JPS59202049A - Microwave moisture meter - Google Patents

Microwave moisture meter

Info

Publication number
JPS59202049A
JPS59202049A JP7774983A JP7774983A JPS59202049A JP S59202049 A JPS59202049 A JP S59202049A JP 7774983 A JP7774983 A JP 7774983A JP 7774983 A JP7774983 A JP 7774983A JP S59202049 A JPS59202049 A JP S59202049A
Authority
JP
Japan
Prior art keywords
measured
receiving
horn
microwave
microwaves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7774983A
Other languages
Japanese (ja)
Other versions
JPH0136898B2 (en
Inventor
Hirotoshi Ishikawa
石川 宏俊
Seiichiro Kiyobe
清部 政一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Hokushin Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Hokushin Electric Corp filed Critical Yokogawa Hokushin Electric Corp
Priority to JP7774983A priority Critical patent/JPS59202049A/en
Publication of JPS59202049A publication Critical patent/JPS59202049A/en
Publication of JPH0136898B2 publication Critical patent/JPH0136898B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N22/00Investigating or analysing materials by the use of microwaves or radio waves, i.e. electromagnetic waves with a wavelength of one millimetre or more
    • G01N22/04Investigating moisture content

Abstract

PURPOSE:To measure the level of moisture at a high accuracy by arranging a pair of receiving horn for receiving a microwave passing through an object to be measured after projected from a transmitting horn to be a specified value of the difference in the distance thereof from the object being measured respectively to reduce the influence on variations of the sheet-shaped object being measured. CONSTITUTION:A microwave transmitted from an oscillator 1 is projected to an object 9 to be measured through an isolator 2, a waveguide 4 and a transmitting horn 3. The microwave passing through the object 9 being measured is received with receiving horn 13 and 14. The output thereof reaches to a magic T 15 via waveguides 16 and 17 and evenly distributed in the directions (a) and (b). The microwave transmitted in the direction (b) is annihilated at a non-reflection final terminal 18 while that in the direction (a) is detected by a detector section 11 and computed by an arithmetic section 12 to obtain the level of moisture. On the other hand, the receiving phones 13 and 14 are arranged at the distances l1 and l2 from the object 9 being measured to satisfy l2-l1 nlambda+lambda/4 thereby reducing variations of the object 9 being measured.

Description

【発明の詳細な説明】 本発明は、マイクロ波水分計の改良に関する。[Detailed description of the invention] The present invention relates to improvements in microwave moisture meters.

一般に、マイクロ波帯では水分のマイクロ波吸収が極め
て大きい。このため、水分のマイクロ波吸収を利用し、
マイクロ波の減衰量から被測定物中の水分量を測定する
ことが従来から広く行なわれていた。
Generally, microwave absorption of water is extremely large in the microwave band. For this reason, using microwave absorption of water,
BACKGROUND ART Conventionally, it has been widely used to measure the amount of water in a measured object from the amount of attenuation of microwaves.

第1図は、このような従来のマイクロ波水分計を説明す
る従来例構成説明図であシ、図中、1はマイクロ波信号
を発生するマイクロ波源たる発信器、2は一方向にのみ
マイクロ波を通し逆方向にはマイクロ波を殆んど通さな
いアイソレータ、3は第1導波管(若しくは同軸ケーブ
ル、以下単に「導波管」という)4を介してアイソレー
タ2に接続された送信ホーン、5は送信ホーン3と所定
距離eを隔てて配設される受信ホーン、7は第2−ン7
との間に隔てて配設される受信ホーン、9は送信ホーン
3,7と受信ホーン5,8によって形成される空間に配
置された例えばシート状の紙などでなる被測定物、11
は例えばクリスタルダイオード等でなり第3導波管10
を介して受信ホーン8の出力を検出する検出部、12は
検出部11の出力を受は所定の演算処理を施こして被測
定物中の水分量を算出する演算部である。
FIG. 1 is a diagram illustrating the configuration of a conventional microwave moisture meter. An isolator that allows waves to pass through but hardly allows microwaves to pass in the opposite direction; 3 is a transmission horn connected to the isolator 2 via a first waveguide (or coaxial cable, hereinafter simply referred to as "waveguide") 4; , 5 is a receiving horn arranged at a predetermined distance e from the transmitting horn 3, and 7 is a second horn 7.
A receiving horn 9 is arranged to be spaced apart from the transmitting horns 3 and 7 and the receiving horns 5 and 8. An object to be measured made of, for example, a sheet of paper, 11
is, for example, a crystal diode, etc., and the third waveguide 10
A detecting section 12 detects the output of the receiving horn 8 via the detecting section 12, and a calculating section 12 receives the output of the detecting section 11 and performs predetermined arithmetic processing to calculate the amount of water in the object to be measured.

上記構成からなる従来例において、発振器1から送出さ
れたマイクロ波は、アイソレータ2および第1導波管4
を経て送信ホ475から被測定物9に投射される。また
、被測定物9を透過して水分子による減衰を受けたマイ
クロ波は、受信ボーア5で受信されてのち第2導波管6
を経て、送信ホーン7から再び被測定物9に投射される
。該被測定物を透過して再度水分子による減衰を受けた
マイクロ波は、受信ホーン8で受信されてのち第3導波
管10を経て検出部11で検出される。該検出部の出力
に基すき、演算部12内で施こされる演算処理により、
被測定物9中の水分量が求められるようになる。
In the conventional example having the above configuration, the microwave transmitted from the oscillator 1 is transmitted through the isolator 2 and the first waveguide 4.
It is projected onto the object to be measured 9 from the transmitting hole 475 through. Further, the microwaves transmitted through the object to be measured 9 and attenuated by water molecules are received by the receiving Bohr 5 and then sent to the second waveguide 6.
After that, it is projected from the transmitting horn 7 onto the object to be measured 9 again. The microwaves that have passed through the object to be measured and are attenuated by water molecules again are received by the reception horn 8 and then passed through the third waveguide 10 and detected by the detection unit 11. Based on the output of the detection section, the arithmetic processing performed in the arithmetic section 12 results in the following:
The amount of water in the object to be measured 9 can now be determined.

然し乍ら、上記従来例においては、被測定物9がシート
状であるため被測定物のばたつきが生じ易く、このよう
なばたつきKよって生ずる定在波のため、パスライン特
性が大きな測定誤差要因゛になるという欠点があった。
However, in the above-mentioned conventional example, since the object to be measured 9 is sheet-shaped, it is easy to cause the object to fluctuate, and the standing waves generated by such flapping K cause the path line characteristics to become a major measurement error factor. There was a drawback.

本発明はかかる欠点に鑑みてなされたものであシ、その
目的は、マイクロ波を使用して被測定物中の水分量を測
定するマイクロ波水分計において、シート状被測定物の
ばたつきの影響を大きく受けることなく、被測定物中の
水分量を高精度に測定できるマイクロ波水分計を提供す
ることにある。
The present invention has been made in view of the above drawbacks, and the purpose of the present invention is to provide a microwave moisture meter that uses microwaves to measure the amount of moisture in an object to be measured. To provide a microwave moisture meter capable of measuring the amount of moisture in a measured object with high accuracy without being subjected to large amounts of water.

本発明の特徴は、マイクロ波を使用して被測定物中の水
分量を測定するマイクロ波水分計如おいて1送信ホーン
から投射され被測定物を透過したマイクロ波を第1およ
び第2の受信ホーンで受けると共に、これら受信ホーン
と上記被測定物との夫々の距離の差がΩλ十λ/4とな
るように構成したことにある。
A feature of the present invention is that in a microwave moisture meter that uses microwaves to measure the amount of moisture in an object to be measured, the microwaves projected from one transmission horn and transmitted through the object to be measured are transmitted to first and second channels. The object is received by receiving horns, and the distance difference between the receiving horns and the object to be measured is Ωλ+λ/4.

以下、本発明について図を用いて詳細に説明する。第2
図は本発明実施例の構成説明図であり、図中、第1図と
同一記号は同一意味をもたせて使用しここでの重複説明
は省略する。また、13は被測定物9と所定距離見□を
隔てて配置され被測定物9を透過したマイクロ波を受け
る第1受信ホーン、14は被測定物9と所定距離L2を
隔てて配置され被測定物9を透過したマイクロ波を受け
る第2受信ホーン、15は受信ホーン13.14と夫々
第2および第3の導波管16,17を介して接続されこ
れら受信ホーン13.14から入力されるマイクロ波を
■、■の二方向に等分して送出するマジックT118は
マジックT15の■方向に送出されるマイクロ波を受は
伝送線路を終端する無反射終端素子である。伺、マジッ
クT15の■方向に送出されるマイクロ波は、例えばク
リスタルダイオードでなる検出部11で検出されるよう
になっている。また、第1および第するように、第1お
よび第2の受信ホーン13.14が配置される。更に、 L1=見、−9,1ζ nλ力大入/4       
              (1)(但し、n:自然
数、λ:波長) 受信ホーン13.14から受信されるマイクロ波を信号
処理して検出部11に到達せしめる立体回路は、第2図
に示した実施例に限定されることなく種々の変形が可能
である。
Hereinafter, the present invention will be explained in detail using figures. Second
The figure is an explanatory diagram of the configuration of an embodiment of the present invention. In the figure, the same symbols as in FIG. 1 are used with the same meanings, and repeated explanation here will be omitted. Further, 13 is a first receiving horn that is placed at a predetermined distance □ from the object to be measured 9 and receives the microwaves transmitted through the object to be measured 9; A second receiving horn 15 that receives the microwaves transmitted through the measurement object 9 is connected to the receiving horn 13.14 via second and third waveguides 16 and 17, respectively, and is input from the receiving horn 13.14. The magic T118, which equally divides and sends out the microwaves in the two directions (1) and (2), is a non-reflection terminating element that receives the microwaves sent out in the (2) direction of the magic T15 and terminates the transmission line. The microwaves emitted in the direction (2) of the magic T 15 are detected by a detection unit 11 made of, for example, a crystal diode. Also, first and second receiving horns 13, 14 are arranged to correspond to the first and second receiving horns. Furthermore, L1=see, -9,1ζ nλ force input/4
(1) (where n: natural number, λ: wavelength) The three-dimensional circuit that processes the microwaves received from the reception horns 13 and 14 and causes them to reach the detection unit 11 is limited to the embodiment shown in FIG. Various modifications are possible without modification.

以下、上記構成からなる本発明実施例の動作について説
明する。第2図において、発振器1がら送出されたマイ
クロ波は、アイソレータ2および第2導波管4を経て送
信ホーン3から被測定物9に投射される。また、被測定
物9を透過して水分子による減衰や位相回転を受けたマ
イクロ波が、第1および第2の受信ホーン13.14で
受信される。
The operation of the embodiment of the present invention having the above configuration will be described below. In FIG. 2, microwaves transmitted from an oscillator 1 are projected onto an object to be measured 9 from a transmission horn 3 via an isolator 2 and a second waveguide 4. Furthermore, the microwaves transmitted through the object to be measured 9 and subjected to attenuation and phase rotation by water molecules are received by the first and second reception horns 13 and 14.

これら受信ホーン13.14の出力は夫々第2および第
3の導波管16.17を経由してマジックT15に至り
、00両方向に均等に分配され送出される。該■方向に
送出されたマイクロ波は、無反射終端素子18に到達し
て消滅させられる。また、■方向に送出されたマイクロ
波は、検出部11で検出され、該検出信号が演算部12
で演算処理されて上記被測定物9中の水分量が算出され
るようになる。
The outputs of these receiving horns 13 and 14 reach the magic T 15 via second and third waveguides 16 and 17, respectively, and are equally distributed and sent out in both directions. The microwaves sent in the direction (2) reach the non-reflection termination element 18 and are extinguished. Further, the microwave transmitted in the direction (2) is detected by the detection unit 11, and the detection signal is sent to the calculation unit 12.
The water content in the object to be measured 9 is calculated by the calculation process.

ところで、第1図に示した従来例において、線路に泊っ
た電圧波形は、波動方程式によυ下式(2)のように導
ひかれる。
By the way, in the conventional example shown in FIG. 1, the voltage waveform on the line is derived by the wave equation as shown in equation (2) below.

V = V”e−j” + rV”ejBx(2)但し
F:反射率 上式(2)から、電圧振幅IVIは下式(3)のように
導びかれる。
V = V"e-j" + rV"ejBx (2) where F: reflectance From the above equation (2), the voltage amplitude IVI is derived as shown in the below equation (3).

=蘭1+re””” 1 一1V+山1+I”)2−2r(1−cos 2βx)
 11/2上式(3)から電圧振幅IVIの極大値”m
ax ’と極/」1値IV  lを求め、それらの比を
とると下式(a) fri得in られる。
= Orchid 1 + re””” 1-1V + Mountain 1+I”) 2-2r (1-cos 2βx)
11/2 From the above equation (3), the maximum value of voltage amplitude IVI “m”
When ax' and pole/' 1 value IV l are determined and their ratio is taken, the following formula (a) friin is obtained.

一方、第2図に示した本発明実施例においては、送・受
信ホーン3. :L3. :L4が上式(1)を満足す
るように配置されている。このだめ、線路に泊った電圧
波形の振幅IVIとして、上式(3)以外に、上式(3
)と位相がλ/4(即ち9o・)隔てられた部分の信号
である下式(5)も検出部11で検出される。従って、
演極小値1v、1を求めてのち、それらの比をとると1
n 下式(6)が得られる。
On the other hand, in the embodiment of the present invention shown in FIG. 2, the transmitting/receiving horn 3. :L3. :L4 is arranged so as to satisfy the above formula (1). In this case, as the amplitude IVI of the voltage waveform on the line, in addition to the above formula (3), the above formula (3
) is also detected by the detection unit 11 in the following equation (5), which is a signal of a portion whose phase is separated by λ/4 (that is, 9o·). Therefore,
After finding the minimum value 1v, 1, and taking their ratio, we get 1
n The following formula (6) is obtained.

上式(4)および(6)において、0<r<1でおるこ
とから  1+r>石τ7が成立する。まだ、上式(4
)および(6)は、上記従来例および本発明実施例にお
ける被測定物9のパスラインが変化した場合の夫々の出
力信号の振れ幅を示している。従って、上式(4)と上
式(6)の比較から、第1図に示した従来例に比し第2
図に示した本発明実施例の方が被測定物9のパスライン
特性がよいことが分る。
In the above equations (4) and (6), since 0<r<1, 1+r>stone τ7 holds true. Still, the above formula (4
) and (6) show the amplitudes of the respective output signals when the path line of the object to be measured 9 changes in the conventional example and the embodiment of the present invention. Therefore, from the comparison of the above equation (4) and the above equation (6), it is found that the second
It can be seen that the pass line characteristic of the object to be measured 9 is better in the embodiment of the present invention shown in the figure.

第5図は、上述の本発明実施例の効果を示すグラフであ
る。第3図において、(イ)は上記(3)式、(5)式
、および(3) 武士(5) 式で反射率Fが0.1の
ときの値を示しておυ、(ロ)は反射率rが0.2のと
きの値を示している。第3図における上記(3)式およ
び(3) 式+ (5) 式の夫々の特性曲線は、夫々
前記従来例および本発明実施例のパスライン特性に相当
する。
FIG. 5 is a graph showing the effects of the above-described embodiment of the present invention. In Figure 3, (a) indicates the value when the reflectance F is 0.1 in the above equations (3), (5), and (3) Bushi (5), and υ, (b) indicates the value when the reflectance r is 0.2. The characteristic curves of equation (3) and equation (3)+(5) in FIG. 3 correspond to the pass line characteristics of the conventional example and the embodiment of the present invention, respectively.

従って、これらを比較することによシ、本発明実施例に
よれは被測定物9のパスライン特性が大きく改善される
ことが分る。
Therefore, by comparing these, it can be seen that the pass line characteristics of the object to be measured 9 are greatly improved according to the embodiment of the present invention.

以上詳しく説明したような本発明の実施例によれば、上
式(1)が成立するように送・受信ホーン3゜13、1
4を配置するような構成であるため、前記従来例に比し
て被測定物のばたつきによって生ずる定在波の影響を受
けにくいという利点がある。また、受信ホーン13.1
4を機械的にλ/4上下させることも考えられるが、こ
のような方法に比しても、本発明実施例によれば、可動
部等の故障を心配する必要がなく製品寿命が長いという
利点もある。
According to the embodiment of the present invention as described in detail above, the transmitting/receiving horns 3°13, 1
4, it has the advantage that it is less susceptible to the effects of standing waves caused by the flapping of the object to be measured compared to the conventional example. Also, reception horn 13.1
4 could be mechanically moved up and down by λ/4, but even compared to such a method, according to the embodiment of the present invention, there is no need to worry about failure of moving parts, etc., and the product life is long. There are also advantages.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はマイクロ波水分計の従来例構成説明図第2図は
本発明実施例の構成説明図、第3図は本発明実施例使用
の効果を示すグラフである。 1・・・発振器、2・・・アイソレータ、3,7・・・
送信ホーン、5.8.13.14・・・受信ホーン、4
.6.10.16゜17・・・導波管、9・・・被測定
物、11・・・検出部、12・・・演算部、15・・・
マジックT118・・・無反射終端素子。 第3図
FIG. 1 is a diagram illustrating the configuration of a conventional microwave moisture meter; FIG. 2 is a diagram illustrating the configuration of an embodiment of the present invention; and FIG. 3 is a graph showing the effects of using the embodiment of the present invention. 1... Oscillator, 2... Isolator, 3, 7...
Transmission horn, 5.8.13.14...Reception horn, 4
.. 6.10.16゜17... Waveguide, 9... Measured object, 11... Detection section, 12... Calculation section, 15...
Magic T118... Non-reflective termination element. Figure 3

Claims (1)

【特許請求の範囲】[Claims] マイクロ波を使用して被測定物中の水分量を測定するマ
イクロ波水分計において、マイクロ波源から送出される
マイクロ波を被測定物に投射する送信ホーンと、該被測
定物を透過したマイクロ波を受信する第1および第2の
受信ホーンとを具備波長)となるように構成したことを
特徴とするマイクロ波水分計。
A microwave moisture meter that uses microwaves to measure the amount of moisture in an object to be measured includes a transmission horn that projects microwaves emitted from a microwave source onto the object to be measured, and a microwave that passes through the object. 1. A microwave moisture meter comprising first and second receiving horns for receiving wavelengths.
JP7774983A 1983-05-02 1983-05-02 Microwave moisture meter Granted JPS59202049A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7774983A JPS59202049A (en) 1983-05-02 1983-05-02 Microwave moisture meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7774983A JPS59202049A (en) 1983-05-02 1983-05-02 Microwave moisture meter

Publications (2)

Publication Number Publication Date
JPS59202049A true JPS59202049A (en) 1984-11-15
JPH0136898B2 JPH0136898B2 (en) 1989-08-03

Family

ID=13642562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7774983A Granted JPS59202049A (en) 1983-05-02 1983-05-02 Microwave moisture meter

Country Status (1)

Country Link
JP (1) JPS59202049A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60173447A (en) * 1984-02-20 1985-09-06 Ngk Insulators Ltd Method for measuring moisture content

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60173447A (en) * 1984-02-20 1985-09-06 Ngk Insulators Ltd Method for measuring moisture content

Also Published As

Publication number Publication date
JPH0136898B2 (en) 1989-08-03

Similar Documents

Publication Publication Date Title
JPS59197843A (en) Microwave moisture meter
James et al. A microwave method for measuring moisture content, density, and grain angle of wood
SE7904696L (en) DEVICE FOR DETERMINATION OF OBJECTIVITY IN WOOD, ESPECIALLY IN SAGAT WOOD
JPS6353515B2 (en)
US3913012A (en) Microwave moisture measuring system with reflection suppressing means
US4179217A (en) Dynamic photoelasticimeter with rotating birefringent element
JP7472295B2 (en) Apparatus and method for measuring reflected microwave transmission
JPS59202049A (en) Microwave moisture meter
US3005199A (en) Radio-electric measurement of the angular position
US3790940A (en) Communication apparatus having a ranging capability
JPH02118416A (en) Optical sensor
JPS59197842A (en) Microwave moisture meter
RU124812U1 (en) DEVICE FOR MEASURING RESONANCE STRUCTURE CHARACTERISTICS
RU2337331C1 (en) Method for polarisation plane azimuth measurement for optical emitter
SU444052A1 (en) Device for measuring the thickness of antenna radomes on microwave
JPS641631Y2 (en)
JPH03107783A (en) Passive sonar device
SU643817A1 (en) Ice thickness measuring method
RU2520537C2 (en) Method to measure resonance structure characteristics and device for its implementation
SU1191794A1 (en) Apparatus for measuring humidity of building materials
JPS6025446A (en) Method for measuring moisture with microwave
SU1364998A1 (en) Method of determining parameters of extended microwave circuits
SU629823A1 (en) Instrument for measuring the reflectivity of ehf waves
SU415614A1 (en)
CN115184661A (en) All-fiber current transformer based on fiber ring cavity and current measuring method