JPS6225266A - Brushless tachometer generator - Google Patents

Brushless tachometer generator

Info

Publication number
JPS6225266A
JPS6225266A JP16510685A JP16510685A JPS6225266A JP S6225266 A JPS6225266 A JP S6225266A JP 16510685 A JP16510685 A JP 16510685A JP 16510685 A JP16510685 A JP 16510685A JP S6225266 A JPS6225266 A JP S6225266A
Authority
JP
Japan
Prior art keywords
voltage
signals
signal
stator winding
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16510685A
Other languages
Japanese (ja)
Inventor
Yuji Masaki
正木 雄二
Ryuichiro Iwai
岩井 龍一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP16510685A priority Critical patent/JPS6225266A/en
Publication of JPS6225266A publication Critical patent/JPS6225266A/en
Pending legal-status Critical Current

Links

Landscapes

  • Brushless Motors (AREA)

Abstract

PURPOSE:To suppress ripple components of a signal voltage and to reduce the influence upon a control system by inputting a magnet position detection signal to logical processing circuits and rectifying an AC voltage across stator winding synchronously in full-wave basis by using the output signals of the logical processing circuits. CONSTITUTION:A brushless tachometer generator is constituted by arranging the stator winding and magnet position detectors HA-HC opposite a magnet rotor and magnetic pole position signals A-C obtained by the magnet position detectors HA-HC are inputted to the logical circuits respectively to generate doubled select signals D1-F2. Those select signals are used to rectify the AC voltage across the stator winding synchronously on full-wave basis, obtaining a DC voltage corresponding to the rotating speed of the rotor. Consequently, ripples of the DC voltage are reduced as compared with half-wave rectification in which the signals A-C are used as they are, and the whole control system in which the generator is incorporated is stabilized.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、回転体の回転速度を検出するブラシレスタコ
ゼネレータに関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a brushless co-generator that detects the rotational speed of a rotating body.

従来の技術 近年、回転体(モータ等)の回転速度を検出する装置は
増々、その重要性を増している。ファクトリ−オートメ
ーションや、オフィスオートメーション等に利用される
サーボモータ等は、正確な回転速度を検出し、その信号
を制御装置へ、フィードバックして精度の高いスピード
や位置の制御を実現している。従ってモータ等の回転速
度を検出する手段としてDCタコゼネレータが広く使用
されている。DCタコゼネレータは、ブラシ付直流モー
タを発電機として用いるものである。を線を施した回転
子側には、回転速度に比例した交流電圧が発生し、その
信号を固定子側のブラシと整流子でもって直流信号に変
換して、回転体の回転信号として用いるものである。
2. Description of the Related Art In recent years, devices for detecting the rotational speed of rotating bodies (such as motors) have become increasingly important. Servo motors and the like used in factory automation, office automation, etc. detect accurate rotational speeds and feed back signals to control devices to achieve highly accurate speed and position control. Therefore, DC tacho generators are widely used as means for detecting the rotational speed of motors and the like. A DC tacho generator uses a brushed DC motor as a generator. On the rotor side marked with a line, an AC voltage proportional to the rotation speed is generated, and this signal is converted to a DC signal by the brushes and commutator on the stator side, which is used as a rotation signal for the rotating body. It is.

ブラシと整流子といった機械的な構造の7)、ブラシ摩
耗による寿命、高速回転での整流子とブラシ間の安定な
接触が得られない危険性があった。そのため、最近では
、ブラシと整流子による機械的な整流作用を行なわず、
回転子側を磁石構成にして、固定子側に多相巻線を施し
て、回転により誘起される交流電圧を、前記回転子側の
磁極位置を検出する装置を有して、その装置からの信号
を用いて、前記交流電圧を同期整流して回転速度に比例
した直流信号を得るブラシレスタコゼネレータも普及し
てきた。第3図、第4図に従来のブラシレスタコゼネレ
ータの構成と各信号関係を示す。
7) of the mechanical structure such as the brush and commutator, there was a risk that the life of the brush would be shortened due to wear, and that stable contact between the commutator and the brush could not be obtained at high speed rotation. Therefore, in recent years, mechanical rectification using brushes and commutators has not been performed.
The rotor side is configured as a magnet, the stator side is provided with multiphase windings, and the alternating current voltage induced by rotation is detected by a device for detecting the magnetic pole position on the rotor side. Brushless tachometer generators that use signals to synchronously rectify the alternating current voltage to obtain a direct current signal proportional to the rotational speed have also become popular. FIGS. 3 and 4 show the configuration and signal relationships of a conventional brushless tacho generator.

第3図において、1.2.3は固定子巻線、4は回転子
磁石、5は固定子巻線の交流電圧を取り出す装置、7は
磁極位置検出装置、6はアンプ回路である。
In FIG. 3, 1.2.3 is a stator winding, 4 is a rotor magnet, 5 is a device for extracting the alternating current voltage of the stator winding, 7 is a magnetic pole position detection device, and 6 is an amplifier circuit.

第5図は第3図の磁極位置検出装置の構成例、第6図は
第5図の磁極位置信号から位置信号A、B。
FIG. 5 shows a configuration example of the magnetic pole position detection device shown in FIG. 3, and FIG. 6 shows position signals A and B from the magnetic pole position signals shown in FIG.

C及び選択信号D+、El、Flを作り出す論理回路の
構成例である。以上、第3図から第7図をもって従来の
ブラシレスタコゼネレータの動作を説明する。
This is an example of the configuration of a logic circuit that generates C and selection signals D+, El, and Fl. The operation of the conventional brushless tacho generator will be described above with reference to FIGS. 3 to 7.

従来例では、第3図の回転子磁石4に対応した位置検出
器7の構造が第5図である。第5図のポール素子8は回
転子磁石4が回転する事により電圧を発生する。今、3
個のホール素子8は120゜間隔で取り付けられている
ので、各々の出力電圧、Hl、H2,H3は第6図で示
すアンプ回路10で増巾されてHA、HB、HCとなる
。その後、コンパレータ回路11で、A、B、Cのディ
ジタル信号となる。HA、HB、HC,A、B、cの信
号間のタイミングは第7図で示す様な12o°ずつ位相
のずれた信号になっている。次にA、B。
In the conventional example, the structure of the position detector 7 corresponding to the rotor magnet 4 of FIG. 3 is shown in FIG. The pole element 8 shown in FIG. 5 generates a voltage when the rotor magnet 4 rotates. Now, 3
Since the Hall elements 8 are installed at 120° intervals, the respective output voltages H1, H2, H3 are amplified by the amplifier circuit 10 shown in FIG. 6 to become HA, HB, HC. Thereafter, the comparator circuit 11 generates A, B, and C digital signals. The timings between the signals HA, HB, HC, A, B, and c are such that the phases are shifted by 12 degrees as shown in FIG. Next, A and B.

Cの信号を第6図に示す論理回路9で、選択信号、DI
、El、Flなる信号を作り出す。第3図でも示す様に
、回転子磁石4の回転により交流電圧が誘起される固定
子巻線1,2.3も120゛間隔で巻線されているので
、各巻線に発生する交流電圧も、第4図のG、H,Jで
示す様に120°づつ位相の違った電圧波形となってい
る。この交流電圧のレベルは回転子の回転速度に比例し
ている。又、この交流電圧波形は、正弦波ではなく、整
流した後直線になる様に、台形波出力になる様な固定子
巻線処理を行なっている。本例での台形波の頂上部分は
約120°である。前記で説明した選択信号DI、El
、Flをこの固定子巻線のG。
The logic circuit 9 shown in FIG.
, El, and Fl are generated. As shown in Fig. 3, the stator windings 1, 2.3, in which AC voltage is induced by the rotation of the rotor magnet 4, are also wound at 120° intervals, so the AC voltage generated in each winding is also , as shown by G, H, and J in FIG. 4, the voltage waveforms are different in phase by 120 degrees. The level of this alternating voltage is proportional to the rotational speed of the rotor. Further, the stator winding process is performed so that the AC voltage waveform is not a sine wave but a straight line after rectification, and a trapezoidal wave output is obtained. The top portion of the trapezoidal wave in this example is about 120°. The selection signals DI and El explained above
, Fl is G of this stator winding.

H,Jの台形波の頂上部分と重なるタイミングになる様
に3個のホール素子8と固定子巻線1,2゜3の位置を
決めて配置されている。その結果、第3図の選択回路5
で、交流電圧G、H,JにおいてMの期間をDIで、N
の期間をElで、Pの期間をFlで同期整流する。後段
アンプ6で直流化した信号がKである。直流電圧レベル
はEである。
The three Hall elements 8 and the stator windings 1 and 2.degree. 3 are positioned so as to coincide with the peaks of the trapezoidal waves H and J. As a result, the selection circuit 5 in FIG.
Then, at AC voltages G, H, and J, the period of M is DI, and N
The period P is synchronously rectified by El, and the period P is synchronously rectified by Fl. The signal K is converted into DC by the downstream amplifier 6. The DC voltage level is E.

即ち、回転速度に比例した直流電圧が得られる。That is, a DC voltage proportional to the rotation speed can be obtained.

発明が解決しようとする問題点 しかし、信号には、厳密には、第4図のLの様に各選択
信号D+、E+、F+の境目で交流電圧の切れ目のリッ
プ電圧△Eが発生している。これは各巻線に発生してい
る電圧のレベルが完全に一致していない事や、台形波電
圧の平らな部分が、選択期間M、N、Pより狭かったり
、固定子巻線1゜2.3の位置とホール素子8の位置が
一致していなかったりする事により生じるものである。
Problems to be Solved by the Invention However, strictly speaking, the rip voltage △E of the alternating current voltage break occurs in the signal at the boundary of each selection signal D+, E+, F+, as shown in L in FIG. There is. This is because the voltage levels generated in each winding do not match completely, or the flat part of the trapezoidal wave voltage is narrower than the selection period M, N, P, or the stator winding is 1°2. This is caused by the position of the Hall element 3 not matching the position of the Hall element 8.

このリップル電圧△Eの影響を少な(する為にアンプ回
路6の後段にフィルター回路等を取り付けて出来るだけ
完全な直流化近すけようとする。しかしフィルター回路
を用いる′と、ブラシレスタコゼネレータを含んだ制御
系全体がフィルター回路の時定数の影響を受けて検出信
号の遅れを生じ、系の不安定要因や過渡応答性の改善が
困難になる。従って、後段のフィルター回路の影響を出
来るだけ、抑える必要がある。
In order to reduce the influence of this ripple voltage △E, a filter circuit etc. is installed after the amplifier circuit 6 to get as close to complete direct current as possible. However, if a filter circuit is used, The entire control system is affected by the time constant of the filter circuit, causing a delay in the detection signal, making it difficult to improve system instability and transient response.Therefore, it is necessary to suppress the influence of the subsequent filter circuit as much as possible. There is a need.

本発明は、このブラシレスタコゼネレータで取り出され
る信号電圧のリップル成分を押え、制御系への影響を小
さくする為の手段を提供するものである。
The present invention provides a means for suppressing the ripple component of the signal voltage extracted by this brushless tacho generator and reducing its influence on the control system.

問題点を解決するための手段 上記の問題点を解決、する為に本発明は、位置信号を論
理処理回路へ入力し、その論理処理回路の出力信号を用
いて固定子巻線へ発生する交流電圧を全波同期整流する
ものである。
Means for Solving the Problems In order to solve the above problems, the present invention inputs a position signal to a logic processing circuit, and uses the output signal of the logic processing circuit to control the alternating current generated in the stator winding. It performs full-wave synchronous rectification of voltage.

作用 上記構成によれば、位置信号から従来の2倍の選択信号
を作り出して、交流電圧の同期整流の全波化を図ること
ができる。
Effect: According to the above configuration, it is possible to generate a selection signal twice as large as that of the conventional one from a position signal, and achieve full-wave synchronous rectification of an AC voltage.

実施例 本発明の実施例を第1図、第2図を用いて説明する。第
1図は、位置信号A、B、Cから選択信号D1〜F2を
発生させる為の論理回路である。固電子巻線1とホール
素子8の位置関係は前記、従来例で第3図〜第7図を用
いて説明したのと同じである。従って位置信号A、、B
、Cと選択信号DI〜F2と交流電圧、G、H,Jのタ
イミング関係は第2図に示す様になる。前記、従来例で
は、選択信号DI、El、Flを用いて交流電圧、G、
H。
Embodiment An embodiment of the present invention will be described with reference to FIGS. 1 and 2. FIG. 1 shows a logic circuit for generating selection signals D1 to F2 from position signals A, B, and C. The positional relationship between the solid electronic winding 1 and the Hall element 8 is the same as that described above in the conventional example using FIGS. 3 to 7. Therefore, the position signals A,,B
, C, the selection signals DI to F2, the alternating current voltages, and the timing relationships among G, H, and J are shown in FIG. In the conventional example described above, the selection signals DI, El, and Fl are used to select the AC voltage, G,
H.

Jの片側(本例では(+)側)成分のみを取り出す半波
同期整流であったが、本発明では、選択信号D1〜F2
を使って、交流電圧の両側の成分を取り出している。即
ち、選択信号DID2で交流電圧Gの(+)側とく−)
側を取り出す様になっている。即ち、交流電圧G、H,
Jの全波同期整流化を行っている。従ってアンプ6の出
力電圧に1は半波同期整流の場合と比較して2倍の2E
になる。
Half-wave synchronous rectification is used to take out only one side (in this example, the (+) side) component of J, but in the present invention, selection signals D1 to F2
is used to extract the components on both sides of the AC voltage. That is, the selection signal DID2 selects the (+) side of the AC voltage G (-)
It looks like you can take out the side. That is, AC voltages G, H,
Full-wave synchronous rectification of J is performed. Therefore, the output voltage of amplifier 6 is 2E, which is twice that of half-wave synchronous rectification.
become.

この場合も厳密に直流出力電圧に1をみる&L+の様に
なっているが、全波同期整流の場合は、半波同期整流と
場合と固定子巻線に誘起される交流電子波形が同じ条件
であるなら、直流信号に1に含まれるリップル成分の割
合は△E/′EX100(%)から△E/2EX100
(%)へと1/2に減少すると同時に、リップル成分の
周波数が2倍となっている。
In this case, strictly speaking, the DC output voltage is 1 and L+, but in the case of full-wave synchronous rectification, the AC electronic waveform induced in the stator winding is under the same conditions as in half-wave synchronous rectification. If so, the ratio of ripple components included in the DC signal is from △E/'EX100 (%) to △E/2EX100
(%), and at the same time the frequency of the ripple component has doubled.

発明の効果 以上の説明から明らかなように本発明によれば、位置信
号から従来の2倍の選択信号を作り出して、交流電圧の
同期整流の全波化を図ったため、信号の遅れの影響が少
な(てすみ、制御系全体の安定性も向上し、過渡応答性
の改善もより容易に可能になし得るものである。
Effects of the Invention As is clear from the above explanation, according to the present invention, a selection signal twice as large as that of the conventional one is created from a position signal, and full-wave synchronous rectification of the AC voltage is achieved, thereby eliminating the influence of signal delay. However, the stability of the entire control system is improved, and transient response can be improved more easily.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明における回転子磁石の磁極位置信号から
選択信号を発生させる論理回路図、第2図は本発明にお
ける全波同期整流回路方式における各信号波形図、第3
田は従来のブラシレスタコゼネレータの基本構成図、第
4図は従来の半波同期整流回路方式による各信号波形図
、第5図は第3図の回転子磁石の磁極検出装置の構成図
、第6図は半波同期整流方式における位置A、B、Cか
ら選択信号DI、El、Flを発生させる論理回路の構
成図、第7図は同各信号のタイミング関係を示す波形図
である。 1.2.3・・・・・・固定子巻線、4・・・・・・磁
石回転子、9・・・・・・磁極位置検出信号、A、B、
C・・・・・・回転子磁石の磁極位置信号、D1〜F2
・・・・・・選択信号、G。 1−(、J・・・・・・固定子巻線に誘起される交流電
圧信号、K1.L+・・・・・・全波同期整流され直流
化された後の信号。 代理人の氏名 弁理士 中尾敏男 はか1名第1図 り、−1”2−6賢沢信号 第、3図 、5 第4図う 第5図 第6図 δ 第7図 127!J
Fig. 1 is a logic circuit diagram for generating a selection signal from a magnetic pole position signal of a rotor magnet according to the present invention, Fig. 2 is a waveform diagram of each signal in the full-wave synchronous rectification circuit system according to the present invention, and Fig. 3
Figure 4 is a diagram of each signal waveform using the conventional half-wave synchronous rectifier circuit system, Figure 5 is a diagram of the configuration of the rotor magnet magnetic pole detection device shown in Figure 3, and Figure 6 is a diagram of the basic configuration of a conventional brushless tacho generator. The figure is a configuration diagram of a logic circuit that generates selection signals DI, El, and Fl from positions A, B, and C in a half-wave synchronous rectification system, and FIG. 7 is a waveform diagram showing the timing relationship of the respective signals. 1.2.3... Stator winding, 4... Magnet rotor, 9... Magnetic pole position detection signal, A, B,
C... Magnetic pole position signal of rotor magnet, D1 to F2
...Selection signal, G. 1-(, J... AC voltage signal induced in the stator winding, K1.L+... Signal after full-wave synchronous rectification and conversion to DC. Name of agent: Patent attorney Toshio Nakao Haka 1 person 1st plan, -1" 2-6 Kensawa signal No. 3, 5 Fig. 4 U Fig. 5 Fig. 6 δ Fig. 7 127!J

Claims (1)

【特許請求の範囲】[Claims] 発電機部分を構成する磁石回転子と、この磁石回転子の
回転速度に比例した交流電圧を発生する固定子巻線と、
前記回転子に取り付けられた磁石の磁極位置検出装置か
らの信号を論理処理回路へ入力し、その論理処理回路の
出力信号を用いて前記固定子巻線へ発生する回転速度に
比例した交流電圧を全波同期整流する事を特徴とするブ
ラシレスタコゼネレータ。
A magnet rotor that constitutes the generator part, a stator winding that generates an alternating current voltage proportional to the rotation speed of the magnet rotor,
A signal from a magnetic pole position detection device of a magnet attached to the rotor is input to a logic processing circuit, and the output signal of the logic processing circuit is used to generate an alternating current voltage proportional to the rotational speed generated in the stator winding. A brushless tacho generator featuring full-wave synchronous rectification.
JP16510685A 1985-07-26 1985-07-26 Brushless tachometer generator Pending JPS6225266A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16510685A JPS6225266A (en) 1985-07-26 1985-07-26 Brushless tachometer generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16510685A JPS6225266A (en) 1985-07-26 1985-07-26 Brushless tachometer generator

Publications (1)

Publication Number Publication Date
JPS6225266A true JPS6225266A (en) 1987-02-03

Family

ID=15806007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16510685A Pending JPS6225266A (en) 1985-07-26 1985-07-26 Brushless tachometer generator

Country Status (1)

Country Link
JP (1) JPS6225266A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5316206A (en) * 1991-06-14 1994-05-31 Norsk Hydro A.S. Method of joining aluminium members

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5316206A (en) * 1991-06-14 1994-05-31 Norsk Hydro A.S. Method of joining aluminium members

Similar Documents

Publication Publication Date Title
EP0189675B1 (en) Brushless dc motor
US5920162A (en) Position control using variable exciter feed through
US5072166A (en) Position sensor elimination technique for the switched reluctance motor drive
US8471510B2 (en) Control of electrical machines
KR930022699A (en) Non-commutator DC Motor
MadhusudhanaRao et al. Speed control of BLDC motor using DSP
Ertugrul et al. Indirect rotor position sensing in real time for brushless permanent magnet motor drives
TWI451701B (en) Analog-to-digital converter in a motor control device
JPS6225266A (en) Brushless tachometer generator
EP0142563B1 (en) System of controlling synchronous motor
JPS6030897B2 (en) speed detection device
Ahmad et al. Sensorless control of brushless DC motor by zero-crossing detection pulse generation with adaptive power factor control technique
JPH0213556B2 (en)
JPS5757264A (en) Dc generator type contactless speed detector
JP2019041429A (en) Three-phase brushless DC motor and driving method thereof
JPS62163591A (en) Controller for brushless motor
JPH02142383A (en) Brushless motor
JPS6227637B2 (en)
JPH0349596A (en) Control circuit of reluctance motor
JPS61191291A (en) Position detector of commutatorless dc motor
JPH0297294A (en) Detector for number of revolution of dc motor
SU1557642A1 (en) Reversing contactless dc tachogenerator and method of its adjustment
JP2644333B2 (en) DC no commutator motor
JP2751608B2 (en) Commutatorless DC motor
JPH063996B2 (en) Brushless motor