JPH0136895B2 - - Google Patents

Info

Publication number
JPH0136895B2
JPH0136895B2 JP14485682A JP14485682A JPH0136895B2 JP H0136895 B2 JPH0136895 B2 JP H0136895B2 JP 14485682 A JP14485682 A JP 14485682A JP 14485682 A JP14485682 A JP 14485682A JP H0136895 B2 JPH0136895 B2 JP H0136895B2
Authority
JP
Japan
Prior art keywords
flow cell
measured
metal
glass
constant temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14485682A
Other languages
Japanese (ja)
Other versions
JPS5935131A (en
Inventor
Shinichi Yanai
Kyoshi Yamashita
Koji Matsumoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP14485682A priority Critical patent/JPS5935131A/en
Publication of JPS5935131A publication Critical patent/JPS5935131A/en
Publication of JPH0136895B2 publication Critical patent/JPH0136895B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/0332Cuvette constructions with temperature control
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/05Flow-through cuvettes

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Optical Measuring Cells (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【発明の詳細な説明】 〔技術分野〕 本発明は恒温フローセルに関し、特に自動生化
学分析装置に最適な恒温フローセルに関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a constant temperature flow cell, and particularly to a constant temperature flow cell that is most suitable for an automatic biochemical analyzer.

〔背景技術とその問題点〕[Background technology and its problems]

一般に恒温フローセルは所定の容器内に収納さ
れた被測定物を設定温度に保持するものである
が、自動生化学分析装置においては、被測定物
(例えば試料としての血液に試薬が投入されたも
の)を素早く所定温度に上昇させて、化学反応の
早期安定化及び処理時間の短縮化を図ることによ
り測定データの精度の向上を図ることができる恒
温フローセルが必要になる。このような要請に答
えるため、例えば被測定物を流し込み、これを測
光するフローセル本体に熱電子素子(例えばペル
チエ素子)を設けた恒温フローセルが従来より使
用されてきている。
In general, a thermostatic flow cell maintains the measured object stored in a predetermined container at a set temperature, but in an automatic biochemical analyzer, the measured object (for example, blood as a sample with reagents added to it) ) is needed to quickly raise the temperature to a predetermined temperature, thereby stabilizing the chemical reaction early and shortening the processing time, thereby improving the accuracy of measurement data. In order to meet such demands, constant-temperature flow cells have been used, for example, in which a thermoelectronic element (for example, a Peltier element) is provided in a flow cell body into which an object to be measured is poured and photometry is performed.

ところで、従来の恒温フローセルの材質は測定
の為光が通過する必要のあるウインドウ面以外の
ほとんどの面は例えばステンレス等の金属でつく
られ、これらの恒温フローセルの製作の為には、
金属研磨や微細加工等の高い製造技術が必要であ
つた。逆に加工精度が悪いと被測定物の残留汚染
(クロスコンタミネーシヨン)が多く、加工上の
キズ、バリ等により気泡の付着を生じ、測定精度
が低下してしまう欠点があつた。
By the way, most of the surfaces of conventional constant temperature flow cells other than the window surface through which light must pass for measurement are made of metal such as stainless steel, and in order to manufacture these constant temperature flow cells,
Advanced manufacturing techniques such as metal polishing and micromachining were required. On the other hand, if the processing accuracy is poor, there is a lot of residual contamination (cross contamination) of the object to be measured, and there is a drawback that air bubbles are attached due to processing scratches, burrs, etc., and the measurement accuracy is reduced.

また近年生化学分析の進歩にともない、自動生
化学分析装置においては、多種多様な被測定物の
測定項目が増大し、例えば金属イオンの測定は金
属製(Fe成分を含むもの)の恒温フローセル自
体の金属イオン折出の為に測定困難であつた。
In addition, with the progress of biochemical analysis in recent years, the number of measurement items for a wide variety of analytes has increased in automated biochemical analyzers. Measurement was difficult due to metal ion precipitation.

〔目的〕〔the purpose〕

本発明は上記事情に基づいてなされたもので、
被測定物の残留汚染等が少なく、また内面の凹凸
面での空気等の付着が少なく、測定データの精度
を向上させる事ができ、特に被測定物が金属イオ
ン等の金属製フローセルでは測定しずらい測定項
目でも、また金属製フローセルを腐食させる有害
性のある測定項目でも容易に測定可能で、かつ製
作容易なガラス製恒温フローセルを提供すること
を目的とする。
The present invention was made based on the above circumstances, and
There is less residual contamination of the object to be measured, and there is less air adhesion on the uneven inner surface, which improves the accuracy of measurement data, especially when the object to be measured is made of metal such as metal ions. The purpose of the present invention is to provide a constant temperature glass flow cell that can easily measure difficult measurement items or measurement items that are harmful to corrode metal flow cells, and is easy to manufacture.

〔概要〕〔overview〕

本発明は上記目的を達成する為に、被測定物を
恒温状態に保持する恒温フローセルにおいて、被
測定物が流動する流路をガラスで形成し、このガ
ラス製流路の外側部を覆う金属壁と、前記流路と
の境界部に、前記ガラスと前記金属との熱膨張差
吸収用部材(熱伝導性の良いもの)を挾み込んだ
ことを特徴とするものである。
In order to achieve the above object, the present invention has a constant temperature flow cell that maintains the object to be measured at a constant temperature, in which a channel through which the object to be measured flows is formed of glass, and a metal wall covers the outside of the glass channel. and a member (having good thermal conductivity) for absorbing the difference in thermal expansion between the glass and the metal is inserted at the boundary between the glass and the metal.

〔実施例〕〔Example〕

以下本発明の恒温フローセルを図面を参照して
説明する。第1図は本発明の恒温フローセルの一
実施例を示す一部切欠断面図であり、同図に示す
恒温フローセルは被測定物に特定のフイルタを通
した光を透過して分析する方式の自動生化学分析
装置に使用するものを一例として示すものであ
る。同図において、1はフローセル本体でこのフ
ローセル1の側面には分析用の光を通過させる測
光用窓2が設けられており、他方の直交する面に
は、熱電子素子3,3が図示しないサーマルコン
パウンドを介して取付けられている。その際、熱
電子素子3,3に供給される電荷符号が等しい場
合フローセル本体1の両側面に接する熱電子素子
3,3の接触面が加熱面或いは冷却面の一方に統
一されるように接触している。そしてこの熱電子
素子3,3に熱を送り或いはこの熱電子素子3,
3の熱を発散する放熱板4が熱電子素子3,3を
介してフローセル本体1に取付けられる。またこ
の放熱板4はフローセル本体1に熱電子素子3,
3を固定している。6はフローセルに被測定物を
充填する吸入管であり、7は被測定物を測定後、
被測定物を排出する排出管である。
The constant temperature flow cell of the present invention will be explained below with reference to the drawings. FIG. 1 is a partially cutaway sectional view showing an embodiment of the constant temperature flow cell of the present invention. This is an example of what is used in a biochemical analyzer. In the figure, reference numeral 1 denotes a flow cell main body, and a photometric window 2 for passing analytical light is provided on the side of the flow cell 1, and thermionic elements 3, 3 (not shown) are provided on the other orthogonal surface. Attached via thermal compound. At this time, if the signs of the charges supplied to the thermionic elements 3 and 3 are equal, the contact surfaces of the thermionic elements 3 and 3 that are in contact with both sides of the flow cell body 1 are unified into one of the heating surface and the cooling surface. are doing. Then, heat is sent to the thermionic elements 3, 3, or thermionic elements 3,
A heat dissipating plate 4 for dissipating heat of 3 is attached to the flow cell body 1 via thermionic elements 3, 3. This heat sink 4 also includes a thermionic element 3 and a thermionic element 3 on the flow cell body 1
3 is fixed. 6 is a suction pipe for filling the flow cell with the object to be measured, and 7 is a suction pipe for filling the object to be measured into the flow cell.
This is a discharge pipe that discharges the object to be measured.

次に第2図において、フローセル本体の内部構
造を説明する。5はガラス製のフローセルで被測
定物を充填する吸入管6と、測定後、被測定物を
排出する排水管7と、測定用窓8とを有する。こ
のフローセル本体5の外周は熱伝導率の良好な金
属(例えば低温銀ロウ)で形成される熱膨張差吸
収用部材9で覆い更にその外周は同じく熱伝導率
の良い金属壁(例えば銀、銅)12で包含され
る。金属壁12の一部にはフローセル本体5の測
定用窓8と連通するように測光用窓2が設けられ
ている。
Next, referring to FIG. 2, the internal structure of the flow cell main body will be explained. Reference numeral 5 is a flow cell made of glass and has a suction pipe 6 for filling the object to be measured, a drain pipe 7 for discharging the object to be measured after measurement, and a measurement window 8. The outer periphery of the flow cell main body 5 is covered with a thermal expansion difference absorbing member 9 made of a metal with good thermal conductivity (for example, low-temperature silver solder), and the outer periphery is covered with a metal wall that also has good thermal conductivity (for example, silver, copper solder). )12. A photometric window 2 is provided in a part of the metal wall 12 so as to communicate with the measurement window 8 of the flow cell body 5.

第3図において、フローセル本体1の内部には
熱膨張差吸収用部材9の近傍でかつフローセル5
の光路長方向の中央付近に、被測定物に可及的に
近接させて温度制御用センサ10が埋設されてい
る。熱電子素子3,3の両側はサーマルコンパウ
ンド11を介してそれぞれフローセル本体1と金
属壁4に接触されている。
In FIG. 3, inside the flow cell body 1, there is a flow cell 5 near the member 9 for absorbing thermal expansion difference.
A temperature control sensor 10 is buried near the center in the optical path length direction as close as possible to the object to be measured. Both sides of the thermionic elements 3, 3 are in contact with the flow cell body 1 and the metal wall 4, respectively, via a thermal compound 11.

以上の構成において、次にその作用を説明す
る。このように構成された恒温フローセルは図示
しない適宜の自動生化学分析装置に装着して使用
される。被測定物が吸引管6からフローセル5内
に吸引される前に電源が投入される。熱電子素子
3として知られているペルチエ素子は周知の如
く、ペルチエ効果、即ち、2種の物質、例えば2
種の金属と半導体とを接合してそこに電流を流す
と、その接合点でジユール熱以外に熱の発生又は
吸収が起るという効果を利用したものであり、こ
の熱電子素子3の対向面が熱的に同様(例えば加
熱側と加熱側)となるように取付けられている為
設定温度に安定している。この状態で被測定物が
吸入管6から吸引されてフローセル5および更に
排出管7の途中まで充填される。温度制御用セン
サ10が被測定物の温度を設定温度以下と判断す
ると図示しない制御回路を動作させ被測定物を加
熱させる為熱電子素子3を動作させる。熱電子素
子3で発熱された熱はサーマルコンパウンド1
1、金属壁12、熱膨張差吸収用部材9およびフ
ローセル本体5を介して被測定物に伝達される。
温度制御用センサ10が被測定物の温度を設定温
度と一致したと判断すると熱電子素子3は加熱を
やめ、微妙な温度変化でもつて被測定物を加熱冷
却して制御する。従つて温度制御センサ10に接
している被測定物は一定温度に保持される。
In the above configuration, its operation will be explained next. The constant temperature flow cell configured in this manner is used by being attached to an appropriate automatic biochemical analyzer (not shown). Before the object to be measured is sucked into the flow cell 5 from the suction tube 6, the power is turned on. The Peltier device, also known as thermionic device 3, is known to have a Peltier effect, that is, a combination of two substances, e.g.
This method utilizes the effect that when a seed metal and a semiconductor are bonded and a current is passed therethrough, heat is generated or absorbed in addition to Joule heat at the bonding point. Since they are installed so that they are thermally similar (for example, on the heating side and heating side), the set temperature is stable. In this state, the object to be measured is sucked through the suction pipe 6 and is filled halfway into the flow cell 5 and further into the discharge pipe 7. When the temperature control sensor 10 determines that the temperature of the object to be measured is below the set temperature, a control circuit (not shown) is operated to operate the thermionic element 3 in order to heat the object to be measured. The heat generated by thermionic element 3 is transferred to thermal compound 1
1. It is transmitted to the object to be measured via the metal wall 12, the member 9 for absorbing thermal expansion difference, and the flow cell body 5.
When the temperature control sensor 10 determines that the temperature of the object to be measured matches the set temperature, the thermionic element 3 stops heating and controls the object by heating and cooling even with slight temperature changes. Therefore, the object to be measured that is in contact with the temperature control sensor 10 is maintained at a constant temperature.

〔発明の効果〕〔Effect of the invention〕

以上述べた如く、フローセルをガラスにて形成
した為、被測定物である流体の流れに沿つた穴の
曲がり等加工を容易に行うことができ、また流路
の内面は凹凸が少なく空気の付着あるいは被測定
物の残留汚染等がなくなり測定データの精度を向
上させることができる。従来の金属製のフローセ
ルでは測定が困難であつた金属を腐食させる有害
な項目も測定可能となる。
As mentioned above, since the flow cell is made of glass, it is easy to bend the hole along the flow of the fluid being measured, and the inner surface of the flow path has few irregularities to prevent air from adhering. Alternatively, there is no residual contamination of the object to be measured, and the accuracy of measurement data can be improved. It is now possible to measure harmful items that corrode metals, which were difficult to measure with conventional metal flow cells.

また金属壁とフローセルとの境界部を熱膨張差
吸収用部材で埋めることにより、金属とガラスの
熱膨張差を吸収でき、熱的変化の大きい中で、ガ
ラス製のフローセルを破損することがない。また
金属壁からガラス製のフローセルへの熱伝導率が
良くなり、被測定物を短時間で設定温度に保持す
ることができる。
In addition, by filling the boundary between the metal wall and the flow cell with a material that absorbs thermal expansion differences, the difference in thermal expansion between metal and glass can be absorbed, and the glass flow cell will not be damaged even under large thermal changes. . In addition, the thermal conductivity from the metal wall to the glass flow cell is improved, and the object to be measured can be maintained at the set temperature in a short time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の恒温フローセルの一実施例を
示す一部切欠斜視図、第2図は第1図の恒温フロ
ーセル本体のA―A矢視断面図、第3図は第1図
の恒温フローセルのB方向から見た正面図であ
る。 1…フローセル、2…測光用窓、3…熱電子素
子、4…放熱板、6…吸入管、7…排水管、9…
熱膨張差吸収用部材、12…金属壁。
FIG. 1 is a partially cutaway perspective view showing an embodiment of the constant temperature flow cell of the present invention, FIG. 2 is a sectional view taken along the line A-A of the constant temperature flow cell body shown in FIG. 1, and FIG. 3 is a constant temperature flow cell shown in FIG. 1. FIG. 3 is a front view of the flow cell as seen from direction B. FIG. 1... Flow cell, 2... Photometric window, 3... Thermionic element, 4... Heat sink, 6... Suction pipe, 7... Drain pipe, 9...
Member for absorbing thermal expansion difference, 12...metal wall.

Claims (1)

【特許請求の範囲】[Claims] 1 被測定物が流し込まれるフローセルに直接又
は熱伝導性の良い物質を介して接触配置された熱
電子素子に通電することにより熱の移送を行な
い、前記被測定物を加熱或いは冷却することによ
り、被測定物を恒温状態に保持する恒温フローセ
ルにおいて、被測定物が流動する流路をガラスで
形成し、このガラス製流路の外側部を覆う金属壁
と前記流路との境界部に前記ガラスと前記金属と
の熱膨張差吸収用の部材を埋め込んだことを特徴
とする恒温フローセル。
1. Transfer of heat by energizing a thermionic element placed in contact with the flow cell into which the object to be measured is placed, either directly or through a substance with good thermal conductivity, to heat or cool the object to be measured, In a constant-temperature flow cell that maintains a measured object at a constant temperature, a flow path through which the measured object flows is formed of glass, and the glass is placed at the boundary between the flow path and a metal wall that covers the outside of this glass flow path. A constant temperature flow cell characterized in that a member for absorbing the difference in thermal expansion between the metal and the metal is embedded.
JP14485682A 1982-08-23 1982-08-23 Thermostatic flow cell Granted JPS5935131A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14485682A JPS5935131A (en) 1982-08-23 1982-08-23 Thermostatic flow cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14485682A JPS5935131A (en) 1982-08-23 1982-08-23 Thermostatic flow cell

Publications (2)

Publication Number Publication Date
JPS5935131A JPS5935131A (en) 1984-02-25
JPH0136895B2 true JPH0136895B2 (en) 1989-08-03

Family

ID=15371996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14485682A Granted JPS5935131A (en) 1982-08-23 1982-08-23 Thermostatic flow cell

Country Status (1)

Country Link
JP (1) JPS5935131A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009029949B3 (en) * 2009-06-19 2011-01-05 Siemens Aktiengesellschaft Heatable flow cell

Also Published As

Publication number Publication date
JPS5935131A (en) 1984-02-25

Similar Documents

Publication Publication Date Title
EP2205358B1 (en) Aspirating and dispensing small volumes of liquids
US9086338B2 (en) Sensing device
US6170267B1 (en) Sample cooling apparatus and methods
EP1102066B1 (en) Assay test system with temperature control means
CN101156063B (en) Method and apparatus for providing an electrochemical sensor at an adjustable temperature
US7285425B2 (en) Assay test system for regulating temperature
KR102007507B1 (en) Ir spectrometry cell with temperature control means
JPH0136895B2 (en)
US20060104865A1 (en) Heating and cooling multiple containers or multi-chamber containers
JP4222838B2 (en) Verification test system for adjusting temperature
JPH0125422B2 (en)
JPS60164476A (en) Reaction chamber
CN102692444A (en) Analysis apparatus and analysis method
JPH0715476B2 (en) Automatic chemical analyzer
JPH0429400Y2 (en)
US11732973B2 (en) Device for the thermal treatment of test samples
JPS60128341A (en) Temperature control method of liquid sample
JP2001305031A (en) Heating concentration device
JPS61212764A (en) Thermostatic cell for automatic chemical analyzer
JPH0372948B2 (en)
JPH08313442A (en) Emission detector
JPS6042363Y2 (en) optical saturation thermometer
JP2007064879A (en) Specimen analyzing apparatus
JPS60259947A (en) Ion selective electrode
JPH048982Y2 (en)