JPH0137351B2 - - Google Patents

Info

Publication number
JPH0137351B2
JPH0137351B2 JP61251829A JP25182986A JPH0137351B2 JP H0137351 B2 JPH0137351 B2 JP H0137351B2 JP 61251829 A JP61251829 A JP 61251829A JP 25182986 A JP25182986 A JP 25182986A JP H0137351 B2 JPH0137351 B2 JP H0137351B2
Authority
JP
Japan
Prior art keywords
weight
particle size
less
alumina cement
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP61251829A
Other languages
Japanese (ja)
Other versions
JPS6291472A (en
Inventor
Yasuo Yukihira
Masataka Sato
Toshiaki Ishimaru
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP61251829A priority Critical patent/JPS6291472A/en
Publication of JPS6291472A publication Critical patent/JPS6291472A/en
Publication of JPH0137351B2 publication Critical patent/JPH0137351B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、施工性、強度、耐火性に優れた耐火
組成物に関する。 従来からアルミナセメントは、耐火性骨材に配
合してキヤスタブル耐火物として炉材などに用い
られているが、分散性が比較的悪いことおよび量
を増しても強度はそれほど増加せず耐火性が却つ
て低下するため、キヤスタブル耐火物中のアルミ
ナセメントの配合量は通常12〜30重量%であつ
た。しかし、この場合にもなお、アルミナセメン
ト中に含まれるCaOの影響を受け、高温強度や高
温耐腐食性が低下したり、耐火性に問題があつ
た。これを改良するため、アルミナセメントの配
合量を5〜8重量部と少なくする試みもあつた
が、施工時において作業性に劣り、また成形して
も十分な強度が得られない欠点があつた。 本発明者は、従来品においては、非晶質成分
(CをCaO,AをAl2O3,FをFeO3,SをSiO2
すると、主鉱物がCAに相当するものであり、そ
の他にCA2,C12A7,C4AF及びC2ASに相当する
ものを少量含有する鉱物成分)が30〜40重量%で
あり、これをボールミルによつて長時間ミル中に
滞留させ粉砕する方法を採用し微粉末としている
ので、粒子形状が表面に凹凸の少ない実質的に球
形であり、また内部クラツクの生じている粒子が
多いことに着目し、鋭意研究を重ねた結果、非晶
質成分を40〜60重量%およびをAl2O3を40〜70重
量%含み、沈降天秤法により粒度測定した場合、
粒径が30μ以下、その内5μ以下の粒子が10〜35重
量%となり、比表面積が0.5〜1.2m2/gである、
粒子形状が実質的に球形でないアルミナセメント
を少量配合して得られたキヤスタブルは、施工
性、強度、耐火性に優れることを見出し、本発明
を完成するに至つた。 本発明に用いるアルミナセメントを製造するに
は、通常アルミナセメントの原料配合のものを焼
成又は溶融法によりクリンカーとし、これを空気
又は水と接触させ急冷し、その冷却速度を調整し
非晶質成分が40〜60重量%となるように調整す
る。Al2O3含量は、40〜70重量%となるよう原料
配合を行う。ついで、アルミナセメントクリンカ
ーを、ジエツトミル、ローラーミル等の急速粉砕
機により粉砕し、沈降天秤法により粒度測定し
て、その粒径が30μ以下、その内5μ以下のものが
10〜35重量%、比表面積0.5〜1.2m2/gとなるよ
う調整する。ジエツトミル、ローラーミルは空気
による強制通過型であり、滞留時間は約1分以内
である。 本発明に用いられるアルミナセメントは非晶質
成分が従来品に比べて多いため、急速に粉砕ので
きる前記ジエツトミル、ローラーミル等の急速粉
砕機で粉砕すると表面に凹凸が多く、針状、角柱
状、プレート状など実質的に球形でない各種の角
状形状のものが混在して得られ、また内部クラツ
クも少なかつた。このものは、前記した粒度およ
び比表面積を有し、分散性、流動性等の施工性に
すぐれ、成形した場合に強度が高い。 非晶質成分は、多くなる程角状形状のものの含
量が多くなるが、40重量%未満では作業時間が短
かく、強度もやや低下する。一方60重量%を超え
ると硬化の遅れが著しくなるので好ましくない。 またAl2O3含量が70重量%超では硬化時間が著
しく遅れ、また40重量%未満では作業時間が短か
過ぎ実用に適しない。また、施工性の要因として
アルミナセメントの粒度構成が重要である。すな
わち、通常市販品においては、30μの篩目を通過
しないものが10〜20重量%、5μ以下の粒径のも
のが35〜45重量%程度であるが、30μの篩目を通
過しない粗粒は水和反応が遅く、また分散性も悪
くなることから粗粒の混入が少ないことが好まし
い。従つて本発明に用いるアルミナセメントの粒
度(沈降天秤法にて測定したストークス径)とし
ては粒径30μ以下とした。また、特に活性が大き
い5μ以下が余り多量に存在すると施工性が損わ
れ、一方全く存在しないと強度の発現が遅れるこ
とから、5μ以下の粒子含有率は10〜35重量%が
好適である。場合によつては分級工程によつて分
級したものを適当に配合してもよい。 本発明において、アルミナセメントの粒度測定
を沈降天秤法(浮力天秤法)によつた理由は次の
とおりである。 従来からセメントは水硬性粉末であるため、乾
式法や湿式法による粒度測定法が種々検討されて
いるが、これと云つた決定的な測定法が現行でも
確立されていない。通常セメントは、クリンカー
を長時間ミル等で粉砕したものであり、その粒子
形状は球形に近いもので、実質的に球形の微粉末
であることからセメントの粒度測定法として沈降
天秤法が採用されている。一方、本発明のアルミ
ナセメントの粒子形状は、従来のセメントの粒子
形状と異なる球形でない微粉末であるが、従来品
と相対比較ができること、再現性にすぐれている
ため沈降天秤法を採用したのである。 本発明の耐火組成物は(A)前記した非晶質成分を
40〜60重量%およびAl2O3を40〜70重量%含み、
沈降天秤法により測定した場合の粒度は粒径30μ
以下、その内5μ以下の粒子が10〜35重量%であ
り、比表面積が0.5〜1.2m2/gである、粒子形状
が実質的に球状でないアルミナセメント1〜10重
量部と、(B)粒径1μ以下の耐火質物質の粉末1〜
5重量部と、(C)粒径10μ以下の耐火質物質の粉末
2〜10重量部と、(D)耐火性骨材75〜96重量部と、
(E)分散剤を、(A),(B),(C)および(D)の合計量に対し
て0.1〜1.0重量%とからなる。この耐火組成物
は、アルミナセメントの配合量が少ないにも拘ら
ず、炉材等のキヤスタブル耐火物に用いたとき優
れた施工性、強度、耐火性を発揮する。 (B)成分の耐火質物質は、特にアルミナセメント
の分散を補助するために効果がある。たとえば、
シリカ質、アルミナ質、ジルコニア質、クロミア
質、カルシア質のものが好ましく、シリカ質の超
微粉のものが特に好ましい。粒度は、粒径1μ以
下(平均粒径0.1〜0.5μ)、好ましくは100mμ以
下のものであり、形状は球状品が好ましく、非水
溶性のものでなければならない。添加量が1重量
部未満の場合、分散助剤効果が充分でなく、また
本発明の耐火組成物に水添混練するとき好ましい
粘性が得られない。5重量部超では、硬化遅延、
強度低下等の悪影響があると共に、混練時の粘性
が必要以上に増加する。 (C)成分の耐火質物質は、前記アルミナセメント
および(B)成分の耐火質物質と共に、耐火物のマト
リツクスを構成する重要な要素であつて、マトリ
ツクスの充填性を高めることによつて強度向上に
資し、また耐火性を向上させる。(C)成分の耐火質
物質の例としては、シリカ質、アルミナ質、ジル
コニア質、クロミア質、カルシア質のものがあげ
られ、吸水率の少ないもの程良好な結果を与え
る。粒度は、粒径10μ以下(平均粒径4〜9μ)で
あり、特に5μ以下80重量%以上含有するものが
好ましい。添加量は、2重量部未満では、充填性
の向上は期待できず、10重量部超では、粒度構成
が適正でなく、かえつて充填性を損うことにな
る。 (D)成分の耐火性骨材としては、たとえば、シリ
カ質、シヤモツト質、アルミナ質、マグネシア
質、マグクロ質、スピネル質、炭化珪素、カーボ
ンなどがあげられ、粒径が30mm以下の粒子であれ
ばよい。たとえば10mm篩目全通で、0.5mm篩目を
通過する粒子が約20重量%含むものが好ましい。 以上(A),(B),(C)および(D)の成分を前記した割合
で配合するが、各成分の配合量特定の理由は、こ
の範囲外では分散性にすぐれたキヤスタブルが得
られず、また成形した場合の耐火材の強度が充分
得られないからである。 本発明においては上記成分の他、分散剤を上記
(A),(B),(C),(D)の合計量に対して0.1〜1.0重量%
を含有する。分散剤としては、たとえばトリポリ
リン酸ソーダ、ヘキサメタリン酸ソーダ、酸性ヘ
キサメタリン酸ソーダ、リン酸アルミニウム、ホ
ウ酸ソーダ、ホウ酸、炭酸ソーダなどの無機塩、
クエン酸ソーダ、酒石酸ソーダ、ポリアクリル酸
ソーダなどの有機塩があげられる。本発明におい
ては分散剤は1種類でも勿論良いが、2種以上を
併用する方が好ましい結果が得られる。 本発明の耐火組成物の施工に際しては、通常8
重量%以下の水を添加し混練し使用する。従来の
耐火組成物においては、12〜25重量%の水を添加
していたので、本発明品の場合は従来品に比し、
著しく少ない量で足り、したがつて得られた成形
物は乾燥又は焼成による脱水後の気孔率増加も少
なく、強度の低下も少ないという利点がある。 以下実施例によりさらに本発明を具体的に説明
する。実施例中の%は特に断わりのない限り重量
%である。 なお、試験はつぎの方法によつて測定した。 (1) フロー(mm):JIS R5201記載の方法により、
混練物をフローコーンに充填し、表面をならし
た後、フローコーンを垂直上方に抜き取り、つ
いでバイブレーターにより8000RPMの振動を
10秒間与えた。この混練物の拡りをノギスで測
定し、その長径および短径の平均値(mm)をフ
ローの測定値とした。 なお、フロー測定値の大きい程、振動による
混練物の流動性が大である。 また、同様の操作を30分後に行つてフローを
測定し、3分後と30分後とのフロー測定値の差
を求めたとき、その差の少ない方が練置性がよ
い。なお、練置性とは水と混練後放置しておい
た際の作業性(施工のし易さ)の事である。 (2) 硬化時間:混練物に振動を与えながら40×40
×160(mm)の型に流し込み硬化させた。組成物
に水を添加後発熱する迄の時間を硬化時間とし
た。 (3) 強度(Kg/cm2):(2)で型に流し込み得られた
硬化物を試験片として24時間放置後の強度、温
度110℃で乾燥した後の強度、1000℃および
1400℃で焼成した後の強度と線変化率をつぎの
方法に準拠して測定した。 曲 げ 強度:JIS R2553 圧 縮 強度:JIS R2553 焼成曲げ強度:JIS R2553 線 変 化率:JIS R2554 実施例 1 アルミナセメントの製造 ボーキサイトと生石灰とをCaOとAl2O3とのモ
ル比が1:1となるように調合し、抵抗型電気炉
にて約1650℃で溶融した。この溶融物を炉内より
タツピングする際エアー圧5Kg/cm2にて吹き飛ば
し空気により急冷して第1表、第2表に示す本発
明品のクリンカーをつくつた。 なお従来品のものはエアー圧2Kg/cm2とした以
外は同様につくつた。 なお、第2表の鉱物組成は次のようにして求め
た。
The present invention relates to a fire-resistant composition that has excellent workability, strength, and fire resistance. Traditionally, alumina cement has been mixed with refractory aggregate and used as a castable refractory material in furnace materials, etc., but its dispersibility is relatively poor, and even when the amount is increased, the strength does not increase much and the fire resistance decreases. Therefore, the amount of alumina cement in castable refractories was usually 12 to 30% by weight. However, even in this case, the high-temperature strength and high-temperature corrosion resistance deteriorated, and there were problems with fire resistance due to the influence of CaO contained in the alumina cement. In order to improve this, attempts were made to reduce the amount of alumina cement mixed to 5 to 8 parts by weight, but these had the drawback of poor workability during construction and insufficient strength even when molded. . The present inventor found that in the conventional product , the main mineral corresponds to CA and other Mineral components containing small amounts of substances corresponding to CA 2 , C 12 A 7 , C 4 AF and C 2 AS) are 30 to 40% by weight, and this is pulverized by a ball mill by staying in the mill for a long time. As a result of extensive research, we found that the particle shape is essentially spherical with little unevenness on the surface, and that many of the particles have internal cracks. Contains 40 to 60% by weight of quality components and 40 to 70% by weight of Al 2 O 3 , and when the particle size is measured by the sedimentation balance method,
The particle size is 30μ or less, of which particles with a size of 5μ or less account for 10 to 35% by weight, and the specific surface area is 0.5 to 1.2m 2 /g.
The present inventors have discovered that a castable obtained by blending a small amount of alumina cement whose particle shape is not substantially spherical has excellent workability, strength, and fire resistance, and has completed the present invention. In order to produce the alumina cement used in the present invention, clinker is produced by firing or melting a raw material mixture of alumina cement, which is rapidly cooled by contacting with air or water, and the cooling rate is adjusted to form amorphous components. Adjust so that it is 40 to 60% by weight. The raw materials are mixed so that the Al 2 O 3 content is 40 to 70% by weight. Next, the alumina cement clinker is pulverized using a rapid pulverizer such as a jet mill or a roller mill, and the particle size is measured using a sedimentation balance method.
It is adjusted to have a specific surface area of 10 to 35% by weight and a specific surface area of 0.5 to 1.2 m 2 /g. Jet mills and roller mills are of the forced passage type using air, and the residence time is within about 1 minute. The alumina cement used in the present invention has more amorphous components than conventional products, so when it is ground with a rapid grinder such as the jet mill or roller mill that can grind it rapidly, the surface becomes uneven and has needle-like or prismatic shapes. , a mixture of various angular shapes that were not substantially spherical, such as plate shapes, were obtained, and there were few internal cracks. This material has the particle size and specific surface area described above, has excellent workability such as dispersibility and fluidity, and has high strength when molded. As the amorphous component increases, the content of angular components increases, but if it is less than 40% by weight, the working time is short and the strength is slightly reduced. On the other hand, if it exceeds 60% by weight, curing will be delayed significantly, which is not preferable. Furthermore, if the Al 2 O 3 content exceeds 70% by weight, the curing time will be significantly delayed, and if it is less than 40% by weight, the working time will be too short to be practical. In addition, the particle size structure of alumina cement is an important factor in workability. In other words, in normal commercial products, 10 to 20% by weight of particles that do not pass through a 30μ sieve, and 35 to 45% by weight of particles with a particle size of 5μ or less, but coarse particles that do not pass through a 30μ sieve. Since the hydration reaction is slow and the dispersibility is also poor, it is preferable that there are few coarse particles mixed in. Therefore, the particle size (Stokes diameter measured by the sedimentation balance method) of the alumina cement used in the present invention was set to be 30 μm or less. In addition, if particles of 5 μm or less, which have particularly high activity, are present in too large a quantity, workability will be impaired, whereas if they are not present at all, the development of strength will be delayed, so the content of particles of 5 μm or less is preferably 10 to 35% by weight. Depending on the case, materials classified by a classification step may be appropriately blended. In the present invention, the reason why the particle size of alumina cement was measured by the sedimentation balance method (buoyancy balance method) is as follows. Since cement is a hydraulic powder, various dry and wet particle size measurement methods have been studied, but no definitive measurement method has yet been established. Normally, cement is made by grinding clinker in a mill for a long time, and its particle shape is close to spherical.Since it is essentially a spherical fine powder, the sedimentation balance method is adopted as a method for measuring the particle size of cement. ing. On the other hand, the particle shape of the alumina cement of the present invention is a non-spherical fine powder that is different from the particle shape of conventional cement, but the sedimentation balance method was adopted because it allows relative comparison with conventional products and has excellent reproducibility. be. The fireproof composition of the present invention contains (A) the above-mentioned amorphous component.
Contains 40-60% by weight and 40-70% by weight Al2O3 ,
The particle size is 30μ when measured by sedimentation balance method.
Hereinafter, 1 to 10 parts by weight of alumina cement whose particle shape is not substantially spherical and whose particle size is 10 to 35% by weight and whose specific surface area is 0.5 to 1.2 m 2 /g, and (B) Powder of refractory material with a particle size of 1μ or less 1~
(C) 2 to 10 parts by weight of powder of refractory material with a particle size of 10 μ or less; (D) 75 to 96 parts by weight of refractory aggregate;
(E) Dispersant, consisting of 0.1 to 1.0% by weight based on the total amount of (A), (B), (C) and (D). Although this refractory composition contains a small amount of alumina cement, it exhibits excellent workability, strength, and fire resistance when used in castable refractories such as furnace materials. The refractory material of component (B) is particularly effective in assisting the dispersion of alumina cement. for example,
Siliceous, alumina, zirconia, chromia, and calcia are preferred, and ultrafine siliceous powder is particularly preferred. The particle size is 1 μm or less (average particle size 0.1 to 0.5 μm), preferably 100 μm or less, the shape is preferably spherical, and it must be water-insoluble. If the amount added is less than 1 part by weight, the effect of the dispersion aid will not be sufficient and preferred viscosity will not be obtained when the fireproof composition of the present invention is hydrogenated and kneaded. If it exceeds 5 parts by weight, curing will be delayed,
In addition to having adverse effects such as a decrease in strength, the viscosity during kneading increases more than necessary. The refractory material of component (C) is an important element constituting the refractory matrix, together with the alumina cement and the refractory material of component (B), and improves the strength by increasing the filling properties of the matrix. It also contributes to fire resistance. Examples of the refractory material of component (C) include silica, alumina, zirconia, chromia, and calcia, and the lower the water absorption, the better the results. The particle size is 10 μm or less (average particle size 4 to 9 μm), and it is particularly preferable that the particle size is 80% by weight or more of 5 μm or less. If the amount added is less than 2 parts by weight, no improvement in filling properties can be expected, and if it exceeds 10 parts by weight, the particle size structure will not be appropriate and the filling properties will be impaired. The fire-resistant aggregate of component (D) includes, for example, silica, cypress, alumina, magnesia, maguro, spinel, silicon carbide, and carbon, even if the particle size is 30 mm or less. Bye. For example, it is preferable that particles passing through a 0.5 mm sieve in an amount of about 20% by weight are contained through a 10 mm sieve. Components (A), (B), (C), and (D) are blended in the proportions listed above, but the reason for specifying the amount of each component is that outside this range, a castable with excellent dispersibility cannot be obtained. First, the strength of the refractory material cannot be obtained sufficiently when molded. In the present invention, in addition to the above-mentioned components, the above-mentioned dispersant is also used.
0.1 to 1.0% by weight based on the total amount of (A), (B), (C), and (D)
Contains. Examples of dispersants include inorganic salts such as sodium tripolyphosphate, sodium hexametaphosphate, acidic sodium hexametaphosphate, aluminum phosphate, sodium borate, boric acid, and sodium carbonate;
Examples include organic salts such as sodium citrate, sodium tartrate, and sodium polyacrylate. In the present invention, it goes without saying that one type of dispersant may be used, but preferred results can be obtained by using two or more types in combination. When applying the fireproof composition of the present invention, usually 8
It is used after adding water in an amount of % by weight or less and kneading it. In conventional fireproof compositions, 12 to 25% by weight of water was added, so in the case of the product of the present invention, compared to the conventional product,
A significantly small amount is sufficient, and therefore the obtained molded product has the advantage that there is little increase in porosity and little decrease in strength after dehydration by drying or firing. EXAMPLES The present invention will be explained in more detail with reference to Examples below. The percentages in the examples are percentages by weight unless otherwise specified. In addition, the test was measured by the following method. (1) Flow (mm): According to the method described in JIS R5201,
After filling the flow cone with the kneaded material and smoothing the surface, the flow cone was pulled vertically upward and then vibrated at 8000 RPM using a vibrator.
I gave it 10 seconds. The spread of this kneaded material was measured with a caliper, and the average value (mm) of the major axis and minor axis was taken as the flow measurement value. Note that the larger the flow measurement value, the greater the fluidity of the kneaded material due to vibration. Further, when the same operation was performed 30 minutes later and the flow was measured, and the difference between the flow measurements after 3 minutes and 30 minutes was determined, the smaller the difference, the better the kneading property. Note that kneading property refers to the workability (ease of construction) when left after kneading with water. (2) Curing time: 40×40 while applying vibration to the kneaded material
It was poured into a ×160 (mm) mold and allowed to harden. The time from the addition of water to the composition until it generates heat was defined as the curing time. (3) Strength (Kg/cm 2 ): The cured product obtained by pouring into the mold in (2) was used as a test piece, and the strength after being left for 24 hours, the strength after drying at a temperature of 110℃, and the strength after drying at a temperature of 100℃ and
The strength and linear change rate after firing at 1400°C were measured according to the following method. Bending strength: JIS R2553 Compressive strength: JIS R2553 Baking bending strength: JIS R2553 Linear rate of change: JIS R2554 Example 1 Production of alumina cement Bauxite and quicklime were mixed in a molar ratio of CaO and Al 2 O 3 of 1: 1 and melted at about 1650°C in a resistance electric furnace. This molten material was blown out at an air pressure of 5 kg/cm 2 when tapping from inside the furnace and quenched with air to produce clinkers according to the present invention shown in Tables 1 and 2. The conventional product was made in the same manner except that the air pressure was 2Kg/cm 2 . The mineral compositions shown in Table 2 were determined as follows.

【表】【table】

【表】 鉱物成分の同定は、X線回析による結晶成分の
ピーク位置で行われる。結晶質成分と非晶質成分
の割合の決定は、原料配合から推定される鉱物成
分の結晶質成分のピークによる。即ち、予め、既
知の割合のピーク高さの検量線を作成しておき、
その時、その時の結晶質ピーク高さから割合を決
定する。 このクリンカーを本発明品についてはローラー
ミルで、従来品についてはボールミルでそれぞれ
粉砕し、アルミナセメントを製造した。それぞれ
の粒子形状を顕微鏡(S.E.M)で観察したところ
(倍率1000倍)、本発明品については、第1図のご
とく実質的に球形のものはなく、従来品について
は第2図のごとく実質的に球形のものであつた。
また、島津製作所製「SR−1000」型を用いて沈
降天秤法により粒度を測定した。その粒度分布は
つぎの通りであつた。
[Table] Mineral components are identified by the peak positions of crystal components by X-ray diffraction. The ratio of the crystalline component to the amorphous component is determined based on the peak of the crystalline component of the mineral component estimated from the raw material composition. That is, a calibration curve of peak heights of known proportions is created in advance,
At that time, the ratio is determined from the height of the crystalline peak at that time. This clinker was ground in a roller mill for the product of the present invention and in a ball mill for the conventional product to produce alumina cement. When the particle shape of each particle was observed using a microscope (SEM) (1000x magnification), it was found that none of the particles of the present invention were substantially spherical as shown in Figure 1, while that of the conventional product was substantially spherical as shown in Figure 2. It was spherical.
In addition, the particle size was measured by a sedimentation balance method using a model "SR-1000" manufactured by Shimadzu Corporation. The particle size distribution was as follows.

【表】 また、湯浅電池製「QUANTASORB」を用い
たガス吸着法に比表面積は、本発明品は0.758
m2/g、従来品は2.505m2/gであつた。 本発明品および従来品についてつぎの試験を行
つた。 前記アルミナセメント製造において製造したア
ルミナセメントを用い、第4表に示す割合で配合
し、これをミキサーに入れ、3分間撹拌した後、
これに対し6.5%の水を添加し、さらに3分間撹
拌して、そのフローを測定すると共に、この混練
物を各種試験に供し、その結果を第5,6表に示
した。 実施例 2〜7 アルミナセメント、超微粉シリカ、アルミナ、
オタビシヤモツトの配合割合を変えた以外は実施
例1と同様に行つた。これらの条件及び結果を第
7表、第8表、第9表に示す。 実施例 8〜10 耐火性骨材(A)とこの骨材以外の材料(B)との割合
を変えてキヤスタブルとした以外は実施例1と同
様に行つた。これらの条件及び結果を第10表、第
11表、第12表、第13表に示す。 実施例 11 キヤスタブル配合物100重量部に対する分散剤
の割合を変えた以外は実施例1と同様とした。
[Table] In addition, the specific surface area of the product of the present invention was 0.758 in the gas adsorption method using "QUANTASORB" manufactured by Yuasa Battery.
m 2 /g, and the conventional product was 2.505 m 2 /g. The following tests were conducted on products of the present invention and conventional products. Using the alumina cement produced in the alumina cement production process, mix it in the proportions shown in Table 4, put it in a mixer, stir it for 3 minutes,
To this, 6.5% water was added and stirred for an additional 3 minutes.The flow was measured and the kneaded product was subjected to various tests, and the results are shown in Tables 5 and 6. Examples 2 to 7 Alumina cement, ultrafine silica, alumina,
The same procedure as in Example 1 was carried out except that the blending ratio of Otabishi Yamamoto was changed. These conditions and results are shown in Tables 7, 8, and 9. Examples 8 to 10 The same procedure as in Example 1 was conducted except that the ratio of the refractory aggregate (A) and the material other than this aggregate (B) was changed to make it castable. These conditions and results are shown in Table 10.
Shown in Tables 11, 12, and 13. Example 11 The same procedure as Example 1 was carried out except that the proportion of dispersant to 100 parts by weight of the castable formulation was changed.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】 以上詳述した如く、本発明は施工性、特に高温
雰囲気における作業性、硬化性、強度、耐火性に
すぐれたアルミナセメント系耐火組成物であつ
て、これを少量配合したキヤスタブルは分散性に
すぐれ、成型物としての強度が大で、従来のキヤ
スタブルでは高温強度および耐食性等の面で使用
困難であつたたとえば均熱炉、加熱炉、焼鈍炉等
の鉄鋼関係あるいはセメント、非鉄金属関係の炉
材へ使用が可能となり、きわめて有益な発明であ
る。
[Table] As detailed above, the present invention is an alumina cement-based refractory composition that has excellent workability, particularly workability in high-temperature atmospheres, hardenability, strength, and fire resistance. It has excellent properties and high strength as a molded product, and conventional castables are difficult to use due to their high temperature strength and corrosion resistance, such as soaking furnaces, heating furnaces, annealing furnaces, etc. related to steel, cement, and non-ferrous metals. This invention is extremely useful as it can be used for furnace materials.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例に用いたアルミナセメ
ントの粒子構造を示した顕微鏡写真である。第2
図は比較例に用いた従来品のアルミナセメントの
粒子構造を示した顕微鏡写真である。
FIG. 1 is a micrograph showing the particle structure of alumina cement used in an example of the present invention. Second
The figure is a micrograph showing the particle structure of a conventional alumina cement used as a comparative example.

Claims (1)

【特許請求の範囲】[Claims] 1 (A)非晶質成分を40〜60重量%およびAl2O3
40〜70重量%含み、沈降天秤法により粒度測定し
た場合、粒径が30μ以下、その内5μ以下の粒子が
10〜35重量%となり、比表面積が0.5〜1.2m2/g
である、粒子形状が実質的に球形でないアルミナ
セメント1〜10重量部と、(B)粒径1μ以下の耐火
質物質の粉末1〜5重量部と、(C)粒径10μ以下の
耐火質物質の粉末2〜10重量部と、(D)耐火性骨材
75〜96重量部と、(E)分散剤を(A),(B),(C)および(D)
の合計量に対して0.1〜1.0重量%とからなる耐火
組成物。
1 (A) 40 to 60% by weight of amorphous component and Al 2 O 3
Contains 40 to 70% by weight, and when measured by the sedimentation balance method, the particle size is 30 μ or less, of which the particles are 5 μ or less.
10-35% by weight, specific surface area 0.5-1.2m 2 /g
1 to 10 parts by weight of alumina cement whose particle shape is not substantially spherical, (B) 1 to 5 parts by weight of powder of a refractory material with a particle size of 1 μ or less, and (C) a refractory material with a particle size of 10 μ or less 2 to 10 parts by weight of powder of the substance; and (D) refractory aggregate.
75 to 96 parts by weight and (E) dispersant to (A), (B), (C) and (D)
0.1 to 1.0% by weight based on the total amount of refractory composition.
JP61251829A 1986-10-24 1986-10-24 Refractory composition Granted JPS6291472A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61251829A JPS6291472A (en) 1986-10-24 1986-10-24 Refractory composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61251829A JPS6291472A (en) 1986-10-24 1986-10-24 Refractory composition

Publications (2)

Publication Number Publication Date
JPS6291472A JPS6291472A (en) 1987-04-25
JPH0137351B2 true JPH0137351B2 (en) 1989-08-07

Family

ID=17228541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61251829A Granted JPS6291472A (en) 1986-10-24 1986-10-24 Refractory composition

Country Status (1)

Country Link
JP (1) JPS6291472A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2752672B2 (en) * 1988-11-30 1998-05-18 川崎炉材株式会社 Irregular refractories

Also Published As

Publication number Publication date
JPS6291472A (en) 1987-04-25

Similar Documents

Publication Publication Date Title
WO1992018434A1 (en) Low heat building cement composition
CN108046784A (en) A kind of high alumina refractory casting material and preparation method thereof
JP4023916B2 (en) Alumina cement, alumina cement composition, amorphous refractory, and spraying method using the same
JPS63384B2 (en)
CN104671801B (en) A kind of corundum abrasion-proof fire-resistant moldable refractory and preparation method thereof
CN101955363A (en) Castable for head insert of waste heat boiler of ethylene cracking furnace
CN106977216A (en) Anti-erosion liner for aluminium melting furnace and preparation method thereof
Sarkar et al. Study on the effect of deflocculant variation in high-alumina low-cement castable
JPS6060972A (en) Refractories and low temperature baking method
CN115572154B (en) Environment-friendly iron runner castable for swing tap and application method thereof
JPH0137351B2 (en)
JP2002234776A (en) Monolithic refractory composition for molten steel ladle
JP4070287B2 (en) Alumina cement composition and amorphous refractory using the same
JP4588239B2 (en) Alumina cement, alumina cement composition, and amorphous refractory using the same
JP4070709B2 (en) Setting / hardening modifier for alumina cement, alumina cement composition, and amorphous refractory using the same
CN100582056C (en) Thermal shock resistant burner brick and preparation method thereof
JPH09165239A (en) Alumina cement material, alumina cement containing the same, and monolithic refractory using the alumina cement
JP3290818B2 (en) Alumina cement composition and amorphous refractory using the same
JP4588238B2 (en) Condensation / setting accelerator for alumina cement, alumina cement composition, and amorphous refractory using the same
JP2005162566A (en) Alumina cement, alumina cement composition and monolithic refractory using the same
JPH0415184B2 (en)
JP3278543B2 (en) Alumina cement composition and amorphous refractory using the same
JPH02175638A (en) Alumina cement and low-cement castable binder
JP4027487B2 (en) Alumina cement composition and amorphous refractory using the same
JPS6140622B2 (en)