JPH0138103B2 - - Google Patents

Info

Publication number
JPH0138103B2
JPH0138103B2 JP56165641A JP16564181A JPH0138103B2 JP H0138103 B2 JPH0138103 B2 JP H0138103B2 JP 56165641 A JP56165641 A JP 56165641A JP 16564181 A JP16564181 A JP 16564181A JP H0138103 B2 JPH0138103 B2 JP H0138103B2
Authority
JP
Japan
Prior art keywords
urea
glucosyl
water
reaction
crystals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56165641A
Other languages
Japanese (ja)
Other versions
JPS5867662A (en
Inventor
Toshuki Aizawa
Hideo Takahashi
Tadahiro Sasaki
Tadao Takase
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP56165641A priority Critical patent/JPS5867662A/en
Publication of JPS5867662A publication Critical patent/JPS5867662A/en
Publication of JPH0138103B2 publication Critical patent/JPH0138103B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Feed For Specific Animals (AREA)
  • Fodder In General (AREA)
  • Saccharide Compounds (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は式 で表わされるグルコース尿素−尿素化合物および
その製法に関する。 この化合物は反芻動物又は豚のような動物の非
蛋白体窒素飼料として有用であり、特に従来知ら
れた尿素などのように例えば反芻動物の第一胃内
において酵素ウレアーゼなどの作用により急激に
分解して多量のアンモニアを生成してアンモニア
中毒をひき起すこともなく、またアルデヒドと尿
素の化合物に代表される遅効性飼料のように給餌
切期の分解の遅れによる蛋白質不足の状況を呈し
たりすることのない優れた飼料として炭水化物や
セルロール物質と共に使用することができる。 このグルコシル尿素−尿素化合物はD−グルコ
ースと尿素とを酸触媒の存在下に反応させること
により製造することができ、その理論反応式は以
下の通りである。 上式の通り、D−グルコースと尿素の理論反応
当量は1:2であるが、実際の反応に際してはD
−グルコース1モル当り、一般的には尿素1.5〜
5.0モルの範囲で反応させる。しかしながら、尿
素を理論量よりもやや過剰に用いた方が単流収率
が向上し、またあまり過剰に用いても収率向上へ
の寄与は小さくかつコスト面からも不利であるの
で、尿素2.0〜3.0モルの使用が好ましい。 D−グルコースと尿素の反応器への装入は一括
添加しても或いは分割添加しても反応および収率
に及ぼす影響はないが大スケールの反応の場合に
は溶解性の点から分割添加した方が望ましい。こ
れは上記反応が平衡反応であるので水の量はでき
るだけ少ない方が望ましいが、反応混合物を溶解
状態に保持するのが好ましいからである。反応混
合物中の水の量には特に制限はないが、上記した
ように、反応混合物を溶解状態に保ち得る範囲内
で、できるだけ少ない方が望ましく、酸触媒投入
前の状態で反応混合物中の水含含量が15%以下で
あるのが望ましい。 前記反応は酸触媒の存在下に実施されるが、こ
の反応に使用できる酸触媒としては、例えば塩
酸、硫酸、リン酸などをあげることができ、これ
らの酸触媒の使用量には特に制限はないが、一般
にはグルコース1モルに対し0.05〜0.3モル、好
ましくは0.08〜0.15モルの範囲で使用される。酸
触媒の添加後、一般には反応混合物を加熱して反
応を進行させる。反応温度は一般には40〜100℃、
好ましくは50〜70℃程度で、通常3〜6時間程度
で反応が完結する。 反応終了後、反応液から生成グルコシル尿素−
尿素化合物の結晶を直接単離するのは困難である
ので(過性が極めて悪い)、水を添加し、そし
てアルコールを添加する。これは水のみでは目的
化合物の結晶性や収率が良くないからであり、通
常、反応混合物全重量対し約0.1〜0.3倍程度の水
と、0.5〜3.0倍程度のアルコールを使用する。ア
ルコールとしては、例えば、メタノール、エタノ
ール、イソプロピルアルコールなどを好適に使用
できる。 水及びアルコールの添加後、反応混合液を冷却
して目的化合物を完全に析出させたのち(冷却温
度には特に限定はないが、通常0〜5℃程度に冷
却する)、析出結晶を過し、次いでこの結晶を
アルコールで洗浄して結晶に付着している酸、尿
素およびグルコシル尿素などを除去する。使用す
るアルコールの量は反応混合物の全量に対し0.1
〜1.0倍量程度とするのが好ましい。洗浄アルコ
ールの使用量が多過ぎると、目的とするグルコシ
ル尿素−尿素化合物がグルコシル尿素に分解して
単離グルコシル尿素−尿素化合物の結晶の純度が
低下して好ましくない。 ここで注意しなければならないのは、過後の
結晶の洗浄を水を用いて行なつてはならないこと
である。本発明者等の知見によれば次表に示すよ
うに、グルコシル尿素−尿素化合物の水に対する
溶解度は極めて大きく、従つて水洗浄により目的
とするグルコシル尿素−尿素化合物は殆んど水に
溶解してしまうのである。
The present invention is based on the formula The present invention relates to a glucose urea-urea compound represented by and a method for producing the same. This compound is useful as a non-protein nitrogen feed for animals such as ruminants or pigs, and is particularly rapidly degraded by the action of the enzyme urease in the rumen of ruminants, such as the previously known urea. It does not generate a large amount of ammonia and cause ammonia poisoning, and it does not cause protein deficiency due to delayed decomposition at the end of feeding, as is the case with slow-release feeds such as compounds of aldehyde and urea. It can be used with carbohydrates and cellulose materials as an excellent feed. This glucosyl urea-urea compound can be produced by reacting D-glucose and urea in the presence of an acid catalyst, and the theoretical reaction formula is as follows. As shown in the above formula, the theoretical reaction equivalent of D-glucose and urea is 1:2, but in actual reaction, D
-Usually 1.5 to 1.5 urea per mole of glucose
React within the range of 5.0 mol. However, if urea is used in excess of the theoretical amount, the single flow yield will improve, and if urea is used in excess, the contribution to yield improvement will be small and it will be disadvantageous from a cost perspective. The use of ~3.0 mol is preferred. When charging D-glucose and urea to the reactor, there is no effect on the reaction or yield whether they are added all at once or in portions; however, in the case of large-scale reactions, they may be added in portions from the viewpoint of solubility. It is preferable. This is because, since the above reaction is an equilibrium reaction, it is desirable that the amount of water be as small as possible, but it is preferable to maintain the reaction mixture in a dissolved state. There is no particular limit to the amount of water in the reaction mixture, but as mentioned above, it is preferable to keep the amount of water in the reaction mixture as small as possible within the range that can keep the reaction mixture in a dissolved state. It is desirable that the content is 15% or less. The above reaction is carried out in the presence of an acid catalyst, and examples of acid catalysts that can be used in this reaction include hydrochloric acid, sulfuric acid, and phosphoric acid, and there are no particular restrictions on the amount of these acid catalysts used. However, it is generally used in an amount of 0.05 to 0.3 mol, preferably 0.08 to 0.15 mol, per mol of glucose. After addition of the acid catalyst, the reaction mixture is generally heated to allow the reaction to proceed. The reaction temperature is generally 40-100℃,
The temperature is preferably about 50 to 70°C, and the reaction is usually completed in about 3 to 6 hours. After the reaction is complete, glucosyl urea is produced from the reaction solution.
Since it is difficult to directly isolate the crystals of the urea compound (very poor perturbation), water is added and then alcohol is added. This is because the crystallinity and yield of the target compound are not good if water alone is used, and usually water is used in an amount of about 0.1 to 0.3 times and alcohol is used in an amount of about 0.5 to 3.0 times the total weight of the reaction mixture. As the alcohol, for example, methanol, ethanol, isopropyl alcohol, etc. can be suitably used. After adding water and alcohol, the reaction mixture is cooled to completely precipitate the target compound (there is no particular limit to the cooling temperature, but it is usually cooled to about 0 to 5°C), and the precipitated crystals are filtered. Next, the crystals are washed with alcohol to remove acids, urea, glucosyl urea, etc. attached to the crystals. The amount of alcohol used is 0.1 based on the total amount of the reaction mixture.
It is preferable to set the amount to about 1.0 times as much. If the amount of washing alcohol used is too large, the target glucosyl urea-urea compound will be decomposed into glucosyl urea, which will reduce the purity of the isolated glucosyl urea-urea compound crystals, which is not preferable. What must be noted here is that the crystals must not be washed with water after the filtration. According to the findings of the present inventors, as shown in the following table, the solubility of glucosyl urea-urea compounds in water is extremely high. Therefore, most of the target glucosyl urea-urea compounds are dissolved in water by washing with water. That's what happens.

【表】 以下に本発明の実施例を説明する。 例 1 撹拌器を備えた丸底セパラブルフラスコに、D
−グルコース−水加物198g(1モル)、尿素144
g(2.4モル)及び水5.8mlを装入し、60℃の湯浴
中で溶解して無色透明のシロツプ状液体を得た。
溶解に要した時間は約2時間であつた。このシロ
ツプ状液体混合物に、濃塩酸11.8gを水5.8mlに
溶解した水溶液を添加して温度60℃で撹拌し乍ら
反応させた。約3時間経過後に結晶が析出しはじ
め、更に3時間反応を継続させたのち加熱を停止
した。 このようにして得られた反応混合物に撹拌し乍
ら水70mlとメタノール350gを連続して添加し、
この混合物を0℃まで冷却した後過し、次いで
メタノール100gで洗浄し乾燥後白色結晶231.5g
を得た(収率82%)。 得られた結晶のX線回折パターンは第1図に示
す通りであり、グルコシル尿素と尿素の等モル混
合物のX線回折パターンを示す第2図とは異なる
グルコシル尿素−尿素化合物固有のものであつ
た。 一方、得られた結晶のHPLC分析によれば、こ
の結晶はグルコシル尿素と尿素100対97のモル比
で構成されており(従つてグルコース換算の収率
は約83%となる)、融点は168.5〜170.0℃であつ
た〔グルコシル尿素の融点:208℃(分解)〕。得
られた結晶の一部を水から再結晶して精製したと
ころ融点は171〜172℃に上昇し、元素分析値は以
下の通りであつた。 理論値(C6H18N4O7): C:56.44、H:10.66、N:32.91 実測置 C:56.86、H:10.79、N:32.35 例 2 D−グルコース−水和物100Kg、尿素71.5Kg及
び水5.8Kgを反応釜に投入し、温水浴にて混合物
を60〜64℃に加熱して溶解し、更にD−グルコー
ス−水和物100Kg及び尿素71.5Kgを少しづつ等量
割合で添加し、溶解させた(一部不溶であつたが
特に問題になることはなかつた。)次いで、36%
塩酸11.8Kgを水5.8Kgに溶解した水溶液を加えて、
温度62±2℃で5時間反応させた。塩酸投入後約
3時間でグルコシル尿素−尿素化合物の結晶が析
出しはじめ、約7℃の温度上昇が認められた。 反応終了後、温水を抜き、水40Kg、次いで99%
メタノール380Kgを投入し、冷凍水及びブライン
で0℃まで冷却し、過した。滓を常温の99%
メタノール100Kgで洗浄し、常圧50℃以下の温度
で棚段乾燥器にて2日間乾燥した。 このようにしてグルコシル尿素−尿素化合物
230Kgを得た。この結晶の融点は168.5〜170.0℃
でグルコース基準の収率は81.0%であつた。ま
た、この結晶がグルコシル尿素−尿素化合物であ
ることはIR及びX線回折で確認した。
[Table] Examples of the present invention will be described below. Example 1 In a round bottom separable flask equipped with a stirrer, D
-Glucose-hydrate 198g (1 mol), urea 144
g (2.4 mol) and 5.8 ml of water were charged and dissolved in a water bath at 60°C to obtain a colorless and transparent syrup-like liquid.
The time required for dissolution was approximately 2 hours. An aqueous solution of 11.8 g of concentrated hydrochloric acid dissolved in 5.8 ml of water was added to this syrupy liquid mixture, and the mixture was stirred and reacted at a temperature of 60°C. Crystals began to precipitate after about 3 hours, and the reaction was continued for an additional 3 hours, after which heating was stopped. 70 ml of water and 350 g of methanol were successively added to the reaction mixture thus obtained while stirring,
The mixture was cooled to 0°C, filtered, washed with 100g of methanol, and dried to yield 231.5g of white crystals.
was obtained (yield 82%). The X-ray diffraction pattern of the obtained crystals is as shown in Figure 1, and is unique to the glucosyl urea-urea compound and is different from Figure 2, which shows the X-ray diffraction pattern of an equimolar mixture of glucosyl urea and urea. Ta. On the other hand, according to HPLC analysis of the obtained crystals, the crystals are composed of glucosyl urea and urea in a molar ratio of 100 to 97 (therefore, the yield in terms of glucose is about 83%), and the melting point is 168.5. The temperature was ~170.0°C [melting point of glucosyl urea: 208°C (decomposition)]. When some of the obtained crystals were purified by recrystallization from water, the melting point rose to 171-172°C, and the elemental analysis values were as follows. Theoretical value ( C6H18N4O7 ): C: 56.44, H: 10.66, N: 32.91 Actual measurement C: 56.86 , H: 10.79, N: 32.35 Example 2 D-glucose hydrate 100Kg, urea 71.5 Pour Kg and 5.8 Kg of water into the reaction vessel, heat the mixture to 60-64°C in a hot water bath to dissolve, and then add 100 Kg of D-glucose hydrate and 71.5 Kg of urea little by little in equal proportions. Then, 36%
Add an aqueous solution of 11.8 kg of hydrochloric acid dissolved in 5.8 kg of water,
The reaction was carried out at a temperature of 62±2°C for 5 hours. About 3 hours after adding hydrochloric acid, crystals of the glucosyl urea-urea compound began to precipitate, and a temperature rise of about 7°C was observed. After the reaction is complete, remove the hot water, add 40 kg of water, then 99%
380 kg of methanol was added, cooled to 0°C with frozen water and brine, and filtered. The slag is 99% of room temperature.
It was washed with 100 kg of methanol and dried for 2 days in a tray dryer at a temperature of 50° C. or less under normal pressure. In this way, the glucosyl urea-urea compound
Obtained 230Kg. The melting point of this crystal is 168.5-170.0℃
The yield based on glucose was 81.0%. Furthermore, it was confirmed by IR and X-ray diffraction that this crystal was a glucosyl urea-urea compound.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例1において合成したグルコシル
尿素−尿素化合物のX線回折パターンであり、第
2図はグルコシル尿素と尿素の等モル混合物のX
線回折パターンである。
Figure 1 shows the X-ray diffraction pattern of the glucosyl urea-urea compound synthesized in Example 1, and Figure 2 shows the X-ray diffraction pattern of the equimolar mixture of glucosyl urea and urea.
This is a line diffraction pattern.

Claims (1)

【特許請求の範囲】 1 式 で表わされるグルコシル尿素−尿素化合物。 2 D−グルコースと尿素とを酸触媒の存在下に
反応させることを特徴とする式 のグルコシル尿素−尿素化合物の製法。
[Claims] 1 formula A glucosyl urea-urea compound represented by 2 Formula characterized by reacting D-glucose and urea in the presence of an acid catalyst A method for producing a glucosyl urea-urea compound.
JP56165641A 1981-10-19 1981-10-19 Glucosylurea-urea compound and its preparation Granted JPS5867662A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56165641A JPS5867662A (en) 1981-10-19 1981-10-19 Glucosylurea-urea compound and its preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56165641A JPS5867662A (en) 1981-10-19 1981-10-19 Glucosylurea-urea compound and its preparation

Publications (2)

Publication Number Publication Date
JPS5867662A JPS5867662A (en) 1983-04-22
JPH0138103B2 true JPH0138103B2 (en) 1989-08-11

Family

ID=15816216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56165641A Granted JPS5867662A (en) 1981-10-19 1981-10-19 Glucosylurea-urea compound and its preparation

Country Status (1)

Country Link
JP (1) JPS5867662A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102805276A (en) * 2011-05-31 2012-12-05 薛白 Crude fiber and carbamide mixed condensation compound

Also Published As

Publication number Publication date
JPS5867662A (en) 1983-04-22

Similar Documents

Publication Publication Date Title
SK280544B6 (en) Process for the preparation of creatine or creatine-monohydrate
JPH0138103B2 (en)
US5684191A (en) Process for the combined synthesis of betaine and choline chloride
US6147258A (en) Preparation of substituted guanidine derivatives
US5155264A (en) Process for preparing glycine in high yield
JP2000191625A (en) Production of guanidine derivative
US5672702A (en) Process for preparing 3 amino 1, 2, 4-benzotriazine dioxide
JPH0127704B2 (en)
EP0343597B1 (en) Preparation of tris (2-cyanoethyl) amine
JPS6210510B2 (en)
JPS5811421B2 (en) Alpha - Amino Sanno Seizouhou
JP2870151B2 (en) Process for producing 1,3-phenylenedioxydiacetic acid
RU2047616C1 (en) Method of synthesis of 2,4,6-triamino-6-phenylpteridine
US4929727A (en) Improved process for precipitating cytosine from alkaline solutions with sulfuric acid
JPS6337104B2 (en)
US4267324A (en) Process for preparing 4-aminopyrazolo-(3,4-d)pyrimidine
US4126636A (en) Process of producing the magnesium salt of p-chlorophenoxyisobutyric acid
JPH0563478B2 (en)
JP2959883B2 (en) Method for synthesizing 3-amino-5-mercapto-1,2,4-triazole
US4999434A (en) Process for low chloride 1,2,4-triazol-5-one
JPS6337105B2 (en)
RU1549009C (en) Method of synthesis of alkaline and alkaline-earth metal decavandates
CN117362278A (en) Preparation method of 3- (2-furyl) -5-amino-1H-1, 2, 4-triazole
JP3032384B2 (en) Method for synthesizing 3-amino-5-mercapto-1,2,4-triazole
IL44209A (en) Process for the preparation of oxamide