JPH0136898B2 - - Google Patents

Info

Publication number
JPH0136898B2
JPH0136898B2 JP7774983A JP7774983A JPH0136898B2 JP H0136898 B2 JPH0136898 B2 JP H0136898B2 JP 7774983 A JP7774983 A JP 7774983A JP 7774983 A JP7774983 A JP 7774983A JP H0136898 B2 JPH0136898 B2 JP H0136898B2
Authority
JP
Japan
Prior art keywords
measured
microwave
horn
receiving
microwaves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7774983A
Other languages
Japanese (ja)
Other versions
JPS59202049A (en
Inventor
Hirotoshi Ishikawa
Seiichiro Kyobe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP7774983A priority Critical patent/JPS59202049A/en
Publication of JPS59202049A publication Critical patent/JPS59202049A/en
Publication of JPH0136898B2 publication Critical patent/JPH0136898B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N22/00Investigating or analysing materials by the use of microwaves or radio waves, i.e. electromagnetic waves with a wavelength of one millimetre or more
    • G01N22/04Investigating moisture content

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Description

【発明の詳細な説明】 本発明は、マイクロ波水分計の改良に関する。
一般に、マイクロ波帯では水分のマイクロ波吸収
が極めて大きい。このため、水分のマイクロ波吸
収を利用し、マイクロ波の減衰量から被測定物中
の水分量を測定することが従来から広く行なわれ
ていた。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improvements in microwave moisture meters.
Generally, microwave absorption of water is extremely large in the microwave band. For this reason, it has been widely practiced in the past to measure the amount of water in an object to be measured from the amount of attenuation of microwaves by utilizing the microwave absorption of water.

第1図は、このような従来のマイクロ波水分計
を説明する従来例構成説明図であり、図中、1は
マイクロ波信号を発生するマイクロ波源たる発信
器、2は―方向にのみマイクロ波を通し逆方向に
はマイクロ波を殆んど通さないアイソレータ、3
は第1導波管(若しくは同軸ケーブル、以下単に
「導波管」という)4を介してアイソレータ2に
接続された送信ホーン、5は送信ホーン3と所定
距離lを隔てて配設される受信ホーン、7は第2
導波管6を介して受信ホーン5に接続された送信
ホーン、8は送受信ホーン3,5間の距離と同一
の所定距離lを送信ホーン7との間に隔てて配設
される受信ホーン、9は送信ホーン3,7と受信
ホーン5,8によつて形成される空間に配置され
た例えばシート状の紙などでなる被測定物、11
は例えばクリスタルダイオード等でなり第3導波
管10を介して受信ホーン8の出力を検出する検
出部、12は検出部11の出力を受け所定の演算
処理を施こして被測定物中の水分量を算出する演
算部である。
Fig. 1 is an explanatory diagram of a conventional example configuration explaining such a conventional microwave moisture meter. An isolator that allows almost no microwave to pass through the microwave in the opposite direction, 3
5 is a transmitter horn connected to the isolator 2 via a first waveguide (or coaxial cable, hereinafter simply referred to as "waveguide") 4, and 5 is a receiver disposed at a predetermined distance l from the transmitter horn 3. Horn, 7 is second
A transmitting horn 8 is connected to the receiving horn 5 via a waveguide 6, and a receiving horn 8 is disposed at a predetermined distance l, which is the same as the distance between the transmitting and receiving horns 3 and 5, from the transmitting horn 7. Reference numeral 9 denotes an object to be measured made of, for example, a sheet of paper, placed in the space formed by the transmitting horns 3, 7 and the receiving horns 5, 8;
12 is a detection section that is made of, for example, a crystal diode, and detects the output of the receiving horn 8 via the third waveguide 10; This is a calculation unit that calculates the amount.

上記構成からなる従来例において、発振器1か
ら送出されたマイクロ波は、アイソレータ2およ
び第1導波管4を経て送信ホーン3から被測定物
9に投射される。また、被測定物9を透過して水
分子による減衰を受けたマイクロ波は、受信ホー
ン5で受信されてのち第2導波管6を経て、送信
ホーン7から再び被測定物9に投射される。該被
測定物を透過して再度水分子による減衰を受けた
マイクロ波は、受信ホーン8で受信されてのち第
3導波管10を経て検出部11で検出される。該
検出部の出力に基ずき、演算部12内で施こされ
る演算処理により、被測定物9中の水分量が求め
られるようになる。
In the conventional example having the above configuration, the microwave transmitted from the oscillator 1 is projected onto the object to be measured 9 from the transmission horn 3 via the isolator 2 and the first waveguide 4. Further, the microwave that has passed through the object to be measured 9 and has been attenuated by water molecules is received by the receiving horn 5, passes through the second waveguide 6, and is projected onto the object to be measured 9 again from the transmitting horn 7. Ru. The microwaves that have passed through the object to be measured and are attenuated by water molecules again are received by the reception horn 8 and then passed through the third waveguide 10 and detected by the detection unit 11. Based on the output of the detection section, the amount of water in the object to be measured 9 can be determined by arithmetic processing performed in the calculation section 12.

然し乍ら、上記従来例においては、被測定物9
がシート状であるため被測定物のばたつきが生じ
易く、このようなばたつきによつて生ずる定在波
のため、パスライン特性が大きな測定誤差要因に
なるという欠点があつた。
However, in the above conventional example, the object to be measured 9
Since it is in the form of a sheet, the object to be measured tends to fluctuate, and the standing waves generated by such fluttering have the disadvantage that the pass line characteristics become a major source of measurement error.

本発明はかかる欠点に鑑みてなされたものであ
り、その目的は、マイクロ波を使用して被測定物
中の水分量を測定するマイクロ波水分計におい
て、シート状被測定物のばたつきの影響を大きく
受けることなく、被測定物中の水分量を高精度に
測定できるマイクロ波水分計を提供することにあ
る。
The present invention has been made in view of these drawbacks, and its purpose is to reduce the effects of flapping of a sheet-like object to be measured in a microwave moisture meter that uses microwaves to measure the amount of moisture in an object to be measured. It is an object of the present invention to provide a microwave moisture meter capable of measuring the amount of moisture in a measured object with high precision without being subjected to large effects.

本発明の特徴は、マイクロ波を使用して被測定
物中の水分量を測定するマイクロ波水分計におい
て、送信ホーンから投射され被測定物を透過した
マイクロ波を第1および第2の受信ホーンで受け
ると共に、これら受信ホーンと上記被測定物との
夫々の距離の差がnλ+λ/4となるように構成した
ことにある。
A feature of the present invention is that in a microwave moisture meter that uses microwaves to measure the amount of moisture in an object to be measured, the microwaves projected from a transmitting horn and transmitted through the object to be measured are transmitted to first and second receiving horns. and the difference in distance between these receiving horns and the object to be measured is nλ+λ/4.

以下、本発明について図を用いて詳細に説明す
る。第2図は本発明実施例の構成説明図であり、
図中、第1図と同一記号は同一意味をもたせて使
用しここでの重複説明は省略する。また、13は
被測定物9と所定距離l1を隔てて配置され被測定
物9を透過したマイクロ波を受ける第1受信ホー
ン、14は被測定物9と所定距離l2を隔てて配置
され被測定物9を透過したマイクロ波を受ける第
2受信ホーン、15は受信ホーン13,14と
夫々第2および第3の導波管16,17を介して
接続されこれら受信ホーン13,14から入力さ
れるマイクロ波を、の二方向に等分して送出
するマジツクT、18はマジツクT15の方向
に送出されるマイクロ波を受け伝送線路を終端す
る無反射終端素子である。尚、マジツクT15の
方向に送出されるマイクロ波は、例えばクリス
タルダイオードでなる検出部11で検出されるよ
うになつている。また、第1および第2の受信ホ
ーン13,14と被測定物9との距離を夫々l1
l2とするとき、それらの差l3は下式(1)が成立する
ように、第1および第2の受信ホーン13,14
が配置される。更に、 l1=l2−l1≒nλ±λ/4 (1) (但し、n:自然数、λ:波長) 受信ホーン13,14から受信されるマイクロ
波を信号処理して検出部11に到達せしめる立体
回路は、第2図に示した実施例に限定されること
なく種々の変形が可能である。
Hereinafter, the present invention will be explained in detail using figures. FIG. 2 is an explanatory diagram of the configuration of an embodiment of the present invention,
In the figure, the same symbols as in FIG. 1 are used with the same meaning, and repeated explanation will be omitted here. A first receiving horn 13 is placed at a predetermined distance l1 from the object to be measured 9 and receives the microwave transmitted through the object to be measured 9; and 14 is placed at a predetermined distance l2 from the object to be measured 9. A second receiving horn 15 that receives the microwave transmitted through the object to be measured 9 is connected to receiving horns 13 and 14 via second and third waveguides 16 and 17, respectively, and receives input from these receiving horns 13 and 14. The magic T 18, which equally divides and sends out the microwave in two directions, is a non-reflection terminating element that receives the microwave sent in the direction of the magic T 15 and terminates the transmission line. Note that the microwaves sent in the direction of the magic T15 are detected by a detection section 11 made of, for example, a crystal diode. Further, the distances between the first and second receiving horns 13 and 14 and the object to be measured 9 are respectively l 1 ,
l 2 , the difference l 3 is the difference between the first and second receiving horns 13, 14 so that the following formula (1) holds.
is placed. Furthermore, l 1 = l 2 - l 1 ≒nλ±λ/4 (1) (where n: natural number, λ: wavelength) The microwaves received from the reception horns 13 and 14 are processed into signals and sent to the detection unit 11. The three-dimensional circuit to be reached is not limited to the embodiment shown in FIG. 2, and can be modified in various ways.

以下、上記構成からなる本発明実施例の動作に
ついて説明する。第2図において、発振器1から
送出されたマイクロ波は、アイソレータ2および
第2導波管4を経て送信ホーン3から被測定物9
に投射される。また、被測定物9を透過して水分
子による減衰や位相回転を受けたマイクロ波が、
第1および第2の受信ホーン13,14で受信さ
れる。これら受信ホーン13,14の出力は夫々
第2および第3の導波管16,17を経由してマ
ジツクT15に至り、両方向に均等に分配さ
れ送出される。該方向に送出されたマイクロ波
は、無反射終端素子18に到達して消滅させられ
る。また、方向に送出されたマイクロ波は、検
出部11で検出され、該検出信号が演算部12で
演算処理されて上記被測定物9中の水分量が算出
されるようになる。
The operation of the embodiment of the present invention having the above configuration will be described below. In FIG. 2, microwaves sent out from an oscillator 1 pass through an isolator 2 and a second waveguide 4, and then from a transmission horn 3 to an object under test 9.
is projected on. In addition, the microwaves transmitted through the object to be measured 9 and subjected to attenuation and phase rotation by water molecules,
The signal is received by the first and second receiving horns 13 and 14. The outputs of these receiving horns 13 and 14 reach the magic T 15 via second and third waveguides 16 and 17, respectively, and are equally distributed and transmitted in both directions. The microwaves sent in this direction reach the non-reflection termination element 18 and are extinguished. Further, the microwaves sent in the direction are detected by the detection unit 11, and the detection signal is processed by the calculation unit 12 to calculate the amount of water in the object to be measured 9.

ところで、第1図に示した従来例において、線
路に沿つた電圧波形は、波動方程式により下式(2)
のように導びかれる。
By the way, in the conventional example shown in Fig. 1, the voltage waveform along the line is expressed by the following equation (2) using the wave equation.
be guided as follows.

V=V+e−jx+ΓV+ejx (2) 但しΓ;反射率、V+;電圧を表わすサイン波の
波高値、β;位相、x;基準位置か
らの距離 上式(2)から、電圧振幅|V|は下式(3)のように
導びかれる。
V=V + e− jx + ΓV + e jx (2) However, Γ: Reflectance, V + : Peak value of the sine wave representing voltage, β: Phase, x: Distance from the reference position The above formula ( From 2), the voltage amplitude |V| is derived as shown in equation (3) below.

|V|=|V+||(1+Γej2x)/ejx| =|V+||1+Γej2x| =|V+|{1+Γcos2βx)2
Γ2sin22βx}1/2 =|V+|{(1+Γ)2−2Γ(1−
cos2βx)}1/2 =|V+|{(1+Γ)2−4Γsin2βx}1/2 (3) 上式(3)から電圧振幅|V|の極大値|Vnax
と極小値|Vnio|を求め、それらの比をとると下
式(4)が得られる。
|V|=|V + ||(1+Γe j2x) /e jx | =|V + ||1+Γe j2x | =|V + |{1+Γcos2βx) 2 +
Γ 2 sin 2 2βx} 1/2 = |V + | {(1+Γ) 2 −2Γ(1−
cos2βx)} 1/2 = |V + |{(1+Γ) 2 −4Γsin 2 βx} 1/2 (3) From the above equation (3), the maximum value of voltage amplitude |V| |V nax |
By finding the minimum value |V nio | and taking their ratio, the following equation (4) is obtained.

|Vnax|/|Vnio|=1+Γ/1−Γ (4) 一方、第2図に示した本発明実施例において
は、送・受信ホーン3,13,14が上式(1)を満
足するように配置されている。このため、線路に
沿つた電圧波形の振幅|V|として、上式(3)以外
に、上式(3)と位相がλ/4(即ち90゜)隔てられた部
分の信号である下式(5)も検出部11で検出され
る。また、被測定物9は厚紙などであり、各送受
信ホーン3,13,14に対しては平行移動する
ようにして動く(即ち、各送受信ホーン3,1
3,14に対して第2図の紙面上で被測定物9が
波うつことなく平行移動するようにして上下方向
に動く)。従つて、演算部12において単に上式
(3)と下式(5)の相加平均をとるだけで導波管16,
17の距離差に基ずく位相変動を考慮することが
でき、該平均値(即ち{(3)式+(5)式}/2)の極大値 |Vnax|と極小値|Vnio|を求めてのち、それら
の比をとると下式(6)が得られる。
|V nax |/|V nio |=1+Γ/1−Γ (4) On the other hand, in the embodiment of the present invention shown in FIG. It is arranged so that Therefore, as the amplitude |V| of the voltage waveform along the line, in addition to the above equation (3), the following equation is used, which is the signal of the part whose phase is separated from the above equation (3) by λ/4 (that is, 90 degrees). (5) is also detected by the detection unit 11. The object to be measured 9 is made of cardboard or the like, and moves parallel to each transmitting/receiving horn 3, 13, 14 (that is, each transmitting/receiving horn 3, 1
3 and 14, the object to be measured 9 moves vertically in parallel on the paper surface of FIG. 2 without wavering). Therefore, in the arithmetic unit 12, the above equation is simply
By simply taking the arithmetic average of (3) and the following equation (5), the waveguide 16,
The phase fluctuation based on the distance difference of 17 can be considered, and the maximum value |V nax | and the minimum value |V nio | of the average value (i.e., {Equation (3) + Equation (5)}/2) can be After calculating the ratio, the following formula (6) is obtained.

|V|=|V+|{(1+Γ)2−4Γsin2(βx+
90゜)}1/2 =|V+|{(1+Γ)2−4Γcos2βx}1/2 (5) 上式(4)および(6)において、0<Γ<1であるこ
とから、1+Γ/1−Γ>√1+2が成立する。また
、 上式(4)は前記従来例において被測定物9のパスラ
インが変化した場合の出力信号の振れ幅を示して
おり、上式(6)は本発明実施例において被測定物9
のパスラインが変化した場合の出力信号の振れ幅
を示している(即ち、電圧振幅の極大値と極小値
との比は、被測定物9のパスラインが変動した場
合の出力信号の振れ幅を示している)。従つて、
上式(4)と上式(6)の比較から、第1図に示した従来
例に比し第2図に示した本発明実施例の方が被測
定物9のパスライン特性がよいことが分る。
|V|=|V + |{(1+Γ) 2 −4Γsin 2 (βx+
90゜)} 1/2 = |V + |{(1+Γ) 2 −4Γcos 2 βx} 1/2 (5) In the above equations (4) and (6), since 0<Γ<1, 1+Γ/1-Γ>√1+ 2 holds true. In addition, the above equation (4) shows the amplitude of the output signal when the path line of the device under test 9 changes in the conventional example, and the above equation (6) shows the amplitude of the output signal when the path line of the device under test 9 changes in the embodiment of the present invention.
(In other words, the ratio between the maximum value and the minimum value of the voltage amplitude is the amplitude of the output signal when the path line of the object to be measured 9 changes.) ). Therefore,
From the comparison of the above equations (4) and (6), it can be seen that the pass line characteristics of the object to be measured 9 are better in the embodiment of the present invention shown in FIG. 2 than in the conventional example shown in FIG. 1. I understand.

第3図は上述の本発明実施例の効果を示すグラ
フであり、図中、縦軸は被測定物を通過したあと
の受信電圧変動を示しており、横軸は被測定物と
受信ホーンとの距離(即ち、被測定物のパスライ
ン)の変動を示している。第3図において、(イ)は
上記(3)式、(5)式、および(3)式+(5)式/2で反射率Γ が0.1のときの値を示しており、(ロ)は反射率Γが
0.2のときの値を示している。第3図における上
記(3)式および(3)式+(5)式/2の夫々の特性曲線は、 夫々前記従来例および本発明実施例のパスライン
特性に相当する。従つて、これらを比較すること
により、本発明実施例によれば被測定物9のパス
ライン特性が大きく改善されることが分る。
FIG. 3 is a graph showing the effect of the above-described embodiment of the present invention. In the graph, the vertical axis shows the received voltage fluctuation after passing through the object to be measured, and the horizontal axis shows the variation in the received voltage after passing through the object to be measured and the receiving horn. (i.e., the path line of the object to be measured). In Figure 3, (a) shows the value when the reflectance Γ is 0.1 using the above equations (3), (5), and (3) + (5)/2, and (b) is the reflectance Γ
The value at 0.2 is shown. The characteristic curves of equation (3) and equation (3)+(5)/2 in FIG. 3 correspond to the pass line characteristics of the conventional example and the embodiment of the present invention, respectively. Therefore, by comparing these, it can be seen that according to the embodiment of the present invention, the pass line characteristics of the object to be measured 9 are greatly improved.

以上詳しく説明したような本発明の実施例によ
れば、上式(1)が成立するように送・受信ホーン
3,13,14を配置するような構成であるた
め、前記従来例に比して被測定物のばたつきによ
つて生ずる定在波の影響を受けにくいという利点
がある。また、受信ホーン13,14を機械的に
λ/4上下させることも考えられるが、このような
方法に比しても、本発明実施例によれば、可動部
等の故障を心配する必要がなく製品寿命が長いと
いう利点もある。
According to the embodiment of the present invention as described in detail above, the transmitting/receiving horns 3, 13, and 14 are arranged so that the above formula (1) is satisfied, so that it is different from the conventional example. This has the advantage that it is less susceptible to the effects of standing waves caused by the fluttering of the object to be measured. It is also conceivable to mechanically move the receiving horns 13 and 14 up and down by λ/4, but even compared to such a method, according to the embodiment of the present invention, there is no need to worry about failure of moving parts, etc. It also has the advantage of having a long product life.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はマイクロ波水分計の従来例構成説明
図、第2図は本発明実施例の構成説明図、第3図
は本発明実施例使用の効果を示すグラフである。 1…発振器、2…アイソレータ、3,7…送信
ホーン、5,8,13,14…受信ホーン、4,
6,10,16,17…導波管、9…被測定物、
11…検出部、12…演算部、15…マジツク
T、18…無反射終端素子。
FIG. 1 is a diagram illustrating the configuration of a conventional microwave moisture meter, FIG. 2 is a diagram illustrating the configuration of an embodiment of the present invention, and FIG. 3 is a graph showing the effects of using the embodiment of the present invention. 1... Oscillator, 2... Isolator, 3, 7... Transmission horn, 5, 8, 13, 14... Receiving horn, 4,
6, 10, 16, 17... waveguide, 9... object to be measured,
DESCRIPTION OF SYMBOLS 11... Detection part, 12... Arithmetic part, 15... Magic T, 18... Non-reflection termination element.

Claims (1)

【特許請求の範囲】[Claims] 1 マイクロ波を使用して被測定物中の水分量を
測定するマイクロ波水分計において、マイクロ波
源から送出されるマイクロ波を被測定物に投射す
る送信ホーンと、該被測定物を透過したマイクロ
波を受信する第1および第2の受信ホーンとを具
備し、これら受信ホーンと前記測定物との距離
l1、l2の差l3が、l3=nλ+λ/4(但し、n:自然
数、λ:波長)となるように構成したことを特徴
とするマイクロ波水分計。
1. In a microwave moisture meter that uses microwaves to measure the amount of moisture in an object to be measured, there is a transmission horn that projects the microwaves emitted from the microwave source onto the object to be measured, and a microwave that passes through the object. comprising first and second receiving horns that receive waves, and a distance between the receiving horns and the object to be measured.
A microwave moisture meter characterized in that the difference l 3 between l 1 and l 2 is configured such that l 3 =nλ+λ/4 (where n: natural number, λ: wavelength).
JP7774983A 1983-05-02 1983-05-02 Microwave moisture meter Granted JPS59202049A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7774983A JPS59202049A (en) 1983-05-02 1983-05-02 Microwave moisture meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7774983A JPS59202049A (en) 1983-05-02 1983-05-02 Microwave moisture meter

Publications (2)

Publication Number Publication Date
JPS59202049A JPS59202049A (en) 1984-11-15
JPH0136898B2 true JPH0136898B2 (en) 1989-08-03

Family

ID=13642562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7774983A Granted JPS59202049A (en) 1983-05-02 1983-05-02 Microwave moisture meter

Country Status (1)

Country Link
JP (1) JPS59202049A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60173447A (en) * 1984-02-20 1985-09-06 Ngk Insulators Ltd Method for measuring moisture content

Also Published As

Publication number Publication date
JPS59202049A (en) 1984-11-15

Similar Documents

Publication Publication Date Title
JPH0120375B2 (en)
AU2002304283B2 (en) Apparatus and method for microwave determination of at least one physical parameter of a substance
US4452081A (en) Measurement of velocity and tissue temperature by ultrasound
US7145502B2 (en) Distance measurement method and device
AU2002304283A1 (en) Apparatus and method for microwave determination of at least one physical parameter of a substance
US4818930A (en) Method and apparatus for thin layer monitoring
US3913012A (en) Microwave moisture measuring system with reflection suppressing means
JPH0426709B2 (en)
JPH0136898B2 (en)
JPH0758178B2 (en) Ultrasonic seam detector
JPH0136897B2 (en)
GB2087682A (en) Distance measuring apparatus
JPS6342357Y2 (en)
JPS5858602B2 (en) It&#39;s hard to find the right place
US4790656A (en) Dual homodyne detection system to measure asymmetric spectrum by using angle mirrors
SU985752A1 (en) Device for sheet material reflection factor
SU643817A1 (en) Ice thickness measuring method
JP2000275190A (en) Microwave moisture measuring apparatus
JPH02249958A (en) Method for measuring moisture contained in object and measuring instrument thereof
RU2207549C1 (en) Device for measurement of moisture content in non- metallic media
SU1525563A1 (en) Method of determining index of heterogeneity of acoustic field of transducers
JPS6228683A (en) Distance measuring instrument using ultrasonic sensor
JPH05240719A (en) Ultrasonic remote water temperature measuring device
JPS61173183A (en) Altitude measuring instrument
JPS63134908A (en) Thin-layer monitor