JPH0127704B2 - - Google Patents

Info

Publication number
JPH0127704B2
JPH0127704B2 JP56165642A JP16564281A JPH0127704B2 JP H0127704 B2 JPH0127704 B2 JP H0127704B2 JP 56165642 A JP56165642 A JP 56165642A JP 16564281 A JP16564281 A JP 16564281A JP H0127704 B2 JPH0127704 B2 JP H0127704B2
Authority
JP
Japan
Prior art keywords
urea
glucosyl
water
reaction
glucose
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56165642A
Other languages
Japanese (ja)
Other versions
JPS5867148A (en
Inventor
Tadao Takase
Toshuki Aizawa
Hideo Takahashi
Tadahiro Sasaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP56165642A priority Critical patent/JPS5867148A/en
Publication of JPS5867148A publication Critical patent/JPS5867148A/en
Publication of JPH0127704B2 publication Critical patent/JPH0127704B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Feed For Specific Animals (AREA)
  • Fodder In General (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は飼料に関し、更に詳しくはグルコシル
尿素−尿素化合物を有効成分として含有する反芻
動物用飼料に関する。 天然蛋白質飼料を節約するために遊離の尿素を
含む飼料を反芻動物へ給餌することが行なわれて
いる。これは反芻動物が尿素やアンモニウム塩の
ような非蛋白物質の窒素を少なくとも一部体内に
取り込むことができることに基づいている。例え
ば、尿素を飼料中に配合した場合には、反芻動物
の第1胃内で尿素は酵素ウレアーゼにより酵素的
に分解され、分解生成物は他の消化生成物と動物
の消化器管系統の微生物により生体組織を構成す
るのに必要なアミノ酸の合成に使用される。しか
しながら遊離の尿素の場合には、動物の胃の中で
過剰のアンモニアが生成することがしばしばであ
り、これによつて動物に害毒(アンモニア中毒)
が及んだり、排泄により窒素がかなり損失したり
するという問題があつた。 尿素単独の使用による上記欠点を解決するため
に、例えばアルデヒドと尿素の化合物で代表され
る遅効性飼料が知られているが、動物体内で分解
して発生するアルデヒドの作用等に心理的負担が
ある。そこで天然品で安全なものとして、例えば
グルコース(ブドウ糖ともいう)と尿素との縮合
生成物であるグルコシル尿素を飼料として用いる
ことが提案されている。この飼料又はこれを他の
成分と共に配合した飼料は、グルコシル尿素の酵
素的加水分解及びアンモニアの連続的遊離が遅く
なり、飼料効率の向上、窒素分の蛋白質への利用
率は明きらかに改善される。しかしながら反面、
グルコシル尿素の添加によつてアンモニアの供給
速度を調節する場合グルコシル尿素の分解速度が
ある条件下であまり遅くなると蛋白質不足(正確
にはアミノ酸又はアンモニアの不足)の状態を起
し、ルーメン内での微生物の活動が制限されるこ
とが十分考えられる。 本発明者らはかかる従来技術の問題点を改善す
べく鋭意研究をすすめた結果、グルコシル尿素−
尿素化合物が速効性と遅効性とを兼備したすぐれ
た動物用飼料であることを見出し、しかもその蛋
白価は約125%と非常に高く、更には尿素と結合
したグルコースが動物に有用な糖類であることか
ら使用上も安全であることを見出し、本発明をな
すに至つた。この化合物は尿素とグルコシル尿素
の混合物の様に混合の際における混合不良による
尿素の偏在を来すことがないことも実用上非常に
有利である。 すなわち、本発明に従えば、式 で表わされるグルコシル尿素−尿素化合物を有効
成分として含有する反芻動物用飼料が提供され
る。 このグルコシル尿素−尿素化合物は、高蛋白価
の蛋白質飼料として、また配合飼料、例えば、ト
ウモロコシ、大麦又はその他の穀物などのような
炭水化物やわら、干し草、植物飼料などのような
セルロース物質に例えば0.1〜25%程度配合して
使用することができ、その他、バインダー、脂
肪、澱粉、風味剤などのような添加剤を含んでい
てもよい。 このグルコシル尿素−尿素化合物はD−グルコ
ースと尿素とを酸触媒の存在下に反応させること
により製造することができ、その理論反応式は以
下の通りである。 上式の通り、D−グルコースと尿素の理論反応
当量は1:2であるが、実際の反応に際してはD
−グルコース1モル当り、一般的には尿素1.5〜
50モルの範囲で反応させる。しかしながら、尿素
を理論量よりもやや過剰に用いた方が単位収率が
向上し、またあまり過剰に用いても収率向上への
寄与は小さくかつコスト面からも不利であるの
で、尿素2.0〜3.0モルの使用が好ましい。 D−グルコースと尿素の反応器への装入は一括
添加しても或いは分割添加しても反応および収率
に及ぼす影響はないが大スケールの反応の場合に
は溶解性の点から分割添加した方が望ましい。こ
れは上記反応が平衡反応であるので水の量はでき
るだけ少ない方が望ましいが、反応混合物を溶解
状態に保持するのが好ましいからである。反応混
合物中の水の量には特に制限はないが、上記した
ように、反応混合物を溶解状態に保ち得る範囲内
で、できるだけ少ない方が望ましく、酸触媒投入
前の状態で反応混合物中の水分含量が15%以下で
あるのが望ましい。 前記反応は酸触媒の存在下に実施されるが、こ
の反応に使用できる酸触媒としては、例えば塩
酸、硫酸、リン酸などをあげることができ、これ
らの酸触媒の使用量には特に制限はないが、一般
にはグルコース1モルに対し0.05〜0.3モル、好
ましくは0.08〜0.15モルの範囲で使用される。酸
触媒の添加後、一般には反応混合物を加熱して反
応を進行させる。反応温度は一般には40〜100℃、
好ましくは50〜70℃程度で、通常3〜6時間程度
で反応が完結する。 反応終了後、反応液から生成グルコシル尿素−
尿素化合物の結晶を直接単離するのは困難である
ので(過性が極めて悪い)、水を添加し、そし
てアルコールを添加する。これは水のみでは目的
化合物の結晶性や収率が良くないからであり、通
常、反応混合物全重量に対し約0.1〜0.3倍程度の
水と、0.5〜3.0倍程度のアルコールを使用する。
アルコールとしては、例えば、メタノール、エタ
ノール、イソプロピルアルコールなどを好適に使
用できる。 水及びアルコールの添加後、反応混合液を冷却
して目的化合物を完全に析出させたのち(冷却温
度には特に限定はないが、通常0〜5℃程度に冷
却する)、析出結晶を過し、次いでこの結晶を
アルコールで洗浄して結晶に付着している酸、尿
素およびグルコシル尿素などを除去する。使用す
るアルコールの量は反応混合物の全量に対し0.1
〜1.0倍量程度とするのが好ましい。洗浄アルコ
ールの使用量が多過ぎると、目的とするグルコシ
ル尿素−尿素化合物がグルコシル尿素に分解して
単離グルコシル尿素−尿素化合物の結晶の純度が
低下して好ましくない。 ここで注意しなければならないのは、過後の
結晶の洗浄を水を用いて行なつてはならないこと
である。本発明者等の知見によれば次表に示すよ
うに、グルコシル尿素−尿素化合物の水に対する
溶解度は極めて大きく、従つて水洗浄により目的
とするグルコシル尿素−尿素化合物は殆んど水に
溶解してしまうのである。
The present invention relates to a feed, and more particularly to a feed for ruminants containing a glucosyl urea-urea compound as an active ingredient. In order to conserve natural protein feed, feeding ruminants with feed containing free urea has been practiced. This is based on the fact that ruminants can at least partially incorporate nitrogen from non-protein substances such as urea and ammonium salts. For example, when urea is added to feed, it is enzymatically degraded by the enzyme urease in the rumen of a ruminant, and the degradation products are mixed with other digestive products and microorganisms in the animal's gastrointestinal system. It is used in the synthesis of amino acids necessary to construct living tissues. However, in the case of free urea, excess ammonia is often produced in the animal's stomach, which can be harmful to the animal (ammonia poisoning).
There was a problem that nitrogen was lost through excretion. In order to solve the above-mentioned disadvantages caused by the use of urea alone, slow-release feeds, such as compounds of aldehyde and urea, are known, but the effects of aldehydes generated by decomposition within the animal body cause psychological burden. be. Therefore, it has been proposed to use glucosyl urea, which is a condensation product of glucose (also called glucose) and urea, as a feed as a natural and safe product. This feed, or a feed containing it with other ingredients, slows down the enzymatic hydrolysis of glucosylurea and the continuous release of ammonia, improves feed efficiency, and clearly improves the utilization rate of nitrogen into protein. be done. However, on the other hand,
When adjusting the ammonia supply rate by adding glucosyl urea, if the decomposition rate of glucosyl urea becomes too slow under certain conditions, a state of protein deficiency (more precisely, amino acid or ammonia deficiency) will occur, and the It is quite conceivable that microbial activity is restricted. The present inventors conducted intensive research to improve the problems of the prior art, and as a result, the glucosyl urea
It was discovered that urea compounds are excellent animal feeds that have both fast-acting and slow-acting properties, and that their protein value is extremely high at approximately 125%.Furthermore, the glucose combined with urea is a useful sugar for animals. The inventors have discovered that it is safe to use due to certain reasons, and have come up with the present invention. This compound is also very advantageous in practice because unlike mixtures of urea and glucosyl urea, urea does not become unevenly distributed due to poor mixing during mixing. That is, according to the present invention, the formula There is provided a feed for ruminants containing a glucosyl urea-urea compound represented by as an active ingredient. This glucosyl urea-urea compound can be used as a protein feed with a high protein value and in compound feeds, carbohydrates such as corn, barley or other grains, cellulosic materials such as straw, hay, plant feed, etc. It can be used in a blend of about 25%, and may also contain other additives such as binders, fats, starches, flavoring agents, etc. This glucosyl urea-urea compound can be produced by reacting D-glucose and urea in the presence of an acid catalyst, and the theoretical reaction formula is as follows. As shown in the above formula, the theoretical reaction equivalent of D-glucose and urea is 1:2, but in actual reaction, D
-Usually 1.5 to 1.5 urea per mole of glucose
React in a range of 50 moles. However, the unit yield improves when urea is used in a slight excess over the theoretical amount, and even if urea is used in excess, the contribution to yield improvement is small and it is disadvantageous from a cost perspective. Preferably, 3.0 mol is used. When charging D-glucose and urea to the reactor, there is no effect on the reaction or yield whether they are added all at once or in portions; however, in the case of large-scale reactions, they may be added in portions from the viewpoint of solubility. It is preferable. This is because, since the above reaction is an equilibrium reaction, it is desirable that the amount of water be as small as possible, but it is preferable to maintain the reaction mixture in a dissolved state. There is no particular limit to the amount of water in the reaction mixture, but as mentioned above, it is preferable to keep the amount of water in the reaction mixture as small as possible within the range that can keep the reaction mixture in a dissolved state. It is desirable that the content is below 15%. The above reaction is carried out in the presence of an acid catalyst, and examples of acid catalysts that can be used in this reaction include hydrochloric acid, sulfuric acid, and phosphoric acid, and there are no particular restrictions on the amount of these acid catalysts used. However, it is generally used in an amount of 0.05 to 0.3 mol, preferably 0.08 to 0.15 mol, per mol of glucose. After addition of the acid catalyst, the reaction mixture is generally heated to allow the reaction to proceed. The reaction temperature is generally 40-100℃,
The temperature is preferably about 50 to 70°C, and the reaction is usually completed in about 3 to 6 hours. After the reaction is complete, glucosyl urea is produced from the reaction solution.
Since it is difficult to directly isolate the crystals of the urea compound (very poor perturbation), water is added and then alcohol is added. This is because the crystallinity and yield of the target compound are not good with water alone, and usually about 0.1 to 0.3 times the amount of water and about 0.5 to 3.0 times the amount of alcohol based on the total weight of the reaction mixture are used.
As the alcohol, for example, methanol, ethanol, isopropyl alcohol, etc. can be suitably used. After adding water and alcohol, the reaction mixture is cooled to completely precipitate the target compound (there is no particular limit to the cooling temperature, but it is usually cooled to about 0 to 5°C), and the precipitated crystals are filtered. Next, the crystals are washed with alcohol to remove acids, urea, glucosyl urea, etc. attached to the crystals. The amount of alcohol used is 0.1 based on the total amount of the reaction mixture.
It is preferable to set the amount to about 1.0 times as much. If the amount of washing alcohol used is too large, the target glucosyl urea-urea compound will be decomposed into glucosyl urea, which will reduce the purity of the isolated glucosyl urea-urea compound crystals, which is not preferable. What must be noted here is that the crystals must not be washed with water after the filtration. According to the findings of the present inventors, as shown in the following table, the solubility of glucosyl urea-urea compounds in water is extremely high. Therefore, most of the target glucosyl urea-urea compounds are dissolved in water by washing with water. That's what happens.

【表】【table】

【表】 以下に本発明の実施例を説明する。 例 1 撹拌器を備えた丸底セパラブルフラスコに、D
−グルコース−水加物198g(1モル)、尿素144
g(2.4モル)及び水5.8mlを装入し、60℃の湯浴
中で溶解して無色透明のシロツプ状液体を得た。
溶解に要した時間は約2時間であつた。このシロ
ツプ状液体混合物に、濃塩酸11.8gを水5.8mlに
溶解した水溶液を添加して温度60℃で撹拌し乍ら
反応させた。約3時間経過後に結晶が析出しはじ
め、更に3時間反応を継続させたのち加熱を停止
した。 このようにして得られた反応混合物に撹拌しな
がら水70mlとメタノール350gを連続して添加し、
この混合物を0℃まで冷却した後過し、次いで
メタノール100gで洗浄し乾燥後白色結晶231.5g
を得た(収率82%)。 得られた結晶のX線回析パターンは第1図に示
す通りであり、グルコシル尿素と尿素の等モル混
合物のX線回析パターンを示す第2図とは異なる
グルコシル尿素−尿素化合物固有のものであつ
た。 一方、得られた結晶のHPLC分析によれば、こ
の結晶はグルコシル尿素と尿素100対97のモル比
で構成されており(従つてグルコース換算の収率
は約83%となる)、融点は168.5〜170.0℃であつ
た。〔グルコシル尿素の融点:208℃(分解)〕。得
られた結晶の一部を水から再結晶して精製したと
ころ融点は171〜172℃に上昇し、元素分析値は以
下の通りであつた。 理論値:C:56.44、H:10.66、N:32.91 (C6H18N4O7) 実測値:C:56.86、H:10.79、N:32.35 例 2 D−グルコース−水和物100Kg、尿素71.5Kg及
び水5.8Kgを反応釜に投入し、温水浴にて混合物
を60〜64℃に加熱して溶解し、更にD−グルコー
ス−水和物100Kg及び尿素71.5Kgを少しづつ等量
割合で添加し、溶解させた(一部不溶であつたが
特に問題になることはなかつた)。次いで、36%
塩酸11.8Kgを水5.8Kgに溶解した水溶液を加えて
温度62±2℃で5時間反応させた。塩酸投入後約
3時間でグルコシル尿素−尿素化合物の結晶が析
出しはじめ、約7℃の温度上昇が認められた。 反応終了後、温水を抜き、水40Kg、次いで99%
メタノール380Kgを投入し、冷凍水及びブライン
で0℃まで冷却し、過した。滓を常温の99%
メタノール100Kgで洗浄し、常圧50℃以下の温度
で棚段乾燥器にて2日間乾燥した。 このようにしてグルコシル尿素−尿素化合物
230Kgを得た。この結晶の融点は168.5〜170.0℃
でグルコース基準の収率は81.0%であつた。また
この結晶がグルコシル尿素−尿素化合物であるこ
とはIR及びX線回析で確認した。 例 3 例2で合成したグルコシル尿素−尿素化合物
1.0gを脱酸素した水50mlに溶解した。一方、比
較例として尿素及びグルコシル尿素を、それぞ
れ、同様にして脱酸素した水に溶解した。 50mlの孵卵ビンを38℃に保ち、これに上記各水
溶液8mlを添加し、更に無機塩類(NaCl、
MgSO4など)0.13g及びグルコース0.04gを加
え、最後にルーメン液20mlを加えて嫌気性条件下
で所定時間培養し、アンモニア生成の経時変化を
試験した。この結果、使用原料に対する分解率は
下表に示す通りであつた。なお、ルーメン液はグ
ルコシル尿素を含む飼料で4週間飼養し、ルーメ
ンにフイステユラをつけた牛のルーメンから採取
したものを使用した。
[Table] Examples of the present invention will be described below. Example 1 In a round bottom separable flask equipped with a stirrer, D
-Glucose-hydrate 198g (1 mol), urea 144
g (2.4 mol) and 5.8 ml of water were charged and dissolved in a water bath at 60°C to obtain a colorless and transparent syrup-like liquid.
The time required for dissolution was approximately 2 hours. An aqueous solution of 11.8 g of concentrated hydrochloric acid dissolved in 5.8 ml of water was added to this syrupy liquid mixture, and the mixture was stirred and reacted at a temperature of 60°C. Crystals began to precipitate after about 3 hours, and the reaction was continued for an additional 3 hours, after which heating was stopped. 70 ml of water and 350 g of methanol were successively added to the reaction mixture thus obtained with stirring,
The mixture was cooled to 0°C, filtered, washed with 100g of methanol, and dried to yield 231.5g of white crystals.
was obtained (yield 82%). The X-ray diffraction pattern of the obtained crystals is as shown in Figure 1, which is unique to the glucosyl urea-urea compound and is different from Figure 2, which shows the X-ray diffraction pattern of an equimolar mixture of glucosyl urea and urea. It was hot. On the other hand, according to HPLC analysis of the obtained crystals, the crystals are composed of glucosyl urea and urea in a molar ratio of 100 to 97 (therefore, the yield in terms of glucose is about 83%), and the melting point is 168.5. The temperature was ~170.0℃. [Melting point of glucosyl urea: 208°C (decomposition)]. When a part of the obtained crystals was purified by recrystallization from water, the melting point rose to 171-172°C, and the elemental analysis values were as follows. Theoretical value: C: 56.44, H: 10.66, N: 32.91 ( C6H18N4O7 ) Actual value: C: 56.86, H: 10.79 , N: 32.35 Example 2 D-glucose hydrate 100Kg, urea 71.5Kg and 5.8Kg of water were put into a reaction vessel, and the mixture was heated to 60-64℃ in a hot water bath to dissolve it, and then 100Kg of D-glucose hydrate and 71.5Kg of urea were added little by little in equal proportions. The solution was added and dissolved (although some portions were insoluble, this did not pose any particular problem). Next, 36%
An aqueous solution prepared by dissolving 11.8 kg of hydrochloric acid in 5.8 kg of water was added, and the mixture was reacted at a temperature of 62±2° C. for 5 hours. About 3 hours after adding hydrochloric acid, crystals of the glucosyl urea-urea compound began to precipitate, and a temperature rise of about 7°C was observed. After the reaction is complete, remove the hot water, add 40 kg of water, then 99%
380 kg of methanol was added, cooled to 0°C with frozen water and brine, and filtered. The slag is 99% of room temperature.
It was washed with 100 kg of methanol and dried for 2 days in a tray dryer at a temperature of 50° C. or less under normal pressure. In this way, the glucosyl urea-urea compound
Obtained 230Kg. The melting point of this crystal is 168.5-170.0℃
The yield based on glucose was 81.0%. Furthermore, it was confirmed by IR and X-ray diffraction that this crystal was a glucosyl urea-urea compound. Example 3 Glucosyl urea-urea compound synthesized in Example 2
1.0 g was dissolved in 50 ml of deoxygenated water. On the other hand, as a comparative example, urea and glucosyl urea were each dissolved in water deoxygenated in the same manner. A 50ml incubation bottle was kept at 38°C, 8ml of each of the above aqueous solutions was added to it, and inorganic salts (NaCl,
0.13 g of MgSO 4 etc.) and 0.04 g of glucose were added, and finally 20 ml of rumen fluid was added and cultured under anaerobic conditions for a predetermined period of time to examine changes in ammonia production over time. As a result, the decomposition rates for the raw materials used were as shown in the table below. The rumen fluid used was collected from the rumen of a cow that had been fed a glucosyl urea-containing diet for 4 weeks and had a rumen coated with fuisteula.

【表】 上表の結果から明らかなように、本発明に従つ
たグルコシル尿素−尿素化合物は、尿素に較べて
明らかに遅効性を示していると共に、急激な分解
が起つていないこと、またグルコシル尿素に較べ
て、初期の分解性が非常にすぐれており、制限給
餌初期の窒素分不足を生じない、非常にすぐれた
飼料組成物であることが認められた。
[Table] As is clear from the results in the above table, the glucosyl urea-urea compound according to the present invention clearly exhibits slow-acting properties compared to urea, and does not undergo rapid decomposition. Compared to glucosyl urea, it was found to be an extremely excellent feed composition that has excellent initial decomposition properties and does not cause nitrogen deficiency during the initial stage of restricted feeding.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例1において合成したグルコシル
尿素−尿素化合物のX線回析パターンであり、第
2図はグルコシル尿素と尿素の等モル混合物のX
線回析パターンである。
Figure 1 shows the X-ray diffraction pattern of the glucosyl urea-urea compound synthesized in Example 1, and Figure 2 shows the X-ray diffraction pattern of the equimolar mixture of glucosyl urea and urea.
This is a line diffraction pattern.

Claims (1)

【特許請求の範囲】 1 式 で表わされるグルコシル尿素−尿素化合物を有効
成分として含有する反芻動物用飼料。
[Claims] 1 formula A feed for ruminants containing a glucosyl urea-urea compound represented by the following as an active ingredient.
JP56165642A 1981-10-19 1981-10-19 Feed Granted JPS5867148A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56165642A JPS5867148A (en) 1981-10-19 1981-10-19 Feed

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56165642A JPS5867148A (en) 1981-10-19 1981-10-19 Feed

Publications (2)

Publication Number Publication Date
JPS5867148A JPS5867148A (en) 1983-04-21
JPH0127704B2 true JPH0127704B2 (en) 1989-05-30

Family

ID=15816236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56165642A Granted JPS5867148A (en) 1981-10-19 1981-10-19 Feed

Country Status (1)

Country Link
JP (1) JPS5867148A (en)

Also Published As

Publication number Publication date
JPS5867148A (en) 1983-04-21

Similar Documents

Publication Publication Date Title
US4900561A (en) Copper complexes of alpha-amino acids that contain terminal amino groups, and their use as nutritional supplements
CA2002558C (en) Copper complexes of alpha-amino acids that contain terminal amino acid groups, and their use as nutritional supplements
US4388327A (en) Method of increasing milk production of dairy cattle
US4407809A (en) N-phenoxy(or thio)hydrocarbon 3,4,5-trihydroxypiperidine derivatives, their use in medicine and in animal nutrition
CN102948620B (en) Preparation method of modified methionine hydroxy analog-calcium feed additive
CN109651274A (en) Thiocarbamide composite feed additive with urease inhibiting activity and preparation method thereof
US3715375A (en) New diphenyl sulfones
JPS62132853A (en) Manufacture of alkali metal salt aqueous solution of methionine
US4066750A (en) Lactosyl substituted ureides in ruminant feedstuff
US4006253A (en) Process for NPN ruminant feed supplement
CA2269518C (en) Process for the combined synthesis of betaine and choline chloride
JPH0127704B2 (en)
US20070259954A1 (en) Method for the production on metal carboxylates and the metal aminoate or metal hydroxy analogue methionate derivatives thereof, and use of same as growth promoters in animal feed
CN108484448A (en) The method of one pot process N- carbamylglutamic acids
JPH05219897A (en) Galactooligosaccharide-containing feed
US7846471B2 (en) Rumen protected essential amino acids
JPH0138103B2 (en)
US4073945A (en) Fodder for cows
CN1408708A (en) Process for synthesizing 2-pyridine chromium formate of fodder additive
CN112521417B (en) Preparation method and application of calcium glycerophosphate
US4267314A (en) Process for the preparation of lactosylurea, its purification and its conversion to the corresponding N-hydroxymethylated derivative
US4126636A (en) Process of producing the magnesium salt of p-chlorophenoxyisobutyric acid
SU1717074A1 (en) Feedstuff for ruminants
CN115777837A (en) Method for preparing compound amino acid zinc by hydrolyzing amino acid with corn flour
RU2047616C1 (en) Method of synthesis of 2,4,6-triamino-6-phenylpteridine