JPH0139696Y2 - - Google Patents

Info

Publication number
JPH0139696Y2
JPH0139696Y2 JP1982123641U JP12364182U JPH0139696Y2 JP H0139696 Y2 JPH0139696 Y2 JP H0139696Y2 JP 1982123641 U JP1982123641 U JP 1982123641U JP 12364182 U JP12364182 U JP 12364182U JP H0139696 Y2 JPH0139696 Y2 JP H0139696Y2
Authority
JP
Japan
Prior art keywords
ceramic member
ceramic
metal member
metal
recess
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1982123641U
Other languages
Japanese (ja)
Other versions
JPS6049130U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP12364182U priority Critical patent/JPS6049130U/en
Publication of JPS6049130U publication Critical patent/JPS6049130U/en
Application granted granted Critical
Publication of JPH0139696Y2 publication Critical patent/JPH0139696Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】 本案は回転軸など、機械装置などに用いる機構
部品を構成するためのセラミツク部材と金属部材
を組合せる結合構造に関するものである。
[Detailed Description of the Invention] The present invention relates to a joint structure in which a ceramic member and a metal member are combined to form a mechanical component used in a mechanical device, such as a rotating shaft.

各種機械装置を構成する機械部品として、高温
雰囲気中で耐摩耗性を必要とするような個所には
セラミツク材で構成したものが適している。
Ceramic materials are suitable for mechanical parts constituting various mechanical devices that require wear resistance in high-temperature atmospheres.

ところが、セラミツク材は高硬度で耐摩耗性、
耐熱性、耐蝕性など多くのすぐれた特性をもつて
いるが、その加工性、殊に金属部材との接合性に
やや難点がある。しかも、接合した部材を高温雰
囲気中や温度変化の厳しい状態下で使用する場合
セラミツク材と金属部材とは熱膨張差が大きいこ
とに起因して金属−セラミツク両部材間の結合が
離脱してしまう恐れが大きく、とりわけ高温雰囲
気中で駆動力を伝達するような機構部品として用
いることができず、そのすぐれた特性にもかかわ
らず広く利用されるに至つていないのが実状であ
る。
However, ceramic materials have high hardness and wear resistance.
Although it has many excellent properties such as heat resistance and corrosion resistance, it has some difficulties in its workability, especially in its bondability with metal parts. Moreover, when the bonded parts are used in a high-temperature atmosphere or under conditions with severe temperature changes, the bond between the metal and ceramic parts separates due to the large difference in thermal expansion between the ceramic and metal parts. Because of this, it cannot be used as a mechanical component that transmits driving force especially in high-temperature atmospheres, and the reality is that it has not been widely used despite its excellent properties.

そこで、このような不都合を解消すべく、金属
−セラミツク両部材間にて熱膨張差を吸収し、厳
しい温度変化にも耐えられるような結合構造とし
て第1図のようなものが考えられる。すなわち金
属部材Mとセラミツク部材Cの間に金属製の緩衝
体Wをロウ付け、摩擦圧接法、電子ビーム溶接法
などによつて接合しておき、この緩衝体Wの中央
部にあけた孔中に焼嵌め、あるいはロウ付け手法
によつて結合するが、このように緩衝体Wを介し
た場合でも依然として該緩衝体Wとセラミツク部
材Cとは熱膨張差が存在することから、軸方向に
引張力が作用した場合、金属部材Mの一端部に挿
入するセラミツク部材Cの断面形状が円形、方形
等であるに拘らず、一様の太さ形状をしているた
め接合強度としてセラミツク部材Cの引抜き強度
を測定すると、常温で17.5Kg/mm2程度しかなく、
しかも300℃及び500℃の高温雰囲気中では前記引
抜き強度は夫々8.0Kg/mm2及び2.2Kg/mm2程度と著
しく劣化し、金属部材M(緩衝体W)からセラミ
ツク部材Cが抜けてしまう恐れが大きく、高信頼
性をもつた機構部品を得ることができなかつた。
In order to solve this problem, a bonding structure as shown in FIG. 1 can be considered that absorbs the difference in thermal expansion between the metal and ceramic members and can withstand severe temperature changes. That is, a metal buffer W is bonded between a metal member M and a ceramic member C by brazing, friction welding, electron beam welding, etc., and a hole drilled in the center of the buffer W is inserted into the buffer W. They are joined by shrink fitting or brazing, but even with the buffer W in this way, there is still a difference in thermal expansion between the buffer W and the ceramic member C, so there is no tension in the axial direction. When a force is applied, regardless of whether the cross-sectional shape of the ceramic member C inserted into one end of the metal member M is circular or rectangular, the bonding strength of the ceramic member C is When we measured the pull-out strength, it was only about 17.5Kg/ mm2 at room temperature.
Furthermore, in high-temperature atmospheres of 300°C and 500°C, the pull-out strength deteriorates significantly to about 8.0 Kg/mm 2 and 2.2 Kg/mm 2 , respectively, and there is a risk that the ceramic member C may come off from the metal member M (buffer W). was large, and it was not possible to obtain mechanical parts with high reliability.

本案は上記の如き事情に鑑みて、熱膨張差に基
づいて金属部材とセラミツク部材間に微小間隙が
生じ、軸方向の引張力が作用した場合でもセラミ
ツク部材は金属部材から抜けて離脱するのを防止
するような結合構造を提供せんとするものであ
る。
In view of the above-mentioned circumstances, this proposal is designed to prevent the ceramic member from slipping out of the metal member even when a tensile force in the axial direction is applied, since a minute gap is created between the metal member and the ceramic member based on the difference in thermal expansion. The purpose of the present invention is to provide a bonding structure that prevents this.

以下、図により具体的に本案実施例を説明す
る。
Hereinafter, embodiments of the present invention will be explained in detail with reference to the drawings.

第2図において、1は金属部材で、この金属部
材1の端部には、軸方向に中えぐりした凹部1a
が形成してある。また、2はセラミツク部材で、
その端部はテーパー面を有し末広がり状の大径部
2aが形成してある。なお、これらの金属部材1
にあけた凹部1a及びセラミツク部材2の大径部
2aそれぞれの断面形状としては円形に限らず、
四角形あるいは六角形などいずれでもよく、特に
限定されるべきものではない。
In FIG. 2, 1 is a metal member, and the end of this metal member 1 has a recess 1a hollowed out in the axial direction.
is formed. Also, 2 is a ceramic member,
The end portion thereof has a tapered surface and a large diameter portion 2a that widens toward the end is formed. In addition, these metal members 1
The cross-sectional shapes of the recess 1a bored in the ceramic member 2 and the large diameter portion 2a of the ceramic member 2 are not limited to circular shapes.
It may be square or hexagonal, and is not particularly limited.

しかして、金属部材1の端部に形成した凹部1
a中にセラミツク部材2の大径部2aが挿入され
た後両部材を固定すべく、前記大径部2aの表面
と前記凹部1aの内壁面との間に形成されたテー
パー空間を埋めるように硬ロウ材3が充填され、
金属部材1とセラミツク部材2が結合される。な
お、このときセラミツク部材2の大径部2aの表
面にはロウ付けのための金属層等は何等形成して
おらず、硬ロウ材3充填後の金属部材1の熱収縮
によるしまり嵌めによつて両者は固定される。こ
のように金属部材1の凹部1aにはセラミツク部
材2の末広がり状の大径部2aが埋設された結合
構造であることから、セラミツク部材2の引抜き
強度を測定すると、常温で22.5Kg/mm2以上と極め
て高く、300℃乃び500℃の高温雰囲気中でも夫々
17.8Kg/mm2及び12.5Kg/mm2の引抜き強度を有して
おり、両部材間に熱膨張差に基づく微少間隙が生
じたような場合でも抜けて離脱するようなことは
ない。
Therefore, the recess 1 formed at the end of the metal member 1
After the large-diameter portion 2a of the ceramic member 2 is inserted into the hole 1a, the tapered space formed between the surface of the large-diameter portion 2a and the inner wall surface of the recess 1a is filled in order to fix both members. Filled with hard solder material 3,
Metal member 1 and ceramic member 2 are joined together. Note that at this time, no metal layer or the like for brazing is formed on the surface of the large diameter portion 2a of the ceramic member 2, and the metal member 1 is tightly fitted due to thermal contraction after filling the hard solder material 3. Then both are fixed. As described above, since the joint structure is such that the large diameter part 2a of the ceramic member 2 is buried in the recess 1a of the metal member 1, the pull-out strength of the ceramic member 2 is measured to be 22.5 kg/mm 2 at room temperature. The temperature is extremely high, even in high-temperature atmospheres of 300℃ to 500℃.
It has a pull-out strength of 17.8Kg/mm 2 and 12.5Kg/mm 2 , and will not come off even if a minute gap is created between the two members due to the difference in thermal expansion.

また、同図bに示した実施例の如く、金属部材
1の端部に形成した凹部1aに金属製の緩衝体4
をロウ付け、焼嵌め、電子ビーム溶接手法などに
よつて予じめ接合しておき、緩衝体4の有する内
部空間4a中にセラミツク部材2の大径部2aを
挿入し、硬ロウ材3を充填した結合構造とするこ
とにより、両部材の熱膨張差より多く吸収させる
とともに抜けによる離脱を防ぐようにしてもよ
い。ちなみに、本実施例での引抜き強度は常温で
20.5Kg/mm2、300℃及び500℃の高温雰囲気中で
夫々14.6Kg/mm2及び9.6Kg/mm2であつた。
Further, as in the embodiment shown in FIG.
are joined in advance by brazing, shrink fitting, electron beam welding, etc., the large diameter part 2a of the ceramic member 2 is inserted into the internal space 4a of the buffer body 4, and the hard solder material 3 is inserted. By forming a filled bonding structure, it is possible to absorb more than the difference in thermal expansion between the two members and prevent separation due to pull-out. By the way, the pull-out strength in this example is at room temperature.
20.5Kg/mm 2 , 14.6Kg/mm 2 and 9.6Kg/mm 2 in high temperature atmosphere of 300°C and 500°C, respectively.

なお、金属部材1としては機械構成部品に適し
た炭素鋼、強じん鋼、耐熱ステンレス鋼などが用
いられる。
Note that as the metal member 1, carbon steel, strong steel, heat-resistant stainless steel, etc., which are suitable for machine components, are used.

一方、セラミツク部材2としてはアルミナセラ
ミツクや耐熱衝撃性、耐摩耗性、抗折強度のすぐ
れた窒化珪素、炭化珪素、ジルコニアなどのセラ
ミツクスが好適な材質である。
On the other hand, suitable materials for the ceramic member 2 include alumina ceramics and ceramics such as silicon nitride, silicon carbide, and zirconia, which have excellent thermal shock resistance, abrasion resistance, and flexural strength.

以上のように、本案はセラミツク部材の末広が
り状の端部を金属部材の一端に形成した凹部に挿
入し、硬ロウ材で固定した結合構造であるから、
このように結合して成る機構部品は高温雰囲気中
や温度変化の厳しい個所に使用された場合でも熱
膨張差に基づく抜けによる離脱が完全に防止でき
るため、機械装置に対する適用範囲が大巾に拡大
し、かつ信頼性の高い各種産業機械用の機構部品
を提供することができる。
As mentioned above, the present invention has a joint structure in which the end of the ceramic member is inserted into a recess formed at one end of the metal member and fixed with hard brazing material.
Mechanical parts that are bonded in this way can completely prevent separation due to pull-out due to thermal expansion differences even when used in high-temperature atmospheres or in places with severe temperature changes, so the range of applications for mechanical devices is greatly expanded. It is possible to provide highly reliable mechanical parts for various industrial machines.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は在来のセラミツク部材と金属部材の結
合構造を示す一部破断面図、第2図a,bは本案
実施例によるセラミツク部材と金属部材の結合構
造を示す一部破断面図である。 M,1:金属部材、C,2:セラミツク部材、
W,4:緩衝体、3:硬ロウ材。
FIG. 1 is a partially cutaway cross-sectional view showing a conventional bonding structure between a ceramic member and a metal member, and FIGS. 2a and 2b are partially cutaway cross-sectional views showing a bonding structure between a ceramic member and a metal member according to an embodiment of the present invention. be. M, 1: Metal member, C, 2: Ceramic member,
W, 4: Buffer, 3: Hard wax material.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 金属部材の端部に形成した凹部中に、セラミツ
ク部材に形成したテーパー面をもつた未広がり状
の端部を挿入し、該セラミツク部材端部の表面
と、上記金属部材の凹部内壁面間に形成されたテ
ーパー空間中に硬ろう材を充填して固定したこと
を特徴とするセラミツク部材と金属部材の結合構
造。
An unexpanded tapered end formed on a ceramic member is inserted into a recess formed at the end of the metal member, and a gap is formed between the end surface of the ceramic member and the inner wall surface of the recess of the metal member. A bonding structure of a ceramic member and a metal member, characterized in that the formed tapered space is filled with a hard brazing material and fixed.
JP12364182U 1982-08-12 1982-08-12 Combined structure of ceramic and metal parts Granted JPS6049130U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12364182U JPS6049130U (en) 1982-08-12 1982-08-12 Combined structure of ceramic and metal parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12364182U JPS6049130U (en) 1982-08-12 1982-08-12 Combined structure of ceramic and metal parts

Publications (2)

Publication Number Publication Date
JPS6049130U JPS6049130U (en) 1985-04-06
JPH0139696Y2 true JPH0139696Y2 (en) 1989-11-29

Family

ID=30282157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12364182U Granted JPS6049130U (en) 1982-08-12 1982-08-12 Combined structure of ceramic and metal parts

Country Status (1)

Country Link
JP (1) JPS6049130U (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55116686A (en) * 1979-02-22 1980-09-08 Degussa Method of forming solderable metal layer on ceramic
JPS5641879A (en) * 1979-09-14 1981-04-18 Tokyo Shibaura Electric Co Ceramiccmetal bonded body

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55116686A (en) * 1979-02-22 1980-09-08 Degussa Method of forming solderable metal layer on ceramic
JPS5641879A (en) * 1979-09-14 1981-04-18 Tokyo Shibaura Electric Co Ceramiccmetal bonded body

Also Published As

Publication number Publication date
JPS6049130U (en) 1985-04-06

Similar Documents

Publication Publication Date Title
US4410285A (en) Ceramic and metal article and method of making it
EP1291115A3 (en) Interface preparation for weld joints
JPH0139696Y2 (en)
JP2531708Y2 (en) Ceramic / metal composite
JPH037368Y2 (en)
JP2011056534A (en) Friction stir welding method and different metal joined body
JPS5978982A (en) Ceramic and metal joint mechanism
JPH06238453A (en) Ceramic nozzle for welding machine
JPS61169164A (en) Joint structure of rotary shaft
JPS623834A (en) Joint body of ceramic member and metallic member and its production
JPH0139695Y2 (en)
JP2615675B2 (en) Joining method of ceramic shaft and metal member
JPS632743U (en)
JPH06298576A (en) Joined material of ceramic and metal
JPH02115555A (en) Friction welded body of ceramics-metal and ceramics-inserted piston made thereof
TW200513451A (en) Joint structure of metal and ceramics and vacuum switch using the structure
JPH0351319Y2 (en)
JP2728833B2 (en) Stud bolt for heating furnace
JP2515927Y2 (en) Bonding structure of ceramic members and metal members
JPS6325282Y2 (en)
JPH0627761Y2 (en) Coupling shaft structure of ceramic turbine rotor and metal shaft
JP3360981B2 (en) Tappet
JPS62118119A (en) Joint structure of ceramic shaft and metal shaft
JPH1085953A (en) Structure for liquid phase diffusion welding part of metal tube
JPH05221740A (en) Joint structure of ceramic pipe