JPS60173447A - Method for measuring moisture content - Google Patents

Method for measuring moisture content

Info

Publication number
JPS60173447A
JPS60173447A JP3107084A JP3107084A JPS60173447A JP S60173447 A JPS60173447 A JP S60173447A JP 3107084 A JP3107084 A JP 3107084A JP 3107084 A JP3107084 A JP 3107084A JP S60173447 A JPS60173447 A JP S60173447A
Authority
JP
Japan
Prior art keywords
horn
sample box
spacing
horns
electromagnetic horn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3107084A
Other languages
Japanese (ja)
Inventor
Kozo Kishimoto
岸本 公蔵
Yoshitada Kato
加藤 好忠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP3107084A priority Critical patent/JPS60173447A/en
Publication of JPS60173447A publication Critical patent/JPS60173447A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N22/00Investigating or analysing materials by the use of microwaves or radio waves, i.e. electromagnetic waves with a wavelength of one millimetre or more
    • G01N22/04Investigating moisture content

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PURPOSE:To enable measurement of the attenuating rate of a mu wave by packing granular solid in a sample box to a uniform thickness, placing the sample box between two sets of mu wave oscillators and receivers and making the spacing between one transmitter and receiver larger by a specified distance than the spacing between the other transmitter and receiver. CONSTITUTION:A sample is packed into a square sample box 4 and the 2nd electromagnetic horn 5 for signal transmission is disposed below the sample box 4 placed between the 1st electromagnetic horns 2 and 3 for transmission and reception installed at a specified spacing D1. The 2nd electromagnetic horn 6 for reception is disposed above the box 4 and the spacing between the horns 5 and 6 is made D2 by shifting the spacing D2 between the horn 5 and the horn 6 by the distance (d) corresponding to 1/4 wavelength of the microwave used, i.e., 1/2 wavelength of the standing wave from the spacing D1 between the horn 2 and the horn 3. A phase deviation is offset and error is eliminated if the detected voltages of the horns 3, 6 are added. The moisture content of nonuniform granular solid is thus measured and the variance in the measured value is decreased.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はマイクロ波を用いて粒度が不均一の砂粒状固体
の含有水分量を測定する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for measuring the water content of sand-like solids having non-uniform particle sizes using microwaves.

従来技術 一般に、粒度が不均一な砂粒状固体の含有水分量を測定
する方法として、被測定物を乾燥させ、その前後にお番
プる重量変化により含有水分量を算出する方法がある。
BACKGROUND TECHNOLOGY In general, as a method for measuring the water content of a sand granular solid having a non-uniform particle size, there is a method of drying the object to be measured and calculating the water content from the change in weight before and after drying.

ところが、これは乾燥に長時間を要するため含有水分量
の結果を得るまでに時間がかかる欠点があり、又時間を
短縮するため乾燥温度を上げると、被測定物自身の揮発
物質までが蒸発してしまい、真の含有水分量が得られな
くなる欠点がある。
However, this method has the disadvantage that it takes a long time to dry, so it takes a long time to obtain the result of the water content.Also, if the drying temperature is increased to shorten the time, even the volatile substances of the object to be measured will evaporate. This has the disadvantage that the true moisture content cannot be obtained.

一方、短時間で含有水分量を測定する方法として、マイ
クロ波、高周波あるいは赤外線等を使用し、これらが含
有水分量に応じて電気的な変化を生ずることを利用する
方法がある。(例えば特開昭54−153097号公報
参照)しかし、これらの方法で粒度の不均一な砂粒状の
物質に含まれる水分けを測定すると、測定値が大きくば
らつく欠点があり、含有水分■は測定できないことが通
説になっていた。
On the other hand, as a method for measuring the water content in a short time, there is a method that uses microwaves, high frequency waves, infrared rays, etc., and takes advantage of the fact that these produce electrical changes depending on the water content. (For example, see JP-A-54-153097.) However, when these methods are used to measure the water content in sand-like substances with non-uniform particle sizes, the measured values vary widely, and the water content The conventional wisdom was that it couldn't be done.

花明の目的 本発明は上記欠点を解消づ゛るためになされたものであ
って、その目的は粒度の不均一な粒状固体の含有水分量
を、マイクロ波を用いて短時間に測定できかつ測定値の
ばらつきを小さくできる含有水分量の測定方法を提供す
ることにある。
Purpose of the present invention The present invention has been made in order to eliminate the above-mentioned drawbacks, and its purpose is to be able to measure the moisture content of granular solids with non-uniform particle sizes in a short time using microwaves. It is an object of the present invention to provide a method for measuring water content that can reduce variations in measured values.

発明の構成 この発明は上記目的を達成するため、試料箱に粒度の不
均一な粒状固体を充填してその厚さを均一にしかつ表裏
両面を平滑化し、マイクロ波を発信する第1及び第2の
発信用電磁ボーンと同マイクロ波を受信する第1及び第
2の受信用電磁ホーンとの間に前記試料箱を配置し、前
記一方の発信用電磁ホーンと受信用電磁ホーンの間隔を
他方の発信用電磁ホーンど受信用電磁ホーンの間隔より
一定距離、寸なりら使用するマイクロ波の4分の1波長
だ()余分に離間させ、両受信用電磁ホーンの受信出力
をIJ【1算してマイクロ波の減衰吊を算出°するとい
う構成を採用している。
Structure of the Invention In order to achieve the above object, the present invention fills a sample box with granular solids of non-uniform particle size, makes the thickness uniform, and smoothes both the front and back surfaces, and provides first and second tubes that emit microwaves. The sample box is placed between the transmitting electromagnetic bone and the first and second receiving electromagnetic horns that receive the same microwave, and the distance between the one transmitting electromagnetic horn and the receiving electromagnetic horn is set to the other. If the transmitting electromagnetic horn is a certain distance from the receiving electromagnetic horn, it is a quarter of the wavelength of the microwave being used. A configuration is adopted in which the attenuation of microwaves is calculated using

実施例 以下、本発明を具体化した一実施例を第1図〜第7図に
ついて説明する。
EXAMPLE Hereinafter, an example embodying the present invention will be described with reference to FIGS. 1 to 7.

ここでマイクロ波を用い−C物質の含有水分mを測定す
る原■q!を述べる。マイクロ波は物質中を伝播するど
き、物質固有の吸収によって減衰されるが、水分による
吸収は特に大きい。従って、マイクロ波の減衰吊は物質
中に含まれたり、固着したりしている水分伍に大ぎく左
右され、この減衰量を測定することにより物質中の含有
水分量をめることができる。
Here, we use microwaves to measure the moisture content m of the -C substance ■q! state. When microwaves propagate through materials, they are attenuated by absorption inherent in the materials, but absorption by water is particularly large. Therefore, the attenuation of microwaves is largely influenced by the water content contained in or fixed to the substance, and by measuring this attenuation, the amount of water contained in the substance can be determined.

物質固有の吸収は誘電体吸収で次式の誘電率εSによる
Absorption specific to a substance is dielectric absorption and is determined by the dielectric constant εS of the following equation.

εS−εs’−j(εS″′十σ/εOω)・・・(1
)但しεS′ :誘電分極 εs L′/ :双極子の回転遅れ σ/εOω:漏れ電流[εO:真空の誘電率。
εS−εs'−j(εS″′1σ/εOω)...(1
) However, εS': Dielectric polarization εs L'/: Rotation delay of dipole σ/εOω: Leakage current [εO: Dielectric constant of vacuum.

ω=・2πf、σ−導電率] その結果、マイクロ波の伝幅(電圧)Eoutは次式で
現わされる。
ω=·2πf, σ-conductivity] As a result, the microwave propagation width (voltage) Eout is expressed by the following equation.

Eout =「in exp [−a14 +j (ω
t−βり1・・・(2) →−1ノ εS″;εS+σ/εOω β:試料厚み λ:波長 V ;時間 上記(2)式から明らかように、マイクロ波の減衰は誘
電率εS、試料厚さβ及び周波数f等に影響されること
が分る。この結果被測定物の試料厚さは、一定にしなG
プればならないことが分る。
Eout = "in exp [-a14 +j (ω
t-βri1...(2) →-1 εS''; εS+σ/εOω β: Sample thickness λ: Wavelength V; Time As is clear from equation (2) above, the attenuation of microwaves is caused by the dielectric constant εS, It can be seen that G
You will know what you need to do if you press the button.

又、前記(2)式には表われないが、マイクロ波の減衰
は散乱(反射2回折、屈折)の影響を受1ノる。すなわ
ち、第1図に示1ように試1:l(被測定物)1の表面
が乱れた状態では、マイクロ波がその上面で反射散乱し
、この表面状態が変化すれば当然反射散乱の状況も異な
り、透過するマイクロ波の量も変化づる。従って、同一
厚さの試料でありながら表面の状態が異なるだけで、こ
のマイクロ波の減衰吊すkわら含有水分量の測定値が異
なりばらつきが生じる。
Furthermore, although it is not expressed in the above equation (2), the attenuation of microwaves is influenced by scattering (reflection, second diffraction, and refraction). In other words, when the surface of sample 1:l (object to be measured) 1 is disturbed as shown in Figure 1, microwaves are reflected and scattered on its upper surface, and if this surface condition changes, the situation of reflection and scattering will naturally occur. The amount of microwaves transmitted varies as well. Therefore, even though the samples have the same thickness, the measured value of the moisture content of the straw due to the attenuation of the microwaves differs due to differences in the surface condition, resulting in variations.

一方、第2図に示すJ:うに試料1の表面を、ローラや
平板でブレスする程度にならして平滑に覆ると、マイク
ロ波の反則散乱量は一定量となり、測定値のばらつきが
なくなることが判明した。つまり含有水分量を測定する
上で、試料1のFJさを一定にすること及びその表面を
ならして平滑にり−ることは、測定値のばらつぎを少な
くする上で極めて重要な8索であることを発見した。
On the other hand, if the surface of J: sea urchin sample 1 shown in Figure 2 is covered smoothly by pressing it with a roller or flat plate, the amount of counter-scattering of microwaves will be a constant amount, and there will be no variation in the measured values. There was found. In other words, when measuring the water content, it is extremely important to keep the FJ of sample 1 constant and to smooth the surface to reduce the variation in measured values. I discovered that.

又、第3図に示すようにホーン主体2a、導波管2b及
び発信器2Cよりなる発信用電磁ボーン2と、ホーン主
体3a1導波管31)及び受信器3Cよりなる受信用の
電磁ホーン3との間隔りが変化すると、受信用電磁ホー
ン3によるマイクロ波の検出量(以下マイクロ波電圧E
という)が第4図に承りように変化する。これは使用す
るマイクロ波の入射波と反射波が重なり定在波を生ずる
ためで、この定在波は入射波〈使用するマイクロ波)の
2倍の周波数となる。電磁ホーン2,3の間隔りを第4
図に示すように一定値1〕1とすれば、そのマイクロ波
電圧Fはホーン間隔D1に応じた箇所の値となるため一
定値E1になるが、電磁ホーン2.3間に試料1を置く
とその含有水分量に応じて定在波が位相ずれを起重。す
なわち、第5図(a)に示すように電磁ホーン2.3の
間隔りを一定値D1に保持しかつ両ボーン間に試別を置
かない状態で測定したいマイクロ波電圧Eは一定値E1
どなるが、電磁ホーン2,3間に試別を置くと、第5図
(b)に示すように定在波が位相ずれ。
Further, as shown in FIG. 3, there is an electromagnetic bone 2 for transmitting consisting of a horn main body 2a, a waveguide 2b and a transmitter 2C, and an electromagnetic horn 3 for receiving consisting of a horn main body 3a1, a waveguide 31) and a receiver 3C. When the distance between the receiving electromagnetic horn 3 changes and the distance between the
) changes as shown in Figure 4. This is because the incident wave and the reflected wave of the microwave to be used overlap to produce a standing wave, and this standing wave has a frequency twice that of the incident wave (the microwave to be used). Set the distance between electromagnetic horns 2 and 3 to 4th.
As shown in the figure, if the constant value 1 is set to 1, the microwave voltage F will be a constant value E1 because it will be the value at the location corresponding to the horn spacing D1, but the sample 1 will be placed between the electromagnetic horns 2 and 3. The standing wave causes a phase shift depending on the water content. That is, as shown in FIG. 5(a), the microwave voltage E that is to be measured when the distance between the electromagnetic horns 2.3 is maintained at a constant value D1 and there is no trial between the two bones is a constant value E1.
However, if a test tube is placed between the electromagnetic horns 2 and 3, the standing waves will be out of phase as shown in Figure 5(b).

を起すので受信側電磁ホーン3により測定しだいマイク
ロ波電圧E1と異なる電圧F′を検出し、測定値に誤差
を生じることが明らかである。この電圧F′は次式で表
わされる。
It is clear that the electromagnetic horn 3 on the receiving side detects a voltage F' different from the microwave voltage E1 as soon as it is measured, causing an error in the measured value. This voltage F' is expressed by the following equation.

E’=E1−a ・・・(3) そこで、前述した位相ずれによる測定電圧の誤差を補正
する方法を検討した結果、第6図に示す枡状試料箱4内
に試料1を充填し、第7図に示すように一定間隔D1を
おいて設置されたMlの発信用及び受信用の電磁ホーン
2.3の間に置かれた試料箱4の下方に第2の発信用電
磁ホーン5を配置するとともに、試料箱4の上方に第2
の受信用電磁ホーン6を配置しかつ第1の発信用電磁ホ
ーン2と受信用電磁ホーン3の間隔D1から第2の発信
用電磁ホーン5と受信用電磁ホーン6の間隔1”)2を
使用す、るマイクロ波の4分の1波長分つまり定在波の
2分の1波長分に相当する距Ndずらしてホーン5.6
の間隔をD2とし、さらに2゛つの受信用電磁ホーン3
.6の検出電圧を加算ずれば位相ずれが相殺されて誤差
をなくすることができることが判明した。すなわち、第
2の電磁ホーン5,6側においては第5図(C)に示す
ように測定電圧E″が次式 %式%(4) で示されるので、−F式(3)、(4)を加算すれば測
定したいマイクロ波・電圧E1がめられる。
E'=E1-a...(3) Therefore, as a result of considering a method of correcting the error in the measured voltage due to the phase shift mentioned above, we filled the sample 1 into the square-shaped sample box 4 shown in FIG. As shown in FIG. 7, a second transmitting electromagnetic horn 5 is placed below the sample box 4 placed between the Ml transmitting and receiving electromagnetic horns 2.3 installed at a constant interval D1. At the same time, a second
The receiving electromagnetic horn 6 is arranged, and the distance D1 between the first transmitting electromagnetic horn 2 and the receiving electromagnetic horn 3 is set to 1'')2 between the second transmitting electromagnetic horn 5 and the receiving electromagnetic horn 6. The horn is shifted by a distance Nd corresponding to a quarter wavelength of the microwave, that is, a half wavelength of the standing wave.
The distance between the two receiving electromagnetic horns 3 is set to D2.
.. It has been found that by adding up the detection voltages of 6, the phase shift can be canceled out and the error can be eliminated. That is, on the second electromagnetic horns 5 and 6 side, as shown in FIG. ) can be added to find the microwave/voltage E1 to be measured.

なお、本発明は次のJ:うな実施例で具体化することも
できる。
Note that the present invention can also be embodied in the following Examples.

(1)発信用電磁ホーン5と受信用電磁ホーン6との間
隔dをずらす方法として、例えば第8図に示すようにホ
ーン主体6aに接続されている導波管61)の長さを代
えるにうにしても同様の効果が1qられる。
(1) As a method of shifting the distance d between the transmitting electromagnetic horn 5 and the receiving electromagnetic horn 6, for example, as shown in FIG. 8, changing the length of the waveguide 61) connected to the horn main body 6a Even if you do this, the same effect will be obtained by 1q.

(2)第9図に示ずように梼状試刺箱4に試別1を充填
する場合には、ローラ7や平板等でプレスし厚さを一定
にするとともに試別表面を平滑に1”るのが望ましい。
(2) When filling the test sample 1 into the test tube box 4 as shown in FIG. ”It is desirable to do so.

(3)第10図に示す形状の試別箱8の場合は、開口部
から試料を入れると厚さが試料箱により一定となり、又
試別箱内面に試別が押しつ(プられることによりその表
面が平滑になる。この試料箱8の場合は第11図に示す
ように電磁ホーン2,3.5−16が配置される。
(3) In the case of the sample box 8 having the shape shown in Fig. 10, when the sample is inserted through the opening, the thickness becomes constant due to the sample box, and the sample is pushed against the inner surface of the sample box. Its surface becomes smooth.In the case of this sample box 8, electromagnetic horns 2, 3.5-16 are arranged as shown in FIG.

発明の効果 以−に詳)ボしたように、本発明は粒度の不均一な粒状
固体の含有水分ωをシ、0時間に1ll11定できると
ともに測定値のばらつきを小さくづ−ることができる効
果がある。
Effects of the Invention As mentioned in detail below, the present invention has the effect of being able to reduce the moisture content ω of granular solids with non-uniform particle sizes, to be able to determine 1111 at 0 hour, and to reduce the variation in measured values. There is.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は試別の表面状態を示づ正面図、第3
図は電rJ&ホーンの側面図、第4図は電磁ホーンの間
隔とマイクロ波電圧との関係を示すグラフ、第5図(a
 )〜(C)はそれぞれマイクロ波電圧を示すグラフ、
第6図は試料箱の斜視図、第7図は電磁ホーンの配置状
態を示す側面図、第8図はボーン間隔の調整方法の別例
を示す側面図、第9図は試別箱への試別の充填方法を説
明する斜視図、第10図は試別箱の別例を示す斜視図、
第11図は第10図の試料箱と電磁ホーンの位置関係を
示す側面図である。 1・・・試別、2.5・・・発信用電磁ホーン、3.6
・・・受信用電磁ホーン、4.8・・・試料箱、Fl・
・・マイクロ波電圧。 特 晶′1 出 願 人 日本?i!J子 株式会社代
 理 人 弁理士 恩1)博實 第1図 LILlllJll 第3図 り 第5図“°“−′““。
Figures 1 and 2 are front views showing the surface condition of the sample;
The figure is a side view of the electric rJ & horn, Figure 4 is a graph showing the relationship between the distance between the electromagnetic horns and the microwave voltage, and Figure 5 (a
) to (C) are graphs each showing microwave voltage,
Fig. 6 is a perspective view of the sample box, Fig. 7 is a side view showing the arrangement of the electromagnetic horn, Fig. 8 is a side view showing another example of how to adjust the bone spacing, and Fig. 9 is a side view showing the arrangement of the electromagnetic horn. A perspective view illustrating a sampling filling method, FIG. 10 is a perspective view showing another example of a sampling box,
FIG. 11 is a side view showing the positional relationship between the sample box and the electromagnetic horn shown in FIG. 10. 1...Testing, 2.5...Electromagnetic horn for transmitting, 3.6
...Receiving electromagnetic horn, 4.8...Sample box, Fl.
...Microwave voltage. Special Akira'1 Applicant: Japan? i! Jko Co., Ltd. Agent Patent Attorney On 1) Hiromane Figure 1 LILlllJll Figure 3 Figure 5 "°"-'"".

Claims (1)

【特許請求の範囲】 1、試料箱に粒度の不均一な粒状固体を充填してその厚
さを均一にしかつ表裏両面を平滑化し、マイクロ波を発
信する第1及び第2の発信用電磁ホーンと同マイクロ波
を受信する第1及び第2の受信用電磁ホーンとの間に前
記試料箱を配置し、前記一方の発信用電磁ホーンと受信
用電磁ホーンの間隔を使方の発信用電磁ホーンと受信用
電磁ホーンの間隔より一定距離、すなわち使用するマイ
クロ波の4分の1波長だけ余分に離間させ、両受信用電
磁ホーンの受信出力を加算してマイクロ波の減衰量を算
出することを特徴とする含有水分量の測定方法。 2、枡状試料箱の下方に発信用電磁ホーンを配置し、上
方に受信用電磁ホーンを配置する特許請求の範囲第1項
記載の含有水分量の測定方法。 3、試料箱は均一厚さの薄い直方体に形成され、該試料
箱の内側面に試料が押圧されて表面が平滑化されている
特許請求の範囲第1項記載の含有水分量の測定方法。
[Claims] 1. First and second transmitting electromagnetic horns that transmit microwaves by filling a sample box with granular solids of non-uniform particle size to make the thickness uniform and smoothing both the front and back surfaces. The sample box is placed between the first and second receiving electromagnetic horns that receive the same microwave, and the distance between the one transmitting electromagnetic horn and the receiving electromagnetic horn is adjusted to the desired transmitting electromagnetic horn. and the receiving electromagnetic horn by a certain distance, that is, a quarter wavelength of the microwave to be used, and calculate the amount of microwave attenuation by adding the received outputs of both receiving electromagnetic horns. Characteristic method for measuring water content. 2. The method for measuring water content according to claim 1, wherein a transmitting electromagnetic horn is disposed below the square-shaped sample box, and a receiving electromagnetic horn is disposed above the square-shaped sample box. 3. The method for measuring water content according to claim 1, wherein the sample box is formed into a thin rectangular parallelepiped with a uniform thickness, and the sample is pressed against the inner surface of the sample box to smooth the surface.
JP3107084A 1984-02-20 1984-02-20 Method for measuring moisture content Pending JPS60173447A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3107084A JPS60173447A (en) 1984-02-20 1984-02-20 Method for measuring moisture content

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3107084A JPS60173447A (en) 1984-02-20 1984-02-20 Method for measuring moisture content

Publications (1)

Publication Number Publication Date
JPS60173447A true JPS60173447A (en) 1985-09-06

Family

ID=12321183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3107084A Pending JPS60173447A (en) 1984-02-20 1984-02-20 Method for measuring moisture content

Country Status (1)

Country Link
JP (1) JPS60173447A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0252244A (en) * 1988-08-16 1990-02-21 Toda Constr Co Ltd Measuring method for amount of water of aggregate

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59202049A (en) * 1983-05-02 1984-11-15 Yokogawa Hokushin Electric Corp Microwave moisture meter

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59202049A (en) * 1983-05-02 1984-11-15 Yokogawa Hokushin Electric Corp Microwave moisture meter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0252244A (en) * 1988-08-16 1990-02-21 Toda Constr Co Ltd Measuring method for amount of water of aggregate

Similar Documents

Publication Publication Date Title
US4727311A (en) Microwave moisture measurement using two microwave signals of different frequency and phase shift determination
Meyer et al. A microwave method for density independent determination of the moisture content of solids
Ma et al. Permittivity determination using amplitudes of transmission and reflection coefficients at microwave frequency
US4546311A (en) Arrangement for measuring moisture content
GB2057137A (en) Microwave method for measuring the relative moisture content of an object
US5767685A (en) Portable microwave moisture measurement instrument using two microwave signals of different frequency and phase shift determination
US4962384A (en) Microwave antenna apparatus
KR940022081A (en) Microwave densitometer
US4755743A (en) Method and apparatus for measuring the moisture content or dry-matter content of materials using a microwave dielectric waveguide
GB1566737A (en) Device for the measurement of the moisture content of a sample
US7031862B2 (en) Apparatus and analysis method for determination of moisture in materials
US3553573A (en) System for moisture measurement at microwave frequencies
US4233559A (en) Quickly performed measuring method for ascertaining the concentration of the polar components in a material otherwise mainly non-polar
JPS60173447A (en) Method for measuring moisture content
US5083089A (en) Fluid mixture ratio monitoring method and apparatus
JPH02238348A (en) Method and apparatus for measuring water content of material
Geiger et al. Dielectric constants of soils at microwave frequencies
RU2572087C2 (en) Moisture meter
Huang Design, calibration and data interpretation for a one-port large coaxial dielectric measurement cell
US3612996A (en) Indicating by microwave energy the constituent proportions of a flowing substance
Toropainen New method for measuring properties of nonhomogeneous materials by a two-polarization forward-scattering measurement
US11408835B2 (en) Microwave soil moisture sensor based on phase shift method and independent of electrical conductivity of the soil
SHIBATA et al. Measurement of complex permittivity for liquid phantom by transmission line method using coaxial line
Suresh et al. Microwave measurement of the degree of binding of water absorbed in soils
Riblet a Compact Waveguide" Resolver" for the Accurate Measurement of Complex Reflection and Transmission Coefficients Using the 6-Port Measurement Concept