging the air and water from the intermediate water collection device 15 through the valve 17 and pipe 16. is transported from the lower part of the resin layer to the intermediate water collection device 15 by the upward flow of air and water at a high flow rate, and is transferred to the pipe 16.
It is removed through. In the air-water scrubbing step Q[l) shown in FIG. 5, the valves 13 and 14 are closed, so no exhaust is carried out from the top of the tower, and therefore the flow of water and air is always concentrated in the intermediate water collection device 15. The water is then discharged from the intermediate water collecting device 15 to the outside of the system via a pipe 16.

水のみを用いる通常の逆洗においては中間集水装置から
排水する場合樹脂が中間集水装置に堆積してクラッドの
排出がしにくくなってしまう。しかし水と空気を同時に
導入してスクラビングを行う本発明による場合は樹脂層
、特にその表層が激しくゆれ動いているため、−塵中間
集水装置に樹脂が堆積してもこの堆積した樹脂層はすぐ
こわれ、常に中間集水装置は排水及び排気する“面″が
更新されるので、クラッド排出上何ら問題のないことが
実験の結果確かめられた。
In normal backwashing using only water, when draining water from an intermediate water collection device, resin accumulates in the intermediate water collection device, making it difficult to drain the crud. However, in the case of the present invention in which water and air are simultaneously introduced for scrubbing, the resin layer, especially its surface layer, is shaken violently, so even if resin accumulates in the dust intermediate water collection device, this accumulated resin layer will Experiments have confirmed that there is no problem in discharging crud because the "surface" of the intermediate water collection system is constantly renewed, and the drainage and exhaust surfaces of the intermediate water collection system are constantly renewed.

下部集水装置からの空気の流速は通常エアスクラビング
工程で用いられているLV50〜1oo、/hよりは小
さいL■15〜50m/hが適当であり、水の流速はL
V5〜15m/hが好ましい。本発明方法においてはク
ラッドの運搬除去は水のみによって行われるのでなく空
気によっても行われておシ、水の流速は従来の逆洗時程
大きくする必要はない。
The appropriate flow rate of air from the lower water collection device is 15 to 50 m/h, which is smaller than the LV50 to 1oo/h that is normally used in the air scrubbing process, and the flow rate of water is L.
V5-15m/h is preferable. In the method of the invention, the transport and removal of crud is carried out not only by water but also by air, and the water flow rate does not have to be as high as in conventional backwashing.

更にクラッドの除去状況を詳細に説明すると、中間集水
装置の管の断面下半分からは水と空気が排出され、大部
分は水である。一方管の断面上半分からは主に空気が排
出されている。又樹脂層の表層はスクラビングのため突
沸的動きを示すことがあり、この時管の断面上半分に樹
脂が少しずつ堆積していく現象が見られboこの現象は
空気の流量をLV50〜100 m / hと大きくす
る程大となるが通常用いている中間集水装置の設計条件
でも20〜30FM/hの間は空気の排出上例ら問題は
生じない。すなわち管の断面下半分は展開している樹脂
層自身によって排水、排気する°面″が更新されている
のに対し、上半分には([lI)の工程の量水、空気の
排出上問題とはならないが少しずつ樹脂が堆積する。
Further, to explain in detail how the crud is removed, water and air are discharged from the lower half of the cross section of the pipe of the intermediate water collection device, and the majority is water. On the other hand, air is mainly exhausted from the upper half of the tube's cross section. In addition, the surface layer of the resin layer may exhibit bumping movements due to scrubbing, and at this time, a phenomenon in which resin is gradually deposited on the upper half of the cross section of the tube is observed. /h, which increases as the flow rate increases, but even under the design conditions of the normally used intermediate water collection device, no problem arises in terms of air discharge between 20 and 30 FM/h. In other words, in the lower half of the cross section of the pipe, the surface for drainage and exhaust has been updated by the developed resin layer itself, whereas in the upper half, there is a problem in the discharge of water and air during the process of ([lI)]. Although it does not become a problem, resin accumulates little by little.

又水−空気スクラビング工程においては展開している樹
脂層の表層から100〜300+m程度の部分にクラッ
ドが濃厚に集中することが実験の結果わかった。それ故
この部分からクラッドを効率的に除くため、又中間集水
装置の管断面の上半分に樹脂が蓄積するのを防止するた
め水−空気スクラビング工程dll)を一定時間(3〜
10分間)行った抜弁17を閉じ中間集水装置からの排
水、排気を停止すると共に、弁14を開き塔上部の上部
集水装置6及び管10から排気のみを行い展開している
樹脂層を中間集水装置より100〜300IIIII+
の高さく L2 の位置)まで上昇させる中間集水装置
の洗浄工程(ロ)を行い、ついで弁14を閉じ、弁17
を開いて再度01l)の水−空気スクラビング工程を行
うことによって、第5図中L2とLlの差の分の100
〜300−のクラッドが濃厚に集中している部分を排出
させるのである。そして必要に応じてII)−(財)の
工程をくり返すことによってクラッドの効率的除去及び
中間集水装置への樹脂の堆積防止を行うことができる。
Furthermore, it has been found through experiments that in the water-air scrubbing process, crud is concentrated in a region approximately 100 to 300+ meters from the surface of the developing resin layer. Therefore, in order to efficiently remove the crud from this area and to prevent resin from accumulating in the upper half of the pipe cross-section of the intermediate water collection device, a water-air scrubbing step (dll) is carried out for a certain period of time (3~
10 minutes), the drain valve 17 is closed to stop drainage and exhaust from the intermediate water collection device, and the valve 14 is opened to only exhaust air from the upper water collection device 6 and pipe 10 at the top of the tower to remove the developing resin layer. 100-300III+ from intermediate water collection device
The cleaning step (b) of the intermediate water collecting device is carried out by raising it to the height (L2 position), then the valve 14 is closed, and the valve 17 is closed.
By opening the door and performing the water-air scrubbing step (01l) again, 100% of the difference between L2 and Ll in Figure 5 is removed.
The part where the ~300-crud is concentrated is discharged. By repeating the step II)-(Foundation) as necessary, it is possible to efficiently remove the crud and prevent the resin from accumulating in the intermediate water collecting device.

このように空気−水スクラビング工程鋤においては下部
集水装置5から連続して水、空気が導入されるため、通
常の水逆洗では樹脂層下部に存在して、排出しにくい、
粒径の大きい重質のクラッドも空気と水の上昇流にのっ
て常に樹脂層上部、すなわち中間集水装置15へと運搬
され効率的に除去される。
In this way, in the air-water scrubbing process, water and air are continuously introduced from the lower water collection device 5, so in normal water backwashing, water and air are present at the bottom of the resin layer and are difficult to discharge.
Heavy crud with a large particle size is also carried by the upward flow of air and water to the upper part of the resin layer, that is, to the intermediate water collecting device 15, and is efficiently removed.

糖6図は中間集水装置を2系列設ける場合を示すもので
あシ、第5図の場合より更に流速の高い条件、水流速L
V6〜2 s m / h N空気流速LV30〜70
m/hで使用できる。このような高流速で行った場合中
間集水装置への樹脂の堆積が多くなるが中間集水装置が
2系列ありこれを交互に使用することによって、片方の
系列が排気、排水を行って樹脂の蓄積が多くなっても片
方の系列はその間に蓄積した樹脂がほぐされ排水、排気
に十分な“面”が更新されており、十分に使用可能状態
となっている。それ故第5図で示すQll)の空気−水
スクラビング工程がより効果的に行われその分この工程
の時間が短縮される。即ち、第6図において弁17aを
開き中間集水装置j5aから管16aを通して空気及び
水が排出されている時は片方の中間集水装置15−bに
集中して堆積した樹脂層がほぐされ、j5−aからクラ
ッドが出にくくなった時は単にパルプを切りかえて即ち
17aを閉じ171)を開いて15−bがら空気及び水
の排出を行うようにするものである。切シかえの時間は
3〜5分毎程度の短時間で行った方がクラッドの排出は
効果的である。第5図、第6図に用いる中間集水装置j
5.15a、151)は従来の混床式に使用されている
フリーボードドレンのような単に一本の配管でよく、こ
れに35〜60 mesh に相当するサランネット等
を取付けたもの、又は200〜400μmのスリットを
切った集水管でよい。
Figure 6 shows the case where two intermediate water collection systems are provided, and the water flow rate L is higher than that in Figure 5.
V6~2 s m/h N air flow rate LV30~70
Can be used at m/h. When running at such a high flow rate, a large amount of resin will accumulate in the intermediate water collection device, but since there are two series of intermediate water collection devices and they are used alternately, one series will perform exhaust and drainage, and the resin will accumulate in the intermediate water collection device. Even though the amount of resin accumulated during that time has been loosened, the "surface" of one series has been updated to be sufficient for drainage and exhaust, making it fully usable. Therefore, the air-water scrubbing step Qll) shown in FIG. 5 is performed more effectively and the time for this step is reduced accordingly. That is, in FIG. 6, when the valve 17a is opened and air and water are being discharged from the intermediate water collecting device j5a through the pipe 16a, the resin layer concentrated and deposited on one intermediate water collecting device 15-b is loosened, When it becomes difficult for crud to come out from j5-a, the pulp is simply changed, that is, 17a is closed and 171) is opened to discharge air and water from 15-b. It is more effective to discharge the crud if the cutting and replacing time is short, about every 3 to 5 minutes. Intermediate water collection device used in Figures 5 and 6
5.15a, 151) can be simply a single piece of piping, such as the freeboard drain used in conventional mixed bed systems, with a Saran net, etc., equivalent to 35 to 60 mesh attached, or A water collection pipe with a slit of ~400 μm may be sufficient.

以下本発明を図面に基いて詳しく説明する。The present invention will be explained in detail below based on the drawings.

先づ中間集水装置を1系列用いる第5図について説明す
る。(1)、 (It)のドレン工程及び空気スクラビ
ング工程は従来法と同じであり樹脂層3の表面から25
0〜400maの高さになるように水をドレンしく工程
■)ついで空気スクラビング(If)を行う。
First, FIG. 5, which uses one series of intermediate water collection devices, will be explained. The drain process and air scrubbing process of (1) and (It) are the same as the conventional method, and the
The water is drained to a height of 0 to 400 ma (Step ①), and then air scrubbing (If) is performed.

この時の空気流量はLV50〜100 m / h空気
圧力2〜3 Kgt 7cm2 で行う。続いて本発明
の([1)の空気−水スクラビング工程に移り下部集水
装置5がら空気流入弁12スル一ジング水流人弁11を
開とし、ま°た中間集水装置15の排水弁17を開とし
空気と水を管8及び7から下部集水装置5を通じて再生
塔1に導入し、中間集水装置15から排水、排気を行い
ながら空気と水によるスクラビングを行う。この時塔上
部からの排気は行わない。空気流量はLV15〜50m
/h程度と(It)の空気スクラビング時の流量より低
目がよいが対象とする樹脂の汚れ程度及び樹脂層のクラ
ッドの性状、樹脂の種類等によって空気流入弁12を2
ケ設は適宜(Il)、Qll)及びQV)の各工程の空
気の流量を調整してもよい。
The air flow rate at this time is LV50-100 m/h and the air pressure is 2-3 Kgt 7cm2. Next, proceeding to the air-water scrubbing step ([1) of the present invention, the air inflow valve 12 of the lower water collection device 5 is opened, and the water flow valve 11 of the intermediate water collection device 15 is opened, and the drain valve 17 of the intermediate water collection device 15 is opened. The tank is opened and air and water are introduced into the regeneration tower 1 through the lower water collection device 5 through the pipes 8 and 7, and scrubbing with air and water is performed while draining and exhausting from the intermediate water collection device 15. At this time, no exhaust is performed from the top of the tower. Air flow rate is LV15-50m
It is better to set the air inlet valve 12 to about 1/h and (It) lower than the flow rate during air scrubbing, but depending on the degree of contamination of the target resin, the properties of the cladding of the resin layer, the type of resin, etc.
The installation may adjust the flow rate of air in each step (Il), Qll) and QV) as appropriate.

スルージング水の流量はLV3〜15 m / h程度
で行う。
The flow rate of sluicing water is approximately LV3 to 15 m/h.

佃)の工程を行う時は空気と水の排出が中間集水装置か
らだけで行われるため樹脂が中間集水装置のまわりに多
少堆積するが空気が導入されているため、樹脂層3の表
層近くが相当に波うつので一度堆積した樹脂も次々とく
ずれるし、また、堆積している部分は前述の如く中間集
水装置15の管断面の上半分であり、その量も少く排水
、排気上問題になるμとは殆んどない。
When performing the step (Tsukuda), air and water are discharged only from the intermediate water collection device, so some resin accumulates around the intermediate water collection device, but since air is introduced, the surface layer of resin layer 3 As the surrounding area is considerably undulated, the resin that has been deposited once breaks down one after another, and the deposited part is the upper half of the pipe cross section of the intermediate water collection device 15, as mentioned above, and the amount is small, making it difficult for drainage and exhaust. There are almost no problems with μ.

しかしクラッドの排出を安全確実にするためQ[l)の
工程を3〜10分行った後は上部集水装置6の排水弁1
4を開とし、中間集水装置15の排水弁17を閉としく
口)の工程である中間集水装置の洗浄工程に移行する。
However, in order to ensure safe discharge of the crud, after carrying out step Q[l) for 3 to 10 minutes, the drain valve 1 of the upper water collection device 6
4 is opened, and the drain valve 17 of the intermediate water collection device 15 is closed to proceed to the cleaning step of the intermediate water collection device, which is the step (opening).

(転)の工程時も下部集水装置からスルージング水及び
空気の導入が続いておシ塔内の水位は上昇する。それ数
構脂層3の表層は中間集水装置15の位置よシ高くなる
。(転)の工程は中間集水装置15に堆積した樹脂をほ
ぐすと共に、展開している樹脂層の上部にクラッドを濃
厚に集中させ、次の工程の(III)をくり返す時に効
率的にクラッドを排出するためであ#)L2とLlの差
は1oo〜3oow+で十分であシ、(転)の工程は1
〜5分の短時間でよい。
During the (transfer) process, sluicing water and air continue to be introduced from the lower water collection device, causing the water level in the tower to rise. The surface layer of the resinous structure layer 3 is higher than the position of the intermediate water collection device 15. The step (transfer) loosens the resin accumulated in the intermediate water collection device 15, and also concentrates the cladding densely on the upper part of the developing resin layer, so that when repeating the next step (III), the cladding is efficiently removed. The difference between #) L2 and Ll is sufficient to be 1oo to 3oow+, and the
A short time of ~5 minutes is sufficient.

そして再度@)の空気−水スクラビング工程にもどる。Then, return to the air-water scrubbing step of @).

@)と(財)の工程は必要に応じて3〜10回くシ返す
。そして最後の(転)の工程終了後は空気導入管8の弁
12を閉じ下部集水装置から逆洗水のみを通し満水工程
を兼ねて逆洗を行いクラッドの除去操作を終了すめ。
Repeat the steps of @) and (goods) 3 to 10 times as necessary. After the final (rotation) step is completed, the valve 12 of the air introduction pipe 8 is closed, and only backwash water is passed through the lower water collection device to carry out backwashing, which also serves as a water filling step, to complete the crud removal operation.

つぎに本発明の中間集水装置を2系列設けた第6図に示
す場合について説明する。
Next, a case shown in FIG. 6 in which two lines of intermediate water collection devices of the present invention are provided will be described.

(1)、 (I[)のドレン工程及び空気スクラビング
工程は第5図に示す場合と同じである。011)の空気
−水スクラビングの工程において下部集水装置5の空気
流入弁12、スルージング水流人弁11を開として第5
図について説明した場合と同様な流速で空気及びスルー
ジング水を導入する。そして中間集水装置15−aの排
水弁17−aを3〜5分間開とし管16aよシ排水と排
気を行い、クラッドが出にくくなった時点で17−aを
閉としもう1つの中間集水装置15−bの排水弁17−
bを開とする。このように数分毎に17−aと17−b
を開閉し空気と水の排出、すなわちクラッドの排出を効
率的に行う。
The draining process and air scrubbing process of (1) and (I[) are the same as those shown in FIG. In the air-water scrubbing step of step 011), the air inflow valve 12 and sluicing water flow valve 11 of the lower water collection device 5 are opened and the fifth
Air and sloshing water are introduced at similar flow rates as described for the figure. Then, the drain valve 17-a of the intermediate water collection device 15-a is opened for 3 to 5 minutes to drain and exhaust water through the pipe 16a, and when it becomes difficult for crud to come out, the drain valve 17-a is closed and another intermediate water collection device is opened. Drain valve 17- of water device 15-b
Let b be open. 17-a and 17-b every few minutes like this
Opens and closes to efficiently discharge air and water, that is, discharge crud.

中間集水装置15−a、15−bの設定位置は沈静した
樹脂層2の表層より200〜500日の高さの位置でよ
い。15−a、15−bの設定位置は同じ高さであって
もよいが、高低差を設けてもよい。高低差イ設ける場合
15−aは樹脂層2の表層より200〜300+n++
+の位置になるように即ち(II)の空気スクラビング
において樹脂からのクラッドの剥離、及びクラッドの微
細化が行われ樹脂スラリーが濃縮される位置になるよう
位置をきめる。
The intermediate water collecting devices 15-a and 15-b may be set at positions 200 to 500 days higher than the settled surface layer of the resin layer 2. The setting positions of 15-a and 15-b may be at the same height, or may be set at different heights. When providing a height difference, 15-a is 200 to 300+n++ from the surface layer of resin layer 2.
The position is determined so as to be at the + position, that is, the position where the cladding is peeled from the resin and the cladding is refined in the air scrubbing of (II) and the resin slurry is concentrated.

もう一方の15−bは@)の空気−水のスクラビング時
にクラッドの排出が良好になるように樹脂層20表層か
ら300〜500■と15−aの上部に設置し樹脂層の
展開率を大きくするようにするのが好ましい。そして必
要に応じ([l)−〇)=(転)工程をくり返し最後に
満水工程を兼ねて通常の逆洗を行いクラッド除去操作を
終了する。次に第1図及び第2図に示した従来法と本発
明の第5図、第6図に示した方法の効果の差を表−1に
示す。
The other 15-b is installed at 300~500cm from the resin layer 20 surface layer and the upper part of 15-a to increase the expansion rate of the resin layer so that the crud can be discharged well during air-water scrubbing. It is preferable to do so. Then, the ([l)-〇)=(turn) process is repeated as necessary, and finally, normal backwashing is performed, which also serves as a water filling process, to complete the crud removal operation. Next, Table 1 shows the difference in effect between the conventional method shown in FIGS. 1 and 2 and the method of the present invention shown in FIGS. 5 and 6.

表 −1 注 カチオン再生塔 1600φ カチオン樹脂 26
00tアニオン再生塔 1200φ アニオン樹脂 1
400を表1の値は両再生塔のトータルである。
Table-1 Note Cation regeneration tower 1600φ Cation resin 26
00t anion regeneration tower 1200φ anion resin 1
The value of 400 in Table 1 is the total of both regeneration towers.

表−1は火力発電所の通常運転時連続30日間通水した
後脱塩塔から再生塔に移送し、カチオン樹脂はカチオン
再生塔でアニオン樹脂はアニオン再生塔でクラッド除去
操作を行った場合の結果を示すものである。本発明方法
による場合、洗浄時間、洗浄廃水量、及び空気量共に大
巾に少なくなっている。又これらの洗浄後、両樹脂を混
合し脱塩塔に移送した時の樹脂移送水中の鉄濃度は第1
図に示す従来方法で35 ppm(Fe として)であ
るのに対し第2図に示す従来法並びに第5図、第6図に
示す本発明方法によるときはいずれも5 ppm (F
e として)以下であった。以上の結果から本発明の方
法は従来法にくらべ短時間で少ない水量、空気量でクラ
ッドを除去できしかも一゛クラッドの除去率もよいとと
がわかる。
Table 1 shows the results when water is passed through a thermal power plant for 30 consecutive days during normal operation and then transferred from the demineralization tower to the regeneration tower, and the cation resin is removed in the cation regeneration tower and the anion resin is removed in the anion regeneration tower. This shows the results. In the case of the method of the present invention, the cleaning time, the amount of cleaning waste water, and the amount of air are significantly reduced. Also, after these washings, when both resins were mixed and transferred to the desalination tower, the iron concentration in the resin transfer water was the first.
The conventional method shown in the figure has a concentration of 35 ppm (as Fe), while the conventional method shown in FIG. 2 and the method of the present invention shown in FIGS.
e) was as follows. From the above results, it can be seen that the method of the present invention can remove crud in a shorter time and with a smaller amount of water and air than the conventional method, and has a better crud removal rate.

本発明は最も重質のクラッドの除去に効果があるといわ
れる従来法の第2図の方法に比しクラッドの除去率では
同等であシ、操作方法はよシ簡単に又使用空気量も少く
なくなっておりその効果は大きい。
The present invention has the same crud removal rate as the conventional method shown in Fig. 2, which is said to be effective in removing the heaviest crud, and the operation method is simpler and the amount of air used is smaller. It's gone, and the effect is great.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図、第3図及び第4図は従来方法を説明す
るための図面であシ、第5図及び第6図は本発明□方法
を説明するための図面である。 1・・・再生塔、5・・・下部集水装置、6・・・上部
集水装置、15,15a、15b・・・中間集水装置 特許出願人 荏原インフィルコ株式会社代理人 井 上
 昭 同 吉 嶺 桂
1, 2, 3 and 4 are drawings for explaining the conventional method, and FIGS. 5 and 6 are drawings for explaining the method of the present invention. 1... Regeneration tower, 5... Lower water collection device, 6... Upper water collection device, 15, 15a, 15b... Intermediate water collection device Patent applicant: Ebara Infilco Co., Ltd. Agent Shodo Inoue Katsura Yoshimine

Claims (1)

【特許請求の範囲】 1、 充填層の下部よシ空気と水とを同時に導入しつつ
、スクラビングを行いながら(1)該スクラビングによ
シ展開している充填層の表層に設けられた充填材を通過
させず、けん濁物のみを通過させる構造を有する中間集
水装置から排水及び排気する工程と、(2)前記中間集
水装置からの排水及び排気を停止し該中間集水装置の上
部に設けられた排気装置から排気のみを行う工程との両
工程をくり返し行うことを特徴とする充填層中のけん濁
物を除去する方法。 2 中間集水装置を2系列設け、各系列から交互に排水
及び排気を行う特許請求の範囲第1項記載のけん濁物を
除去する方法。
[Claims] 1. While scrubbing is performed while simultaneously introducing air and water into the lower part of the packed bed, (1) the filling material provided on the surface layer of the packed bed being expanded by the scrubbing; (2) stopping drainage and exhaust from the intermediate water collection device and removing the upper part of the intermediate water collection device; 1. A method for removing suspended matter in a packed bed, the method comprising repeatedly carrying out both steps of exhausting only from an exhaust device installed in the bed. 2. The method for removing suspended matter according to claim 1, wherein two lines of intermediate water collection devices are provided, and drainage and exhaust are carried out alternately from each line.
JP58239666A 1983-12-21 1983-12-21 Removal of suspended substance in packed bed Granted JPS60132691A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58239666A JPS60132691A (en) 1983-12-21 1983-12-21 Removal of suspended substance in packed bed

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58239666A JPS60132691A (en) 1983-12-21 1983-12-21 Removal of suspended substance in packed bed

Publications (2)

Publication Number Publication Date
JPS60132691A true JPS60132691A (en) 1985-07-15
JPH0141393B2 JPH0141393B2 (en) 1989-09-05

Family

ID=17048095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58239666A Granted JPS60132691A (en) 1983-12-21 1983-12-21 Removal of suspended substance in packed bed

Country Status (1)

Country Link
JP (1) JPS60132691A (en)

Also Published As

Publication number Publication date
JPH0141393B2 (en) 1989-09-05

Similar Documents

Publication Publication Date Title
US4743382A (en) Method and apparatus for separating suspended solids from liquids
CN205095472U (en) Subside and remove oil tank and extraction water processing system
US20050263448A1 (en) Systems for the removal of solids from fluids and methods of using the same
EP2539287B1 (en) Ballast flocculation and sedimentation water treatment system with simplified sludge recirculation, and process therefor
JPS59500047A (en) A method for purifying suspensions, in particular those resulting from processing steps in the wood processing industry.
CN108114526A (en) A kind of up-flow settlement of sewage filter plant
JPS60132691A (en) Removal of suspended substance in packed bed
JPS595015B2 (en) How to clean ion exchange resin
JPH09215942A (en) Apparatus and method for separating ion exchange resin particles therefor
US4219414A (en) Method for fluid purification and deionization
KR102230225B1 (en) Apparatus for treating Non-point Contaminants
US6015502A (en) Reversing flow coalescing system
US5269936A (en) Process for treating ion exchange resin
JP3496280B2 (en) Filtration device
JP2000056084A (en) Precipitating/separating tank for liquid waste processing system
JPS63190631A (en) Method for removing suspension of packed layer
JPS59309A (en) Method and apparatus for washing filter apparatus
CN207726837U (en) A kind of oily waste water treatment water-purifying apparatus
JPH09117676A (en) Countercurrent regeneration type ion exchange device and regeneration of ion exchange resin
CN209081579U (en) A kind of sewage-treatment plant based on metal-organic framework material
KR102441986B1 (en) A non-point source pollution treatment facility with swirling and filetring device
CN214360599U (en) Car washing water treatment system
JPS6219898B2 (en)
JP4063616B2 (en) Method for separating or concentrating oil in oil-water mixed phase fluid
CN108640327A (en) It is a kind of intensive style turbidity removal and scale removal purifier

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees