JPS5867662A - Glucosylurea-urea compound and its preparation - Google Patents

Glucosylurea-urea compound and its preparation

Info

Publication number
JPS5867662A
JPS5867662A JP56165641A JP16564181A JPS5867662A JP S5867662 A JPS5867662 A JP S5867662A JP 56165641 A JP56165641 A JP 56165641A JP 16564181 A JP16564181 A JP 16564181A JP S5867662 A JPS5867662 A JP S5867662A
Authority
JP
Japan
Prior art keywords
urea
compound
water
reaction
glucose
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56165641A
Other languages
Japanese (ja)
Other versions
JPH0138103B2 (en
Inventor
Toshiyuki Aizawa
相沢 利行
Hideo Takahashi
英雄 高橋
Tadahiro Sasaki
佐々木 忠博
Tadao Takase
高瀬 忠夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP56165641A priority Critical patent/JPS5867662A/en
Publication of JPS5867662A publication Critical patent/JPS5867662A/en
Publication of JPH0138103B2 publication Critical patent/JPH0138103B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

NEW MATERIAL:A glucosylurea-urea compound of formulaI. USE:Useful as a nonproteinic nitrogenous feed for animals, e.g. ruminants or pigs, and usable as a good feed with a carbohydrate or cellulosic material without causing the ammonia posisening due to the large amount of ammonia formed by the rapid decomposition by the action of an enzyme urease in the first stomach of a ruminant as opposed to the well-known urea, etc. and assuming the protein deficiency due to the delay of the decomposition in the initial period of the feeding as opposed to the slow-acting feed. PROCESS:D-glucose of formula II is reacted with urea in the presence of an acidic catalyst at 40-100 deg.C to give the compound of formulaI.

Description

【発明の詳細な説明】 本発明は式 そO製法に関する。[Detailed description of the invention] The present invention is based on the formula Regarding the SoO manufacturing method.

この化合物は反稠動物又は豚のような動物の非蛋白体膳
素飼料として有用であp、%に従来知られた尿素などの
ように例えば反稠動物の第一胃内において酵素ウレアー
ゼなどの作用によシ急激に分解して多量のアンモニアを
生成してアン毫エア中毒をひき起すこともなく、を九ア
ルデヒドと尿素の化合物に代表される遅効性飼料のよう
に給餌初期の分解の遅れによる蛋白質不足の状況tjk
したシすることのない優れた飼料として炭水化物やセル
ロール物質と共に使用することができる。
This compound is useful as a non-protein supplementary feed for animals such as ruminants or pigs, and is useful as a non-protein supplementary feed for animals such as ruminants or pigs. It does not rapidly decompose due to its action and produce a large amount of ammonia, causing ammonia poisoning, and its decomposition is delayed during the initial stage of feeding, as is the case with slow-release feeds such as those containing 9-aldehyde and urea compounds. The situation of protein deficiency due to
It can be used with carbohydrates and cellulose material as an excellent non-salting feed.

このダルコシル尿素−尿素化合物はD−グルコースと尿
素とを酸触媒の存在下に反応させることによシ製造する
ことができ、その理論反応式は以下の通りである・ 以下余白 OH CH,OH 上式の通り、D−グルコースと尿素の理論反応尚量は1
:2であるが、冥際の反応に際してはD−グルコース1
モル当シ、一般的には尿素1.5〜5.0モルの範囲で
反応させる。しかしながら、尿素を理論量よシも中や過
剰に用いた方が単流収率が向上し、またあまシ過剰に用
いても収率向上への寄与は小さくかつコスト面からも不
利であるので、尿素2.0〜3.04ルの使用が好まし
い。
This dalcosyl urea-urea compound can be produced by reacting D-glucose and urea in the presence of an acid catalyst, and the theoretical reaction formula is as follows. As shown in the formula, the theoretical reaction amount of D-glucose and urea is 1
:2, but during the reaction at the end of the day, D-glucose is 1
The reaction is carried out in a molar amount, generally in the range of 1.5 to 5.0 moles of urea. However, the single-stream yield improves when urea is used in a medium or excessive amount compared to the theoretical amount, and even when urea is used in excess, the contribution to yield improvement is small and it is disadvantageous from a cost perspective. , the use of 2.0 to 3.04 l of urea is preferred.

D−グルコースと尿素の反応器への装入線一括添加して
も或いは分割添加しても反応および収率に及はす影響は
ないが匁スケー身の反応の場合には溶解性の点から分割
添加した方が望ましい。これは上記反応が平衡反応であ
るので水の量はできるだけ少ない方が望ましいが、反応
器合物を溶解状態に保持するのが好ましいからである0
反応器合物中の水の量には特に制限はないが、上記し友
ように、反応混合物を溶解状態に保ち得る範囲内で、で
きるだけ少ない方が望ましく、酸触媒投入前の状態で反
応混合物中の水分含量が1591以下であるのが望まし
い。
Even if D-glucose and urea are added to the reactor all at once or in portions, there is no effect on the reaction or yield. It is preferable to add it in portions. This is because the above reaction is an equilibrium reaction, so it is desirable that the amount of water be as small as possible, but it is preferable to maintain the reactor components in a dissolved state.
There is no particular limit to the amount of water in the reactor mixture, but as mentioned above, it is preferable that the amount of water be as small as possible within the range that can keep the reaction mixture in a dissolved state. It is desirable that the water content in the water is 1591 or less.

前記反応は酸触媒の存在下に実施されるが、この反応に
使用できる酸触媒としては、例えば塩酸、硫酸、リン酸
などをあげる仁とができ、これらの酸触媒の使用量には
特に制限はないが、一般にはグルコース1モルに対し0
.05〜0.3モル、好ましくは0.08〜0.15モ
ルの範囲で使用される。
The above reaction is carried out in the presence of an acid catalyst, and examples of acid catalysts that can be used in this reaction include hydrochloric acid, sulfuric acid, and phosphoric acid, and there are no particular restrictions on the amount of these acid catalysts used. Generally speaking, it is 0 per mole of glucose.
.. It is used in a range of 0.05 to 0.3 mol, preferably 0.08 to 0.15 mol.

−触媒の添加後、一般には反応混合物を加熱して反応を
進行させる。反応温度は一般には40〜100℃、好ま
しくは50〜70℃amで、通常3〜6時間程度で反応
が完結する。
- After addition of the catalyst, the reaction mixture is generally heated to allow the reaction to proceed. The reaction temperature is generally 40 to 100°C, preferably 50 to 70°C, and the reaction is usually completed in about 3 to 6 hours.

反応終了後、反応液から生成グルコシル尿素゛−尿素化
合物の結晶を直接単離するのJ困難であるので(濾過性
が極めて悪い)、水を添加し、そしてアルコールを添加
する。これは水のみでは目的化合物の結晶性や収率が嵐
″くないからで#)夛、通常、反応混合物全重量対し約
0.1〜0.3倍程度の水と、0.5〜3,0倍程度の
アルコールを使用する。
After completion of the reaction, since it is difficult to directly isolate crystals of the glucosyl urea-urea compound produced from the reaction solution (filtration properties are extremely poor), water and then alcohol are added. This is because the crystallinity and yield of the target compound cannot be improved with water alone.Usually, approximately 0.1 to 0.3 times the total weight of the reaction mixture is mixed with water and 0.5 to 3 times the total weight of the reaction mixture. , use about 0 times the amount of alcohol.

アルコールとしては、例えば、メタノール、エタノール
、イングロビルアルコールなどを好適に使用できる。
As the alcohol, for example, methanol, ethanol, inglobil alcohol, etc. can be suitably used.

水及びアルコールの添加後、反応混合液を冷却して目的
化合物を完全に析出させたのち(冷却温度には特に限定
はないが、通常0〜5℃1!度に冷却する)、析出結晶
を一過し、次いでこの結晶をアルコールで洗浄して結晶
に付着している酸、尿素およびグルコシル尿素などを除
去する。使用するアルコールの量は反応器合物の全量に
対し0.1〜1.0倍量程度とするのが好ましい。洗浄
アルコールの使用量が多過ぎると、目的とするグルコシ
ル尿単−尿素化合智がグルコシル尿素に分解して単離グ
ル;シル尿嵩−尿嵩化合物の結晶0ilat:が低下し
て好ましくない。
After adding water and alcohol, the reaction mixture is cooled to completely precipitate the target compound (there is no particular limit to the cooling temperature, but it is usually cooled to 0 to 5 degrees Celsius), and the precipitated crystals are The crystals are then washed with alcohol to remove acids, urea, glucosyl urea, etc. attached to the crystals. The amount of alcohol used is preferably about 0.1 to 1.0 times the total amount of the reaction vessel. If the amount of cleaning alcohol used is too large, the desired glucosylurine mono-urea compound will be decomposed into glucosylurea, resulting in a decrease in the isolated glycol; siluric volume - crystalline content of the urinary bulk compound, which is undesirable.

ここで注意しなければならないのは、濾過恢の結晶の洗
浄を水を用いて行なってはならないことである0本発明
者等の知見によれば次表に示すように、グルコシル尿素
−尿素化合一の水に対する溶解度は極めて大きく、従っ
て水洗浄にょ9目的とするグルコシル尿素−尿素化合物
は殆んど水に溶解してし鷹うのである。
What must be noted here is that the filtered crystals must not be washed with water.According to the knowledge of the present inventors, as shown in the following table, glucosyl urea-urea The solubility of the compound in water is extremely high, and therefore most of the target glucosyl urea-urea compound is dissolved in water during water washing.

化合物    温度(6)   溶解度グルコフル尿素
− 尿素化合物     1 約50Jl/100114(
,0120約1001A 0oll HzO#    
       20   #0.81/10(Hd)f
iミノミルグルコシル尿素 25 約90j’/100
m100m1j#            25   
 0.215%/yil’/ iル尿素   25約1
00N/100alH,0251、’ll/1001d
XI/−嗅以下に本発明の実施例を11!明する。
Compound Temperature (6) Solubility Glucofluorurea - Urea Compound 1 Approx. 50 Jl/100114 (
,0120 approx. 1001A 0oll HzO#
20 #0.81/10(Hd)f
i Minomyl glucosyl urea 25 Approximately 90j'/100
m100m1j# 25
0.215%/yil'/il urea 25 approx. 1
00N/100alH,0251,'ll/1001d
XI/- 11 Examples of the present invention below! I will clarify.

例1 攪拌器を備えた丸底七ノ臂2ゾルフラスコに、D−グル
コース−水加物19811(1モル)、尿素144j(
2,4モル)及び水5.8 dを装入し160℃の湯浴
中で溶解して無色透明のシロップ状液体を得た。溶解に
要し要時間は約2時間であった。このシロツノ状液体混
合物に、濃塩酸11.8Iを水5.8−に溶解した水溶
液を添加して温度60℃で攪拌し乍ら反応させた。約3
時間経過後に結晶が析出しはじめ、更に3時間反応を継
続させ九のち加熱を停止した。
Example 1 D-glucose-hydrate 19811 (1 mol), urea 144j (
2.4 mol) and 5.8 d of water were charged and dissolved in a water bath at 160°C to obtain a colorless and transparent syrupy liquid. The time required for dissolution was about 2 hours. An aqueous solution prepared by dissolving 11.8 I of concentrated hydrochloric acid in 5.8 I of water was added to this horny liquid mixture, and the mixture was reacted with stirring at a temperature of 60°C. Approximately 3
After a period of time, crystals began to precipitate, and the reaction was continued for an additional 3 hours, and then heating was stopped.

このようにして得られ九反応混合物に攪拌し乍ら水70
mとメタノール350#i連続して添加し、この混合物
をQCまで冷却した後p過し、次いでメタノール100
IIで洗浄し乾燥後白色結晶231.5ft得た(収率
52−)。
The nine reaction mixture thus obtained was stirred with 70 g of water.
m and methanol 350 #i were added successively, the mixture was cooled to QC and filtered, then methanol 100 #i
After washing with II and drying, 231.5 ft of white crystals were obtained (yield 52-).

得られた結晶のxIm回析ノ譬ターンは#!1図に示す
過多であり、グルコシル尿素と尿素の等モル混合物OX
@回析ノ譬ターンを示す第2図とは異なるグルコシル尿
素−尿素化合物固有のものであった。・一方、得られた
結晶の1(PLO分析によれば、この結晶はグルコシル
尿素と尿素10−θ対97のモル比で構成されておシ(
従゛りてグルコース換算の収率は約83−六なる)、融
点は168.5〜170.0℃であり九〔グルコシル尿
素の融点:208℃(分解)〕、得られた結晶の一部を
水から再結晶してflJlllしたところ融点は171
〜172℃に上昇し、元素分析値は以下の通夛であった
The xIm diffraction parable turn of the obtained crystal is #! The excess amount shown in Figure 1 is an equimolar mixture of glucosyl urea and urea OX.
It was unique to the glucosyl urea-urea compound, which is different from Figure 2, which shows @diffraction parable turns.・On the other hand, 1 of the obtained crystals (according to PLO analysis, this crystal is composed of glucosyl urea and urea in a molar ratio of 10-θ to 97)
Therefore, the yield in terms of glucose is about 83-6), the melting point is 168.5 to 170.0°C (9) [Melting point of glucosyl urea: 208°C (decomposition)], and a part of the obtained crystals When recrystallized from water and flJlllled, the melting point was 171
The temperature rose to ~172°C, and the elemental analysis values were as follows.

理論値(C6H18N407): C:56.44 、H:10.66 、N:3λ91実
測値 C:56.86.H:10.79.N:32.35氾 D−グルコース−水和物100時、尿素71.5ゆ及び
水5.8ゆを反応函に投入し、温水浴にて混合−を60
〜64℃に加熱して溶解し、東にD−グルコース−水和
物100時及び尿素71.5に#t−少しづつ等量割合
で添加し、溶解させ良(一部不漫でめったが特に問題に
なることはなかりた)。
Theoretical value (C6H18N407): C: 56.44, H: 10.66, N: 3λ91 Actual value C: 56.86. H:10.79. N: 32.35 liters of D-glucose hydrate, 71.5 yu of urea and 5.8 yu of water were put into a reaction box and mixed in a hot water bath.
Heat to ~64°C to dissolve, add #t little by little to D-glucose hydrate 100 hours and urea 71.5 in equal proportions, and dissolve well (some parts are not good, but rarely). It wasn't really a problem).

次いで、36チ塩酸11.8に4!を水5.8!#Ki
N解した水f#Ilを加えて、温度62±2℃で5時間
反応させた。塩酸投入後約3時間でグルコシル尿素=尿
素化合物の結晶が析出しはじめ、約7℃の温度上昇が認
められ九。
Next, 4! Water 5.8! #Ki
N-dissolved water f#Il was added and reacted at a temperature of 62±2° C. for 5 hours. Approximately 3 hours after adding hydrochloric acid, crystals of glucosyl urea = urea compound began to precipitate, and a temperature rise of approximately 7°C was observed9.

反応終了後、温水を抜き、水40kII、次いで99−
メタノール380kft−投入し、冷凍水及びブライ/
でO″Cまで冷却し、V過した。炉滓を常温(099%
)タノール1oOkfで洗浄し、常圧50℃以下の温度
で棚段乾燥器にて2日間乾燥した・ このようにしてグルコシル尿素−尿素化合物230時を
得た。この結晶の融点は168.5〜170.0℃でグ
ルコース基準の収率は81.0−でありた、tた、こO
結晶がグルコシル尿素−尿素化合一であることはIR及
びXa回析で確認した。
After the reaction was completed, the hot water was removed and 40kII of water was added, followed by 99-
Inject 380 kft of methanol, freeze water and braai/
The furnace slag was cooled to O″C and passed through V. The furnace slag was brought to room temperature (099%
) It was washed with 1000 ml of tanol and dried for 2 days in a tray dryer at a temperature of 50° C. or less under normal pressure. In this way, 230 glucosyl urea-urea compound was obtained. The melting point of this crystal was 168.5 to 170.0°C, and the yield based on glucose was 81.0.
It was confirmed by IR and Xa diffraction that the crystals were a glucosyl urea-urea compound.

【図面の簡単な説明】[Brief explanation of the drawing]

帛1図は実施例1において合成したグルコフル尿素−尿
素化合物fDXm回析ツリー/であp1ts2図はグル
コシル尿素と尿素の等モル混合物のx11回折/譬ター
lである。
Figure 1 is the fDXm diffraction tree/of the glucofluorurea-urea compound synthesized in Example 1, and Figure 2 is the x11 diffraction/meter of an equimolar mixture of glucosyl urea and urea.

Claims (1)

【特許請求の範囲】 1、式 %式% で表わされるグルコシル尿素−尿素化合物。 2、 0−グルコースと尿素と會酸触謀0存在下に反応
させることを特徴とする式 のダルコシル尿素−尿素化合物の製法・
[Claims] 1. A glucosyl urea-urea compound represented by the formula %. 2. A method for producing a dalcosyl urea-urea compound of the formula characterized by reacting 0-glucose and urea in the presence of an acid catalyst.
JP56165641A 1981-10-19 1981-10-19 Glucosylurea-urea compound and its preparation Granted JPS5867662A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56165641A JPS5867662A (en) 1981-10-19 1981-10-19 Glucosylurea-urea compound and its preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56165641A JPS5867662A (en) 1981-10-19 1981-10-19 Glucosylurea-urea compound and its preparation

Publications (2)

Publication Number Publication Date
JPS5867662A true JPS5867662A (en) 1983-04-22
JPH0138103B2 JPH0138103B2 (en) 1989-08-11

Family

ID=15816216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56165641A Granted JPS5867662A (en) 1981-10-19 1981-10-19 Glucosylurea-urea compound and its preparation

Country Status (1)

Country Link
JP (1) JPS5867662A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102805276A (en) * 2011-05-31 2012-12-05 薛白 Crude fiber and carbamide mixed condensation compound

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102805276A (en) * 2011-05-31 2012-12-05 薛白 Crude fiber and carbamide mixed condensation compound

Also Published As

Publication number Publication date
JPH0138103B2 (en) 1989-08-11

Similar Documents

Publication Publication Date Title
CN105601542A (en) Method for crystallizing N-carbamylglutamic acid with mixed acid
JPS5867662A (en) Glucosylurea-urea compound and its preparation
EP0937031B1 (en) Process for the combined synthesis of betaine and choline chloride
US2653155A (en) Manufacture of n-trichloromethylthio imides
JP2000191625A (en) Production of guanidine derivative
GB878096A (en) Selenides of copper zinc and cadmium
US6509497B1 (en) Process for preparing guanidine derivatives
JPS6296315A (en) Production of lithium borate
RU2148579C1 (en) Method of synthesis of 1-acetyl-3,5-diamino-1,2,4-triazole
CN111909047B (en) Preparation process of 2- [ (2-amino-2-oxyethyl) - (carboxymethyl) amino ] acetic acid
US4126636A (en) Process of producing the magnesium salt of p-chlorophenoxyisobutyric acid
JPH0127704B2 (en)
SU1416097A1 (en) Method of producing defoliant
US2846470A (en) Process for producing glutamine
RU2047616C1 (en) Method of synthesis of 2,4,6-triamino-6-phenylpteridine
US3567778A (en) Process for preparing nitrosalicyl-hydrazides
JPS60123473A (en) Manufacture of cyclic urea of imidazolidine structure and use for sizing fiber product particularly
JPH03115127A (en) Production of tetraamine paradium (ii) chloride
JPS58172352A (en) Separation of serine
US4267314A (en) Process for the preparation of lactosylurea, its purification and its conversion to the corresponding N-hydroxymethylated derivative
JPS59155400A (en) Improved preparation of c-amp acyl derivative
SU1122655A1 (en) Process for preparing 2,2'-diimidazole
SU384336A1 (en) Method of preparing 3-substituted 5-thion-1,2,4-dithiazole derivatives
JPS6053021B2 (en) Production method of hydantoin
JPS63284154A (en) Iron diammonium 1,3-diaminopropanetetraacetate