JPH0139527B2 - - Google Patents

Info

Publication number
JPH0139527B2
JPH0139527B2 JP4124081A JP4124081A JPH0139527B2 JP H0139527 B2 JPH0139527 B2 JP H0139527B2 JP 4124081 A JP4124081 A JP 4124081A JP 4124081 A JP4124081 A JP 4124081A JP H0139527 B2 JPH0139527 B2 JP H0139527B2
Authority
JP
Japan
Prior art keywords
resolver
winding
phase
voltage
alternating current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4124081A
Other languages
Japanese (ja)
Other versions
JPS57155697A (en
Inventor
Nagahiko Nagasaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Manufacturing Co Ltd filed Critical Yaskawa Electric Manufacturing Co Ltd
Priority to JP4124081A priority Critical patent/JPS57155697A/en
Publication of JPS57155697A publication Critical patent/JPS57155697A/en
Publication of JPH0139527B2 publication Critical patent/JPH0139527B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、1つのレゾルバの検出巻線からの検
出位号の時分割により位置および速度を検出する
方式に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for detecting position and velocity by time-division of detected signals from a detection winding of one resolver.

従来、ブラシレス、レゾルバの中で、交流で励
磁する回転トランス型レゾルバがあるが、これは
直流励磁でないので位置の検出のみに限られ、同
時に速度を検出することはできなかつた。
Conventionally, among brushless resolvers, there is a rotary transformer type resolver that is excited by alternating current, but since this is not excited by direct current, it is limited to detecting position only, and cannot detect speed at the same time.

したがつて、別個に速度検出装置を組合せて用
いる必要があつた。
Therefore, it was necessary to use a separate speed detection device in combination.

他方、ブラシレス・レゾルバから位置および速
度を同時に検出する方法としては、例えば本発明
者が先に提案した特願昭52−139343((特開昭54−
71671)のインダクタ型レゾルバの先行例がある
が、これは直流および交流の重畳励磁である。
On the other hand, as a method for simultaneously detecting position and velocity from a brushless resolver, for example, the present inventor proposed a method previously proposed in Japanese Patent Application No. 52-139343
There is a precedent example of an inductor type resolver (71671), which uses DC and AC superimposed excitation.

そこで、本発明は、交流電流だけで励磁し、同
時に位置および速度を検出することができ、かつ
回転トランス型あるいはインダクタ型いずれのレ
ゾルバにも適用し得る位置および速度の時分割検
出方式を提供することをその目的とする。
Therefore, the present invention provides a time-division detection method for position and speed that can be excited using only alternating current and simultaneously detect position and speed, and that can be applied to either a rotating transformer type or an inductor type resolver. Its purpose is to

レゾルバは位置のみを検出し、速度は直流タコ
ヂエネにより検出するのが普通である。最近サー
ボモータがブラシレス化の傾向にあり、直流タコ
ジエネもこれに合せてブラシレス化されている。
レゾルバの外にブラシレス直流タコヂエネを別に
設けるのはわずらわしく、できればレゾルバのみ
から速度信号も得たいと云う要求がある。
Usually, a resolver detects only the position, and the speed is detected by a DC tachogen. Recently, there has been a trend toward brushless servo motors, and DC tachometers are also becoming brushless.
It is troublesome to separately provide a brushless DC tachometer outside the resolver, and there is a desire to obtain speed signals only from the resolver if possible.

そこで先行例では、ブラシレスインダクタレゾ
ルバを用い、この励磁を直流と高周波交流を重畳
した電流で行ない、この検出巻線より速度emと
位置電圧の重畳した電圧を検出し、フイルタでこ
れを分離して速度と位置信号を同時に得るように
している。
Therefore, in the previous example, a brushless inductor resolver was used to perform this excitation with a current that is a superimposition of direct current and high-frequency alternating current, detect the superimposed voltage of velocity em and position voltage from this detection winding, and separate this using a filter. The speed and position signals are obtained at the same time.

しかしてサーボモータに最も適した検出機は、
理想的にはモータと同じ構造の電磁機械である。
これはレゾルバであると考えられる。過酷な環境
と使用条件に耐え、適正な精度と応答性を有する
信頼性の高い検出機としてレゾルバを用い、これ
から位置だけでなく速度の信号も得ようとする、
つまりレゾルバは二相の同期機であるという原理
より、位置だけでなく速度も検出できることは明
らかなのでレゾルバ一基より、位置と速度を時分
割で検出方式を具見したのが本発明である。
However, the most suitable detector for servo motors is
Ideally, it would be an electromagnetic machine with the same structure as a motor.
This is considered to be a resolver. Using a resolver as a highly reliable detector that can withstand harsh environments and usage conditions and has appropriate accuracy and responsiveness, we aim to obtain not only position but also velocity signals.
In other words, based on the principle that the resolver is a two-phase synchronous machine, it is clear that not only the position but also the speed can be detected.The present invention embodies a method for detecting the position and speed in a time-division manner using a single resolver.

では、本発明を図面に示す実施例について説明
する。
Now, embodiments of the present invention shown in the drawings will be described.

第1図はレゾルバの巻線分布図である。 FIG. 1 is a diagram showing the winding distribution of the resolver.

このレゾルバは励磁巻線W、二相の検出巻線
W〓(α相)、W〓(β相)より成る。励磁巻線Wに
励磁電流iを流し、励磁巻線Wとα相巻線W〓の
巻線軸のなす角θのとき、α相巻線W〓、β相巻
線W〓に生ずるem(起電力)をそれぞれ電圧e〓,
e〓とすると、 e〓=Mcosθdi/dt−iMsinθ・ν …(1式) ただし、Mは励磁巻線Wと二相巻線W〓(また
はW〓)間の相互インダクタンスの最大値、ν=
dθ/dtである。
This resolver has an excitation winding W and a two-phase detection winding.
Consists of W〓 (α phase) and W〓 (β phase). When an excitation current i is passed through the excitation winding W, and the angle θ formed by the winding axes of the excitation winding W and the α-phase winding W〓, em (em) generated in the α-phase winding W〓 and the β-phase winding W〓 is power) and voltage e〓,
If e〓, then e〓=Mcosθdi/dt−iMsinθ・ν (1 equation) where M is the maximum value of mutual inductance between excitation winding W and two-phase winding W〓 (or W〓), ν=
dθ/dt.

第2図a,bは、本発明によつてなされるレゾ
ルバへの励磁電流とその検出電圧の波形図であ
る。
FIGS. 2a and 2b are waveform diagrams of the excitation current to the resolver and its detected voltage according to the present invention.

励磁巻線Wを第2図aに示すような対称台形
波の電流で励磁すると、第2図bに表わすように
α相巻線W〓には電圧eαが発生する。
When the excitation winding W is excited with a symmetrical trapezoidal wave current as shown in FIG. 2a, a voltage eα is generated in the α-phase winding W as shown in FIG. 2b.

励磁電流iの傾斜部ではdi/dt≠0である。ま
た、励磁電流iの平均値は0である。(第1式)
第2項の−iMsinθ・νは瞬時値としては生起す
るけれど、平均値は0であり、後段にそなえる増
幅器の周波数特性のフイルタ−効果で抑制され0
になるので第1項のみが残る。したがつて、その
励磁電流iの傾斜部では(第1式)の第1項 e〓p=Mcosθ・2I/T ……(第2式) ただし、Iはiの最大値である。
At the slope portion of the excitation current i, di/dt≠0. Further, the average value of the excitation current i is zero. (1st formula)
Although the second term -iMsinθ・ν occurs as an instantaneous value, its average value is 0, and is suppressed by the filter effect of the frequency characteristics of the amplifier provided at the subsequent stage.
Therefore, only the first term remains. Therefore, at the slope portion of the excitation current i, the first term of (Equation 1) e〓 p =Mcosθ·2I/T (Equation 2) where I is the maximum value of i.

が現われ、励磁電流iの平坦部ではdi/dt=0
なので、(第1式)の第2項 e〓s=−IMsinθ・ν ……(第3式) が現われる。
appears, and in the flat part of the excitation current i, di/dt=0
Therefore, the second term e〓 s = −IMsinθ·ν of (1st equation) appears (3rd equation).

時間帯T1,T2のみをとり出せば位置変調電圧
e〓pが得られ、時間帯T2,T4のみをとり出せば速
度変調電圧e〓sが得られる。
If only time periods T 1 and T 2 are taken out, the position modulation voltage will be
e〓 p is obtained, and if only time periods T 2 and T 4 are extracted, the speed modulation voltage e〓 s can be obtained.

β相巻線W〓には電圧e〓p,e〓sが得られることも
明らかである。
It is also clear that voltages e〓 p and e〓 s are obtained in the β-phase winding W〓.

e〓p=Msinθ・2I/T ……(第4式) e〓s=IMcosθ・ν ……(第5式) ところで、励磁電流iの周波数は数キロヘルツ
以上にするので、回転トランスを用いたブラシレ
スレゾルバでもこの台形波励磁が適用可能であ
る。
e〓 p = Msinθ・2I/T ... (4th equation) e〓 s = IMcosθ・ν ... (5th equation) By the way, since the frequency of the excitation current i is set to several kilohertz or more, it is necessary to use a rotating transformer. This trapezoidal wave excitation can also be applied to brushless resolvers.

第3図は、本発明の一実施例のブロツク線図で
ある。
FIG. 3 is a block diagram of one embodiment of the present invention.

1は電源、2は第2図aに示した対称台形波を
発生する台形波電流発生器、3はレゾルバで30
はその回転軸、4はクロツク発振器、5はタイミ
ング発生器、6,7は同期抑制回路、8,9,1
2,13は増幅器、10,11,14,15は同
期整流回路である。
1 is a power supply, 2 is a trapezoidal wave current generator that generates the symmetrical trapezoidal wave shown in Fig. 2a, and 3 is a resolver.
is its rotation axis, 4 is a clock oscillator, 5 is a timing generator, 6, 7 are synchronization suppression circuits, 8, 9, 1
2 and 13 are amplifiers, and 10, 11, 14, and 15 are synchronous rectifier circuits.

レゾルバ3の励磁巻線Wを台形波電流発生器
2(たとえば台形波は10KC/S)より励磁する。
The excitation winding W of the resolver 3 is excited by the trapezoidal wave current generator 2 (for example, the trapezoidal wave is 10 KC/S).

その検出(α相、β相)巻線W〓,Wβに発生す
る変調検出電圧e〓,e〓を増幅器12,13で増幅
し、タイミング発生器5(たとえばクロツク発振
器40KC/S、タイミング発生器10KC/S)から
のタイミングT1,T3(第2図a,bの期間T1
T3を示す)で同期整流回路14,15で同期整
流することにより、位置信号電圧υ〓p,υ〓pを得
る。
The detection (α phase, β phase) modulation detection voltages e〓, e〓 generated in the windings W〓, Wβ are amplified by amplifiers 12, 13, and the timing generator 5 (for example, clock oscillator 40KC/S, timing generator 10KC/S) from timing T 1 , T 3 (period T 1 , T 3 in Figure 2 a, b)
By performing synchronous rectification in the synchronous rectification circuits 14 and 15 at T 3 ), position signal voltages υ〓 p and υ〓 p are obtained.

一方、変調検出電圧e〓,e〓はタイミングT1
T3に同期して位置変調電圧のみを抑制する抑制
回路6,7を通して前処理してこれを阻止し、抑
制回路6,7を通過した検出電圧を増幅器8,9
で増幅し、同期整流回路10,11においてタイ
ミングT2,T4(第2図a,bの期間T2,T4を表
わす)により同期整流して速度信号電圧υ〓s,υ〓s
を得る。
On the other hand, the modulation detection voltages e〓, e〓 are at timing T 1 ,
This is prevented by preprocessing through suppression circuits 6 and 7 that suppress only the position modulation voltage in synchronization with T3 , and the detected voltage that has passed through the suppression circuits 6 and 7 is sent to amplifiers 8 and 9.
The speed signal voltages υ〓 s , υ〓 s are amplified and synchronously rectified in the synchronous rectifier circuits 10 and 11 at timings T 2 and T 4 (representing the periods T 2 and T 4 in FIG. 2 a and b).
get.

速度信号(変調検出)電圧υ〓s,υ〓sは位置信号
(変調検出)電圧の1/100程度以下であり、この前
処理なしで変調検出電圧を増幅すると、増幅器が
飽和し好ましくない。
The speed signal (modulation detection) voltages υ〓 s , υ〓 s are about 1/100 or less of the position signal (modulation detection) voltage, and if the modulation detection voltage is amplified without this preprocessing, the amplifier will saturate, which is undesirable.

速度νは次の演算を行なうことにより求められ
る。
The speed ν is obtained by performing the following calculation.

ν=(2/T・υp 2)(υ〓s・υ〓p−υ〓s・υ〓p

……(第6式) ここに、υpは位置信号電圧の振幅で一定、すな
わち υp=√〓p 2+〓p 2である。
ν=(2/T・υ p 2 ) (υ〓 s・υ〓 p −υ〓 s・υ〓 p
)
...(Equation 6) Here, υ p is the amplitude of the position signal voltage and is constant, that is, υ p =√〓 p 2 +〓 p 2 .

ブラシレスレゾルバには2種類あり、これはイ
ンダクタレゾルバと回転トランスを用いた従来形
レゾルバである。前者は直流励磁が可能のため直
流、交流重畳励磁ができるが、後者は直流励磁が
不可能である。
There are two types of brushless resolvers: an inductor resolver and a conventional resolver using a rotating transformer. The former is capable of direct current excitation and therefore can be subjected to superimposed direct current and alternating current excitation, but the latter is not capable of direct current excitation.

本発明の時分割検出に使われる台形波励磁は、
このどちらのレゾルバにも適用可能である。市販
のブラシレスレゾルバは回転トランス形(後者)
なので、直交重畳励磁ができなかつたが、本発明
の方式は適用できる。ブラシレスDCタコジエネ
として市場に出ているのは、ACタコジエネとホ
ールを使つたこの磁極位置検出機より成るが、本
発明のものでは、レゾルバ一基のみより成り、構
造が簡単であるだけでなく、位置の検出機も兼用
している。
The trapezoidal wave excitation used in the time-division detection of the present invention is
It is applicable to either of these resolvers. Commercially available brushless resolvers are rotary transformer type (latter)
Therefore, although orthogonal superimposed excitation was not possible, the method of the present invention can be applied. The brushless DC tachometer on the market consists of this magnetic pole position detector that uses an AC tachometer and a hall, but the one of the present invention is not only simple in structure, but consists of only one resolver. It also serves as a position detector.

速度信号電圧を得るもう一つの方法として、位
置信号電圧を微分回路で微分することも考えられ
る。しかしこの方法は、ノイズを拡大し、S/N
比を劣化させるので、フイルタで前処理を十分に
行なう必要があり、このために時間遅れが大きく
なつて好ましくない。
Another method for obtaining the speed signal voltage is to differentiate the position signal voltage using a differentiating circuit. However, this method magnifies the noise and increases the S/N
Since this degrades the ratio, it is necessary to perform sufficient pretreatment with a filter, which increases the time delay, which is undesirable.

本実施例の他の実施例としてデイジタル化も可
能である。つまり、この台形波励磁による位置と
速度の時分割検出方式では、位置ベクトルと速度
ベクトルのそれぞれの電圧をサンプリング検出し
ているので、このサンプル値をA/D変換しデイ
ジタル演算によつて、速度νを求める方式も容易
に成立つ。
Digitalization is also possible as another embodiment of this embodiment. In other words, in this time-division detection method of position and velocity using trapezoidal wave excitation, the voltages of the position vector and velocity vector are sampled and detected, so these sample values are A/D converted and digitally calculated to calculate the velocity. The method for finding ν is also easily established.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はレゾルバの巻線分布図、第2図a,b
は本発明につてなされるレゾルバへの励磁電流と
その検出電圧の波形図、第3図は本発明の一実施
例の構成を示すブロツク図である。 1…電源、2…台形波電流発生器、3…レゾル
バで30はその回転軸、4…クロツク発振器、5
…タイミング発生器、6,7…同期抑制回路、
8,9,12,13…増幅器、10,11,1
4,15…同期整流回路、W…レゾルバ3の励
磁巻線、W〓,W〓…レゾルバ3の検出巻線(α
相、β相)。
Figure 1 is a resolver winding distribution diagram, Figure 2 a, b
3 is a waveform diagram of an excitation current to a resolver and its detection voltage according to the present invention, and FIG. 3 is a block diagram showing the configuration of an embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Power supply, 2... Trapezoidal wave current generator, 3... Resolver and 30 is its rotating shaft, 4... Clock oscillator, 5
...timing generator, 6,7...synchronization suppression circuit,
8, 9, 12, 13...Amplifier, 10, 11, 1
4, 15...Synchronous rectifier circuit, W...Excitation winding of resolver 3, W〓, W〓...Detection winding of resolver 3 (α
phase, β phase).

Claims (1)

【特許請求の範囲】 1 台形波状交流電流発生器と、この電流発生器
から励磁される巻線と2相の検出巻線とを有する
レゾルバと、この各相巻線に生ずる電圧を前記電
流発生器からの台形波状交流電流の傾斜部分およ
び平坦部分に対応して夫々同期整流する装置とを
設け、この同期整流装置から2相位置信号および
速度信号電圧を得ることを特徴とするレゾルバを
用いた位置及び速度の時分割検出方式。 2 夫々異る相の各位置信号電圧と各速度信号電
圧を掛算して両者の差を導出する演算装置を設け
たことを特徴とする特許請求の範囲第1項記載の
レゾルバを用いた位置及び速度の時分割検出方
式。 3 前記台形波状交流電流の平坦部分に対応する
変調検出電圧を同期整流する同期整流装置の前段
に前記台形波状交流電流の傾斜部分に同期する同
期抑制回路を備えたことを特徴とする特許請求の
範囲第1項記載のレゾルバを用いた位置及び速度
の時分割検出方式。
[Scope of Claims] 1. A trapezoidal wave alternating current generator, a resolver having a winding excited from this current generator, and a two-phase detection winding, and a voltage generated in each phase winding of the current generator. The present invention uses a resolver characterized in that it is equipped with a device that synchronously rectifies the slope portion and the flat portion of the trapezoidal waveform alternating current from the device, respectively, and obtains a two-phase position signal and a speed signal voltage from the synchronous rectifier. Time division detection method for position and velocity. 2. A position and position system using a resolver according to claim 1, characterized in that an arithmetic device is provided for multiplying each position signal voltage and each speed signal voltage of different phases and deriving the difference between the two. Time division detection method for speed. 3. A synchronization suppression circuit that synchronizes with the slope portion of the trapezoidal waveform alternating current is provided upstream of a synchronous rectifier that synchronously rectifies the modulated detection voltage corresponding to the flat portion of the trapezoidal waveform alternating current. A time-division detection method of position and velocity using the resolver described in scope 1.
JP4124081A 1981-03-20 1981-03-20 Time sharing detection system for position and speed using resolver Granted JPS57155697A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4124081A JPS57155697A (en) 1981-03-20 1981-03-20 Time sharing detection system for position and speed using resolver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4124081A JPS57155697A (en) 1981-03-20 1981-03-20 Time sharing detection system for position and speed using resolver

Publications (2)

Publication Number Publication Date
JPS57155697A JPS57155697A (en) 1982-09-25
JPH0139527B2 true JPH0139527B2 (en) 1989-08-22

Family

ID=12602902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4124081A Granted JPS57155697A (en) 1981-03-20 1981-03-20 Time sharing detection system for position and speed using resolver

Country Status (1)

Country Link
JP (1) JPS57155697A (en)

Also Published As

Publication number Publication date
JPS57155697A (en) 1982-09-25

Similar Documents

Publication Publication Date Title
Hurst et al. Sensorless speed measurement using current harmonic spectral estimation in induction machine drives
Jiang et al. High dynamic speed sensorless ac drive with on-line model parameter tuning for steady-state accuracy
Holtz Sensorless control of induction machines—With or without signal injection?
US4575667A (en) AC Motor speed control apparatus
EP0548059A3 (en) Brushless motors
Hurst et al. Speed sensorless field-oriented control of induction machines using current harmonic spectral estimation
EP0215724A1 (en) Apparatus and method for retaining phase information for use with a multiple-coil inductive displacement sensor
JPH0139527B2 (en)
EP0142563A1 (en) System of controlling synchronous motor
US4484129A (en) Speed control apparatus for polyphase induction motors
JPS5917781B2 (en) Rotation speed detection method using multipolar resolver
Dixon et al. Induction motor speed estimator and synchronous motor position estimator based on a fixed carrier frequency signal
JP2560278B2 (en) Magnetic pole position detector
Hurst et al. Sensorless speed measurement using current harmonic spectral estimation in induction machine drives
JPH0213556B2 (en)
JP2770399B2 (en) Strain detector
JPS5913708B2 (en) Resolver detection method
JPH02142383A (en) Brushless motor
JP3724913B2 (en) Rotor field current measuring device for brushless synchronous machine
JPS61247288A (en) Brushless motor
JPH0843216A (en) Multifunctional torque sensor device
JPS6357831A (en) Engine speed detecting method for construction equipment
JPS6225266A (en) Brushless tachometer generator
JPS6333616A (en) Resolver digital converter
JPS57177288A (en) Control system for synchronous motor