JPS6291472A - Refractory composition - Google Patents

Refractory composition

Info

Publication number
JPS6291472A
JPS6291472A JP61251829A JP25182986A JPS6291472A JP S6291472 A JPS6291472 A JP S6291472A JP 61251829 A JP61251829 A JP 61251829A JP 25182986 A JP25182986 A JP 25182986A JP S6291472 A JPS6291472 A JP S6291472A
Authority
JP
Japan
Prior art keywords
weight
particle size
less
alumina cement
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61251829A
Other languages
Japanese (ja)
Other versions
JPH0137351B2 (en
Inventor
行平 安男
正孝 佐藤
登志昭 石丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP61251829A priority Critical patent/JPS6291472A/en
Publication of JPS6291472A publication Critical patent/JPS6291472A/en
Publication of JPH0137351B2 publication Critical patent/JPH0137351B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、施工性、強度、耐火性に優れた飼犬組成物に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a dog composition with excellent workability, strength, and fire resistance.

従来からアルミナセメントは、耐火性骨材に配合してキ
ャスタブル耐火物として炉材などに用いられているが、
分散性が比較的悪いことおよび量を増しても強度はそれ
ほど増加せず耐火性が却って低下するため、キャスタブ
ル耐火物中のアルミナセメントの配合量は通常12〜3
0重量%であった。しかし、この場合にもなお、アルミ
ナセメント中に含まれるCaOの影響を受け、高温強度
や高温ITPt腐食性が低下したり、耐火性に問題があ
った。これを改良するため、アルミナセメントの配合量
を5〜8重量部と少なくする試みもあったが、施工時に
おいて作業性に劣り、また成形しても十分な強度が得ら
れない欠点があった。
Traditionally, alumina cement has been mixed with refractory aggregate and used as castable refractories for furnace materials, etc.
The amount of alumina cement mixed in castable refractories is usually 12 to 3, because the dispersibility is relatively poor and even if the amount is increased, the strength does not increase much and the fire resistance decreases.
It was 0% by weight. However, even in this case, the high-temperature strength and high-temperature ITPt corrosion resistance were lowered, and there were problems with fire resistance due to the influence of CaO contained in the alumina cement. In order to improve this, there was an attempt to reduce the amount of alumina cement mixed to 5 to 8 parts by weight, but this resulted in poor workability during construction and insufficient strength even when molded. .

本発明者は、従来品においては、非晶質成分(CをCa
O,AをA(1203、FをFe2O3、Sを5i02
とすると、主鉱物がCAに相当するものであり、その他
にCA2.Cl2A7.C4AF及びC2ASに相当す
るものを少量含有する鉱物成分)が30〜40重量%で
あり、これをボールミルによって長時間ミル中に滞留さ
せ粉砕する方法を採用し微粉末としているので、粒子形
状が表面に凹凸の少ない実質的に球形であり、また内部
クラックの生じている粒子が多いことに着11シ、鋭意
研究を重ねた結果、非晶質成分を40〜60重早%およ
びをA 9.203を40〜70重都%含み、沈降天秤
法により粒1■測定した場合、粒径が30g以下、その
内5pL以下の粒子゛が10〜35重量%となり、比表
面積が0.5〜1.2m’/gである、粒子形状が実質
的に球形でないアルミナセメントを生殖配合して得られ
たキャスタブルは、施工性、強度、耐火性に優れること
を見出し、本発明を完成するに至った。
The present inventor has discovered that in conventional products, the amorphous component (C is Ca
O, A to A (1203, F to Fe2O3, S to 5i02
Then, the main mineral corresponds to CA, and in addition, CA2. Cl2A7. Mineral components containing small amounts of C4AF and C2AS) are 30 to 40% by weight, and this is made into a fine powder by staying in a ball mill for a long time and pulverizing it, so the particle shape is fine on the surface. After extensive research, we found that the particles were substantially spherical with little unevenness and had many internal cracks.A9. Contains 40 to 70 weight percent of 203, and when one particle is measured by the sedimentation balance method, the particle size is 30 g or less, of which particles of 5 pL or less are 10 to 35 weight percent, and the specific surface area is 0.5 to 1. It was discovered that castable obtained by blending alumina cement with particle size of .2 m'/g, which is not substantially spherical, has excellent workability, strength, and fire resistance, leading to the completion of the present invention. .

本発明に用いるアルミナセメントを製造するには、通常
アルミナセメントの原料配合のものを焼成又は溶融法に
よりクリンカーとし、これを空気又は水と接触さゼ急冷
し、その冷却速度を調整し非晶質成分が4O−80重量
%となるように調整する。A Q20.含量は、40〜
70重量%となるよう原料配合を行う。ついで、アルミ
ナセメントクリンカ−を、ジェットミル、ローラーミル
等の急速粉砕機により粉砕し、沈降天秤法により粒度測
定]7て、その粒径が30w以下、ぞの内5川以下のも
のが10〜35重是%、比表面積0.5〜1.2rrf
/gとなるよう調整する。ジェットミル、ローラーミル
は空気による強制通過型であり、滞留時間は約1分以内
である。
To produce the alumina cement used in the present invention, clinker is produced from a raw material blend of alumina cement by firing or melting, and then quenched by contacting with air or water, and the cooling rate is adjusted to form an amorphous cement. The ingredients are adjusted to 40-80% by weight. A Q20. The content is 40~
The raw materials are mixed so that the amount is 70% by weight. Then, the alumina cement clinker is pulverized by a rapid pulverizer such as a jet mill or a roller mill, and the particle size is measured by a sedimentation balance method. 35% weight, specific surface area 0.5-1.2rrf
/g. Jet mills and roller mills are of the forced passage type using air, and the residence time is within about 1 minute.

本発明に用いられるアルミナセメントは非晶質成分が従
来品に比べて多いため、急速に粉砕のできる前記ジェッ
トミル、ローラーミル等の急速粉砕機で粉砕すると表面
に凹凸が多く、針状、角柱状、ブ1/−ト状なと実質的
に球形でない各種の角状形状のものが混在して得られ、
また内部クラックも少なかった。このものは、前記した
粒度および比表面積を有し、分散性、流動性等の施工性
にすぐれ、成形した場合に強度が高い。
The alumina cement used in the present invention has more amorphous components than conventional products, so when it is ground with a rapid grinder such as a jet mill or roller mill, the surface becomes uneven, acicular, and square. A mixture of columnar, bullet-like and various angular shapes that are not substantially spherical is obtained,
There were also fewer internal cracks. This material has the particle size and specific surface area described above, has excellent workability such as dispersibility and fluidity, and has high strength when molded.

非晶質成分は、多くなる程角状形状のものの含量が多く
なるが、40重量%未満では作業時間が短かく、強度も
やや低下する。一方60重量%を超えると硬化のどれが
著しくなるので好ましくない。
As the amorphous component increases, the content of angular components increases, but if it is less than 40% by weight, the working time is short and the strength is slightly reduced. On the other hand, if the content exceeds 60% by weight, curing becomes significant, which is not preferable.

またA9203含量が70毛9%超では硬化時間が著し
く遅れ、また40重星影未満では作業時間が短か過ぎ実
用に適しない。また、施工性の要因としてアルミナセメ
ントの粒度構成が重要である。すなわち、通常市販品に
おいては、30μの篩目を通過しないものが10〜20
重量%、5IL以下の粒径のものが35〜45重酸%程
度であるが、30jLの篩目を通過しない粗粒は水和反
応が遅く、また分散性も悪くなることがら粗粒の混入が
少ないことが好ましい。従って本発明に用いるアルミナ
セメントの粒度(沈降天秤法にて測定したスト−クス径
)としては粒径30色以下とした。また、特に活性が大
きい5pL以下が余り多量に存在すると施工性が損われ
、一方仝〈存在しないと強度の発現が遅れることから、
 5メを以下の粒子含有率は10〜35重量%が好適で
ある。場合によっては分級工程によって分級したものを
適当に配合してもよい。
Further, if the A9203 content exceeds 70 hairs and 9%, the curing time will be significantly delayed, and if the content is less than 40 double stars, the working time will be too short to be suitable for practical use. In addition, the particle size structure of alumina cement is an important factor in workability. In other words, in normal commercial products, there are 10 to 20 products that do not pass through a 30 μ sieve
By weight, particles with a particle size of 5IL or less are about 35-45% heavy acid, but coarse particles that do not pass through a 30JL sieve have a slow hydration reaction and poor dispersibility, so coarse particles are mixed in. It is preferable that there is little. Therefore, the particle size (Stokes diameter measured by the sedimentation balance method) of the alumina cement used in the present invention was set to be 30 colors or less. In addition, if a large amount of 5 pL or less, which has particularly high activity, is present, workability will be impaired; on the other hand, if it is absent, the development of strength will be delayed.
The content of particles of 5 or less particles is preferably 10 to 35% by weight. Depending on the case, the materials classified by a classification step may be appropriately blended.

本発明において、アルミナセメントの粒度測定を沈降天
秤法(浮力天秤法)によった理由は次のとおりである。
In the present invention, the reason why the particle size of alumina cement is measured by the sedimentation balance method (buoyancy balance method) is as follows.

従来からセメントは水硬性粉末であるため、乾式法や湿
式法による粒度測定法が種々検討されているが、これと
云った決定的な測定法が現行でも確立されていない。通
常セメントは、クリンカーを長時間ミル等で粉砕したも
のであり、その粒子形状は球形に近いもので、実質的に
球形の微粉末であることからセメントの粒度測定法とし
て沈降天秤法が採用されている。一方、本発明のアルミ
ナセメントの粒子形状は、従来のセメントの粒子形状と
異なる球形でない微粉末であるが、従来品と相対比較が
できること、再現性にすぐれているため沈降天秤法を採
用したのである。
Since cement is a hydraulic powder, various dry and wet particle size measurement methods have been studied, but no definitive measurement method has been established to date. Normally, cement is made by grinding clinker in a mill for a long time, and its particle shape is close to spherical.Since it is essentially a spherical fine powder, the sedimentation balance method is adopted as a method for measuring the particle size of cement. ing. On the other hand, the particle shape of the alumina cement of the present invention is a non-spherical fine powder that is different from the particle shape of conventional cement, but the sedimentation balance method was adopted because it allows relative comparison with conventional products and has excellent reproducibility. be.

本発明の耐火組成物は(A)前記した非晶質成分を40
〜60重量%およびAQ203を40〜70重星:%星
影、沈降天秤法により測定した場合の粒度は粒径30に
以下、その内5p以下の粒子が10〜35重量%であり
、比表面積が0.5〜1.2rrf/gである、粒子形
状が実質的に球状でないアルミナセメント 1〜10重
鼠部装置(B)粒径1pL以下の耐火質物質の粉末1〜
5重量部と、(C)粒径10に以下の耐火質物質の粉末
2〜10重量部と、(Dl)耐火性骨材75〜96重量
部と、(E)分散剤を、(A) 、 (B) 、 (C
)および(D)の合計量に対して0.1〜1.0重量%
とからなる。この耐火組成物は、アルミナセメントの配
含量が少ないにも拘らず、炉材等のキャスタブル耐火物
に用いたとき優れた施工性、強度、耐火性を発揮する。
The fireproof composition of the present invention contains (A) the above-mentioned amorphous component at 40%
~60% by weight and AQ203 of 40~70 double stars:% The particle size when measured by the star shadow and sedimentation balance method is 30% or less, of which 10~35% by weight are particles with a size of 5p or less, and the specific surface area is Alumina cement whose particle shape is not substantially spherical and whose particle size is 0.5 to 1.2 rrf/g.
(C) 2 to 10 parts by weight of a powder of the following refractory material with a particle size of 10; (Dl) 75 to 96 parts by weight of refractory aggregate; (E) a dispersant; (A) , (B) , (C
) and 0.1 to 1.0% by weight based on the total amount of (D)
It consists of Although this refractory composition has a small content of alumina cement, it exhibits excellent workability, strength, and fire resistance when used in castable refractories such as furnace materials.

(B)成分の耐火質物質は、特にアルミナセメントの分
散を補助するために効果がある。たとえば、シリカ質、
アルミナ質、ジルコニア質、クロミア質、カルシア質の
ものが好ましく、シリカ質の超微粉のものが特に好まし
い。粒度は、粒径l川風下(平均粒径0.1〜0.5J
L) 、好ましくは100m g以下のものであり、形
状は球状品が好ましく、非水溶性のものでなければなら
ない。添加量が1重量部未満の場合、分散助剤効果が充
分でなく、また本発明の耐火組成物に水添混練するとき
好ましい粘性が得られない。5重量部超では、硬化遅延
、強度低下等の悪影響があると共に、混練時の粘性が必
要以上に増加する。
The refractory material (B) is particularly effective in assisting the dispersion of alumina cement. For example, siliceous
Alumina, zirconia, chromia, and calcia are preferred, and ultrafine silica powder is particularly preferred. Particle size is particle size l river leeward (average particle size 0.1~0.5J
L), preferably 100 mg or less, preferably spherical in shape, and must be water-insoluble. If the amount added is less than 1 part by weight, the effect of the dispersion aid will not be sufficient and preferred viscosity will not be obtained when the fireproof composition of the present invention is hydrogenated and kneaded. If it exceeds 5 parts by weight, there will be adverse effects such as delayed curing and decreased strength, and the viscosity during kneading will increase more than necessary.

(C)成分の耐火質物質は、前記アルミナセメントおよ
び(B)成分の耐火質物質と共に、耐火物のマトリック
スを構成する重要な要素であって、マトリックスの充填
性を高めることによって強度向上に資し、また耐火性を
向上させる。(G)成分の耐火質物質の例としては、シ
リカ質、アルミナ質、ジルコニア質、クロミア質、カル
シア質のものがあげられ、吸水率の少ないもの程良好な
結果を与える。粒度は、粒径10.以下(平均粒径4〜
8片)であり、特に5川風下80重量%以上含有するも
のが好ましい。添加量は、2重量部未満では、充填性の
向上は期待できず、10重量部超では、粒度構成が適正
でなく、かえって充填性を損うことになる。
The refractory material of component (C) is an important element constituting the matrix of the refractory together with the alumina cement and the refractory material of component (B), and contributes to improving strength by increasing the filling properties of the matrix. and also improves fire resistance. Examples of the refractory material of component (G) include silica, alumina, zirconia, chromia, and calcia, and the lower the water absorption, the better the results. The particle size is 10. Below (average particle size 4~
8 pieces), and those containing 80% by weight or more of 5 river lees are particularly preferred. If the amount added is less than 2 parts by weight, no improvement in filling properties can be expected, and if it exceeds 10 parts by weight, the particle size structure will not be appropriate and the filling properties will be impaired.

(D)成分の耐火性骨相としては、たとえば、シリカ質
、シャモツト質、アルミナ質、マグネシア質、マグクロ
質、スピネル質、炭化珪素、カーボンなどがあげられ、
粒径が30mm以下の粒子であればよい。たとえば10
mm篩目全通で、0 、5mm篩目を通過する粒子が約
20重量%含むものが好ましい。
Examples of the refractory bone phase of the component (D) include silica, chamotu, alumina, magnesia, maguro, spinel, silicon carbide, and carbon.
Any particle having a particle size of 30 mm or less may be used. For example 10
It is preferable that particles passing through a 0.5 mm sieve in an amount of about 20% by weight are included.

以1(A) 、 (B) 、 (C)および(Tl)の
成分を前記した割合で配合するが、各成分の配合量特定
の理由は、この範囲外では分散性にすぐれたキャスタブ
ルが得られず、また成形した場合の耐火材の強度が充分
得られないからである。
Below, components (A), (B), (C), and (Tl) are blended in the proportions described above, but the reason for specifying the blending amount of each component is that castable with excellent dispersibility cannot be obtained outside this range. This is because the strength of the refractory material cannot be obtained sufficiently when it is molded.

本発明においては上記成分の他、分散剤を上記(A) 
、 (B) 、 (c) 、 (o)の合計量に対して
0.1〜1.0重量%を含有する。分散剤としては、た
とえばトリポリリン酸ソーダ、ヘキサメタリン酸ソーダ
、酸性へキサメタリン酸ソーダ、リン酸アルミニウム、
ホウ酸ソーダ、ホウ酸、炭酸ソーダなどの無機塩、クエ
ン酸ソーダ、酒石酸ソーダ、ポリアクリル酎ソーダなど
の有I!塩があげられる。本発明においては分散剤は1
種類でも勿論良いが、2種以上を併用する方が好ましい
結果が得られる。
In the present invention, in addition to the above components, the above (A) dispersant is used.
, (B), (c), and (o) in an amount of 0.1 to 1.0% by weight based on the total amount. Examples of dispersants include sodium tripolyphosphate, sodium hexametaphosphate, acidic sodium hexametaphosphate, aluminum phosphate,
Inorganic salts such as sodium boric acid, boric acid, and sodium carbonate, sodium citrate, sodium tartrate, and polyacrylic soda! I can give you salt. In the present invention, the dispersant is 1
Of course, it is possible to use different types, but it is better to use two or more types in combination to obtain preferable results.

本発明の耐火組成物の施工に際しては、通常8重量%以
下の水を添加し混練し使用する。従来の耐火組成物にお
いては、12〜25重量%の水を添加していたので、本
発明品の場合は従来品に比し、著しく少ない量で足り、
したがって得られた成形物は乾燥又は焼成による脱水後
の気孔率増加も少なく、強度の低下も少ないという利点
がある。
When applying the fireproof composition of the present invention, 8% by weight or less of water is usually added and kneaded before use. In conventional fireproof compositions, 12 to 25% by weight of water was added, so in the case of the product of the present invention, a significantly smaller amount is sufficient compared to the conventional product.
Therefore, the obtained molded product has the advantage that there is little increase in porosity after dehydration by drying or baking, and little decrease in strength.

以下実施例によりさらに本発明を具体的に説明する。実
施例中の%は特に断わりのない限り重量%である。
EXAMPLES The present invention will be explained in more detail with reference to Examples below. The percentages in the examples are percentages by weight unless otherwise specified.

なお、試験はつぎの方法によって測定した。In addition, the test was measured by the following method.

(1)フロー(ff1m): JIS R5201記載
の方法により、混練物をフローコーンに充填し、表面を
ならした後、フローコーンを垂直上方に抜き取り、つい
でバイブレータ−により8000 PPMの振動を10
秒間与えた。この混練物の拡りをノギスで測定し、その
長径および短径の平均値(am)をフローの測定値とし
た。
(1) Flow (ff1m): Fill a flow cone with the kneaded material according to the method described in JIS R5201, smooth the surface, pull the flow cone vertically upward, and then vibrate at 8000 PPM for 10 minutes using a vibrator.
Gave seconds. The spread of this kneaded material was measured with a caliper, and the average value (am) of the major axis and minor axis was taken as the flow measurement value.

なお、フロー測定値の大きい程、振動による混練物の流
動性が大である。
Note that the larger the flow measurement value, the greater the fluidity of the kneaded material due to vibration.

また、同様の操作を30分後に行ってフローを測定し、
3分後と30分後とのフロー測定値の差を求めたとき、
その差の少ない方が線層性がよい。なお、線層性とは水
と混練後放置しておいた際の作業性(施工のし易さ)の
事である。
In addition, the same operation was performed 30 minutes later and the flow was measured.
When calculating the difference between the flow measurement values after 3 minutes and after 30 minutes,
The smaller the difference, the better the linearity. Note that the linearity refers to the workability (ease of construction) when the material is left to stand after being kneaded with water.

(2)硬化時間:混練物に振動を与えながら40X 4
0X 180 (mm)の型に流し込み硬化させた。組
成物に水を添加後発熱する迄の時間を硬化時間とした。
(2) Curing time: 40×4 while applying vibration to the kneaded material
It was poured into a 0x180 (mm) mold and hardened. The time from the addition of water to the composition until it generates heat was defined as the curing time.

(3)強度(kg/crrf) : (2)で型に流し
込み得られた硬化物を試験片として24時間放置後の強
度、温度110℃で乾燥した後の強度、1000°Cお
よび1400°Cで焼成した後の強度と線変化率をつぎ
の方法に準拠して測定した。
(3) Strength (kg/crrf): Strength after pouring the cured product obtained in (2) into a mold as a test piece and leaving it for 24 hours, strength after drying at a temperature of 110°C, 1000°C and 1400°C The strength and linear change rate after firing were measured according to the following method.

曲げ強度: JIS R2553 圧縮強度: JIS R2553 焼成曲げ強度: JIS R2553 線変化率: JIS R2554 実施例1 アルミナセメントの製造 ボーキサイトと生石灰とをCaOとAL1203とのモ
ル比が1:lとなるように調合し、抵抗型電気炉にて約
1650℃で溶融した。この溶融物を炉内よりタッピン
グする際エアー圧5kg/cm’にて吹き飛ばし空気に
より急冷して第1表、第2表に示す本発明品のクリンカ
ーをつくった。
Bending strength: JIS R2553 Compressive strength: JIS R2553 Baking bending strength: JIS R2553 Linear change rate: JIS R2554 Example 1 Production of alumina cement Bauxite and quicklime were mixed so that the molar ratio of CaO and AL1203 was 1:1. Then, it was melted at about 1650°C in a resistance electric furnace. This molten material was blown out at an air pressure of 5 kg/cm' when tapping from inside the furnace, and quenched with air to produce clinkers of the present invention shown in Tables 1 and 2.

なお従来品のものはエアー圧2kg/cryfとした以
外は同様につくった。
The conventional product was manufactured in the same manner except that the air pressure was 2 kg/cryf.

なお、第2表の鋲、物組成は次のようにして求め1ま た。The composition of the rivets and materials in Table 2 was determined as follows. Ta.

鉱物成分の同定は、X線回折による結晶成分のピーク位
置で行われる。結晶質成1分と非晶質成分の割合の決定
は、原料配合から推定される鉱物成分の結晶質成分のピ
ークによる。即ち、予め、既知の割合のピーク高さの検
量線を作成しておき、その時、その時の結晶質ピーク高
さから割合を決定する。
Mineral components are identified by the peak positions of crystal components by X-ray diffraction. The ratio of the crystalline component to the amorphous component is determined based on the peak of the crystalline component of the mineral component estimated from the raw material composition. That is, a calibration curve of peak heights of known ratios is created in advance, and then the ratios are determined from the crystalline peak heights at that time.

このクリンカーを本発明品についてはローラーミルで、
従来品についてはボールミルでそれぞれ粉砕し、アルミ
ナセメントを製造した。それぞれの粒子形状をm微鏡(
S、E、M)で観察したところ(倍率1000倍)、本
発明品については、第1図のごとく実質的に球形のもの
はなく、従来品については第2図のごとく実質的に球形
のものであった。また、島原製作所製rSR−100O
J型を用いて沈降天秤法により粒度を測定した。その粒
度分布はつぎの通りであった。
This clinker is processed using a roller mill for the products of the present invention.
Conventional products were ground in a ball mill to produce alumina cement. The shape of each particle was examined using an m-microscope (
S, E, M) (magnification: 1000 times) revealed that the products of the present invention were not substantially spherical as shown in Figure 1, while the conventional products were substantially spherical as shown in Figure 2. It was something. In addition, Shimabara Seisakusho rSR-100O
Particle size was measured by a sedimentation balance method using a J model. The particle size distribution was as follows.

また、温浸電池製r QUANTASORBJを用いた
ガス吸着法に比表面積は、本発明品は0.758m’/
g、従来品は2.505rrf/gテあった。
In addition, the specific surface area of the product of the present invention was 0.758 m'/
g, the conventional product was 2.505rrf/gte.

本発明品および従来品についてつぎの試験を行った。The following tests were conducted on products of the present invention and conventional products.

前記アルミナセメント製造において製造したアルミナセ
メントを用い、第4表に示す割合で配合し、これをミキ
サーに入れ、3分間攪拌した後、これに対し6.5%の
水を添加し、さらに3分間攪拌して、そのフローを測定
すると共に、この混練物を各種試験に供し、その結果を
第5.6表に示した。
Using the alumina cement manufactured in the above alumina cement manufacturing process, the mixture was mixed in the proportions shown in Table 4, put into a mixer, and stirred for 3 minutes, then 6.5% water was added thereto, and the mixture was mixed for another 3 minutes. While stirring and measuring the flow, the kneaded product was subjected to various tests, and the results are shown in Table 5.6.

実施例2〜7 アルミナセメント、超微粉シリカ、アルミナ、オタビシ
ャモットの配合割合を変えた以外は実施例1と同様に行
った。これらの条件及び結果を第7表、第8表、第9表
に示す。
Examples 2 to 7 The same procedure as in Example 1 was conducted except that the blending ratios of alumina cement, ultrafine silica, alumina, and Otabi Chamotte were changed. These conditions and results are shown in Tables 7, 8, and 9.

実施例8〜10 耐火性骨材(A)とこの骨材以外の材料(B)との割合
を変えてキャスタブルとした以外は実施例1と同様に行
った。これらの条件及び結果を第10表、第11表、第
12表、第13表に示す。
Examples 8 to 10 The same procedure as in Example 1 was carried out except that the ratio of the refractory aggregate (A) and the material other than this aggregate (B) was changed to make it castable. These conditions and results are shown in Tables 10, 11, 12, and 13.

実施例11 キャスタブル配合物100@量部に対する分散剤の割合
を変えた以外は実施例1と同様とした。
Example 11 The procedure was the same as in Example 1 except that the proportion of the dispersant to 100 parts of the castable formulation was changed.

(以下余白) 第4表            (部)第5表 第6表 第8表 第9表 ■7 以上詳述した如く、本発明は施工性、特に高温雰囲気に
おける作業性、硬化性、強度、耐火性にすぐれたアルミ
ナセメント系耐火M1成物であって、これを少量配合し
たキャスタブルは分散性にすぐれ、成型物としての強度
が大で、従来のキャスタブルでは高温強度および耐食性
等の面で使用困難であったたとえば均熱炉、加熱炉、焼
鈍炉等の鉄鋼関係あるいはセメント、非鉄金属関係の炉
材へ使用が可能となり、きわめて有益な発明である。
(Leaving space below) Table 4 (Part) Table 5 Table 6 Table 8 Table 9 Table ■7 As detailed above, the present invention is characterized by workability, particularly workability in a high-temperature atmosphere, hardenability, strength, and fire resistance. It is an alumina cement-based refractory M1 composition with excellent alumina cement, and castable containing a small amount of this has excellent dispersibility and high strength as a molded product, whereas conventional castable is difficult to use due to high temperature strength and corrosion resistance. This is an extremely useful invention, as it can be used for steel-related furnace materials such as soaking furnaces, heating furnaces, annealing furnaces, cement, and non-ferrous metals.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例に用いたアルミナセメントの粒
子構造を示した顕微鏡写真である。第2図は比較例に用
いた従来品のアルミナセメントの粒子構造を示した顕微
鏡写真である。
FIG. 1 is a micrograph showing the particle structure of alumina cement used in an example of the present invention. FIG. 2 is a micrograph showing the particle structure of a conventional alumina cement used as a comparative example.

Claims (1)

【特許請求の範囲】 1 (A)非晶質成分を40〜60重量%およびAl_
2O_3を40〜70重量%含み、沈降天秤法により粒
度測定した場合、粒径が30μ以下、その内5μ以下の
粒子が10〜35重量%となり、比表面積が0.5〜1
.2m^2/gである、粒子形状が実質的に球形でない
アルミナセメント1〜10重量部と、 (B)粒径1μ以下の耐火質物質の粉末1〜5重量部と
、 (C)粒径10μ以下の耐火質物質の粉末2〜10重量
部と、 (D)耐火性骨材75〜96重量部と、 (E)分散剤を(A)、(B)、(C)および(D)の
合計量に対して0.1〜1.0重量%とからなる耐火組
成物。
[Scope of Claims] 1 (A) 40 to 60% by weight of amorphous component and Al_
Contains 40 to 70% by weight of 2O_3, and when measured by the sedimentation balance method, the particle size is 30μ or less, of which 10 to 35% by weight is 5μ or less, and the specific surface area is 0.5 to 1.
.. 1 to 10 parts by weight of alumina cement having a particle size of 2 m^2/g and whose particle shape is not substantially spherical; (B) 1 to 5 parts by weight of a refractory material powder having a particle size of 1 μ or less; (C) particle size (A), (B), (C), and (D) 2 to 10 parts by weight of powder of a refractory material of 10μ or less, (D) 75 to 96 parts by weight of refractory aggregate, and (E) a dispersant. A fireproof composition comprising 0.1 to 1.0% by weight based on the total amount of.
JP61251829A 1986-10-24 1986-10-24 Refractory composition Granted JPS6291472A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61251829A JPS6291472A (en) 1986-10-24 1986-10-24 Refractory composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61251829A JPS6291472A (en) 1986-10-24 1986-10-24 Refractory composition

Publications (2)

Publication Number Publication Date
JPS6291472A true JPS6291472A (en) 1987-04-25
JPH0137351B2 JPH0137351B2 (en) 1989-08-07

Family

ID=17228541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61251829A Granted JPS6291472A (en) 1986-10-24 1986-10-24 Refractory composition

Country Status (1)

Country Link
JP (1) JPS6291472A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02149472A (en) * 1988-11-30 1990-06-08 Kawasaki Refract Co Ltd Monolithic refractories

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02149472A (en) * 1988-11-30 1990-06-08 Kawasaki Refract Co Ltd Monolithic refractories

Also Published As

Publication number Publication date
JPH0137351B2 (en) 1989-08-07

Similar Documents

Publication Publication Date Title
KR970001242B1 (en) Low heat building cement composition
CN101100394A (en) Silicon carbide crusting resistant pouring material and preparation method thereof
CN104163584A (en) Calcium aluminate cement
CN104671804B (en) A kind of high-alumina refractory is moldable and preparation method thereof
CN104671801B (en) A kind of corundum abrasion-proof fire-resistant moldable refractory and preparation method thereof
JPS63384B2 (en)
Sarkar et al. Study on the effect of deflocculant variation in high-alumina low-cement castable
JPS6291472A (en) Refractory composition
JP3348813B2 (en) Alumina cement substance, alumina cement containing the same, and amorphous refractory using the same
JPH0415184B2 (en)
CN100582056C (en) Thermal shock resistant burner brick and preparation method thereof
JP2005162566A (en) Alumina cement, alumina cement composition and monolithic refractory using the same
JP4070709B2 (en) Setting / hardening modifier for alumina cement, alumina cement composition, and amorphous refractory using the same
JP3290818B2 (en) Alumina cement composition and amorphous refractory using the same
CN109748594A (en) A kind of coke dry quenching furnace bracket refractory protection material and preparation method thereof
JP4588239B2 (en) Alumina cement, alumina cement composition, and amorphous refractory using the same
JP4588238B2 (en) Condensation / setting accelerator for alumina cement, alumina cement composition, and amorphous refractory using the same
JPH0415183B2 (en)
JP3278543B2 (en) Alumina cement composition and amorphous refractory using the same
JPH07277819A (en) Aluminum titanate clinker and refractory using the same
Mukhopadhyay et al. Effect of synthetic mullite aggregate on clay-based sol-bonded castable
JPH11217255A (en) Alumina cement composition and prepared unshaped refractory using the same
JPH02175638A (en) Alumina cement and low-cement castable binder
JPH06191908A (en) Alumina cement and alumina cement composition
JPH06115998A (en) Production of hydraulic composition