JPS5935131A - Thermostatic flow cell - Google Patents

Thermostatic flow cell

Info

Publication number
JPS5935131A
JPS5935131A JP14485682A JP14485682A JPS5935131A JP S5935131 A JPS5935131 A JP S5935131A JP 14485682 A JP14485682 A JP 14485682A JP 14485682 A JP14485682 A JP 14485682A JP S5935131 A JPS5935131 A JP S5935131A
Authority
JP
Japan
Prior art keywords
flow cell
passage
measured
metal wall
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14485682A
Other languages
Japanese (ja)
Other versions
JPH0136895B2 (en
Inventor
Shinichi Yanai
柳井 伸一
Kiyoshi Yamashita
清 山下
Koji Matsumoto
浩二 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP14485682A priority Critical patent/JPS5935131A/en
Publication of JPS5935131A publication Critical patent/JPS5935131A/en
Publication of JPH0136895B2 publication Critical patent/JPH0136895B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/0332Cuvette constructions with temperature control
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/05Flow-through cuvettes

Abstract

PURPOSE:To achieve a highly accurate analysis with the inner wall of a passage hard to pollute while eliminating attached air by sandwiching a member for absorbing thermal expansion with a metal wall covering the passage of material to be measured made of glass and the border between the passage and the metal wall in a thermostatic flow cell. CONSTITUTION:A tube, a passage of material to e measured, composing a suction tube section 6, a measuring window section 8 and a drain tube section 9, is made of glass in a thermostatic flow cell 1 of particularly an automatic chemical analyzer. A thermal expansion difference absorbing member 9 of a highly heat conductive metal (low temperature silver solder or the like) covers the circumference of a metal wall 12 covering the passage and the border between the passage and the metal wall 12. A temperature control sensor 10 is buried close to the body 5 of the flow cell and both sides of thermoelectric elements 3 and 3 are brought into contact with the metal wall 4 separately through a thermal compound 11. This facilitates the holding of the flow cell body 5 at a constant temperature while minimizing irregularities of the inner surface of the tube of the body 5 thereby improving the measuring accuracy eliminating the attachment of contaminants and air bubbles.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は恒温フロー↓ルに関し、特に自動生化学分析装
置に最適な恒温フローセルに関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a constant temperature flow cell, and particularly to a constant temperature flow cell that is most suitable for an automatic biochemical analyzer.

〔背景技術とその問題点〕[Background technology and its problems]

一般に恒温フローセルは所定の容器内に収納された被測
定物を設定温度に保持するものであるが、自動生化学分
析装置においては、被測定物(例えば試料としての血液
に試薬が投入されたもの)を素早く所定温度に上昇させ
て、化学反応の早期安定化及び処理時間の短縮化を図る
ことにょシ測定データの精度の向上を図ることができる
恒温フローセルが必要になる。このような要請に答える
ため、例えば被測定物を流し込み、これを測光するフル
ーセル本体に熱電子素子(例えばベルチェ素子)を設け
た恒温フローセルが従来より使用され□てきている。
In general, a thermostatic flow cell maintains the measured object stored in a predetermined container at a set temperature, but in an automatic biochemical analyzer, the measured object (for example, blood as a sample with reagents added to it) ) is needed to quickly raise the temperature to a predetermined temperature, thereby stabilizing the chemical reaction quickly and shortening the processing time, thereby improving the accuracy of measurement data. In order to meet such demands, for example, constant temperature flow cells have been used, in which a thermoelectronic element (for example, a Vertier element) is provided in the main body of the full cell, into which an object to be measured is poured and photometrically measured.

ところで、従来の恒温フローセルの材質は測定の為光が
通過する必要のあるウィンドウ面以外のほとんどの面は
例えばステンレス等の金属でつくられ、これらの恒温フ
ローセルの製作の為には、金属研磨や微細加工等の高い
製造技術が必要であった。逆に加工精度が悪いと被測定
物の残留汚染(クロスコンタミネーション)が多く、加
工上のキズ9バリ等によ)気泡の付着を生じ、測定精度
が低下してしまう欠点があった。
By the way, most of the surfaces of conventional constant-temperature flow cells, other than the window surface through which light must pass for measurement, are made of metal such as stainless steel, and in order to manufacture these constant-temperature flow cells, metal polishing and Advanced manufacturing technology such as microfabrication was required. On the other hand, if the processing accuracy is poor, there is a lot of residual contamination (cross contamination) of the object to be measured, and air bubbles (due to processing scratches, 9 burrs, etc.) are formed, resulting in a reduction in measurement accuracy.

また近年生化学分析の進歩にともない、自動生化学分析
装置においては、多種多様な被測定物の測定項目が増大
し、例えば金属イオンの測定は金属製(Fe成分を含む
もの)の恒温フローセル自体の金属イオン析出の為圧測
定困難であった。
In addition, with the progress of biochemical analysis in recent years, the number of measurement items for a wide variety of analytes has increased in automated biochemical analyzers. It was difficult to measure pressure due to metal ion precipitation.

〔目的〕〔the purpose〕

本発明は上記事情に基づいてなされたもので、被測定物
の残留汚染等が少なく、また内面の凹凸面での空気等の
付着が少なく、測定データの精度を向上させる事ができ
、特に被測定物が金属イオン等の金属製フローセルでは
測定しずらい測定項目でも、1だ金属製フローセルを腐
食させる有害性のある測定項目でも容易圧測定可能で、
かつ製作容易なガラス製恒温フローセルを提供すること
を目的とする。
The present invention has been made based on the above circumstances, and it is possible to reduce residual contamination of the object to be measured, reduce adhesion of air, etc. to the uneven inner surface, and improve the accuracy of measurement data. Pressure can be easily measured even for measurement items such as metal ions that are difficult to measure with a metal flow cell, as well as measurement items that are harmful and corrode the metal flow cell.
The object of the present invention is to provide a constant temperature glass flow cell that is easy to manufacture.

〔概要〕〔overview〕

本発明は上記目的を達成する高圧、被測定物を恒温状態
に保持する恒温フローセルにおいて、被測定物が流動す
る流路をガラスで形成し、このガラス製流路の外側部を
覆う金属壁と、前記流路との境界部に、前記ガラスと前
記金属との熱膨張差吸収用部材(熱伝導性の良いもの)
を挾み込んだことを特徴とするものである。
The present invention provides a high-pressure, constant-temperature flow cell that maintains a measured object at a constant temperature to achieve the above objects, in which a flow path through which the measured object flows is formed of glass, and a metal wall is provided to cover the outside of the glass flow path. , a member for absorbing the difference in thermal expansion between the glass and the metal (a material with good thermal conductivity) is placed at the boundary with the flow path.
It is characterized by the inclusion of.

〔実施例〕〔Example〕

以下本発明の恒温フローセルを図面を参照して説明する
。第1図は本発明の恒温フローセルの一実施例を示す一
部切欠断面図であ勺、同図に示す恒温7日−セルは被測
定物に特定のフィルタを通した光を透過して分析する方
式の自動生化学分析装置に使用するものを一例として示
すものである。
The constant temperature flow cell of the present invention will be explained below with reference to the drawings. Figure 1 is a partially cutaway cross-sectional view showing an embodiment of the constant temperature flow cell of the present invention. This is an example of what is used in an automatic biochemical analyzer of this type.

同図において、1はフローセル本体でこのフローセル1
の側面には分析用の元を通過させる測光用窓2が設けら
れておシ、他方の直交する面には、熱電子素子3.6が
図示しないサーマルコンパウンドを介して取付けられて
いる。その際、熱電子素子3.3に供給される電荷符号
が等しい場合フローセル本体10両側面に接する熱電子
素子6゜6の接触面が加熱面或いは冷却面の一部に統一
されるように接触している。そしてこの熱電子素子3.
3に熱を送シ或いはこの熱電子素子6,3の熱を発散す
る放熱板4が熱電子素子3.3を介してフローセル本体
1に取付けられる。またこの放熱板4はフローセル本体
1に熱電子素子3.6を固定している。6はフローセル
に被測定物を充填する吸入管であシ、7は被測定物を測
定後、被測定物を排出する排出管である。
In the same figure, 1 is the flow cell main body, and this flow cell 1
A photometric window 2 is provided on the side surface of the photometer to allow the source for analysis to pass through, and a thermionic element 3.6 is attached to the other orthogonal surface via a thermal compound (not shown). At this time, if the signs of the charges supplied to the thermionic elements 3.3 are equal, the contact surfaces of the thermionic elements 6.6 that are in contact with both sides of the flow cell body 10 are unified into a part of the heating surface or cooling surface. are doing. And this thermionic element 3.
A heat dissipation plate 4 for transmitting heat to the thermionic elements 3 and 3 or dissipating the heat of the thermionic elements 6 and 3 is attached to the flow cell body 1 via the thermionic elements 3 and 3. The heat sink 4 also fixes a thermionic element 3.6 to the flow cell body 1. 6 is a suction pipe for filling the flow cell with the object to be measured, and 7 is a discharge pipe for discharging the object to be measured after measuring the object.

次に第2図において、フローセル本体の内部構造を説明
する。5はガラス製のフローセルで被測定物を充填する
吸入管6と、測定後、被測定物を排出する排水管7と、
測定用窓8とを有する。このフローセル本体5の外周は
熱伝導率の良好な金属(例えば低温銀pつ)で形成され
る熱膨張差吸収用部材9で覆い更圧その外周は同じく熱
伝導率の良い金属壁(例えば銀、銅)12で包含される
Next, referring to FIG. 2, the internal structure of the flow cell main body will be explained. Reference numeral 5 denotes a suction pipe 6 for filling the object to be measured in a glass flow cell, and a drain pipe 7 for discharging the object to be measured after measurement.
It has a measurement window 8. The outer periphery of the flow cell main body 5 is covered with a thermal expansion difference absorbing member 9 made of a metal with good thermal conductivity (for example, low-temperature silver), and the outer periphery of the flow cell body 5 is covered with a metal wall that also has good thermal conductivity (for example, low-temperature silver). , copper) 12.

金属壁12の一部にはフローセル本体5の測定用窓8と
連通するように測光用窓2が設けられている。
A photometric window 2 is provided in a part of the metal wall 12 so as to communicate with the measurement window 8 of the flow cell body 5.

第6図処おいて、70−セル本体1の内部には熱膨張差
吸収用部材9の近傍でかつフローセル5の光路長方向の
中央付近に、被測定物に可及的に近接させて温度制御用
センサ10が埋設されている。熱電子素子3,6の両側
はサーマルコンパウンド11を介してそれぞれフローセ
ル本体1と金属壁4に接触されてしる。
In FIG. 6, the inside of the cell main body 1 is located near the thermal expansion difference absorbing member 9 and near the center of the flow cell 5 in the optical path length direction, and as close as possible to the object to be measured. A control sensor 10 is embedded. Both sides of the thermionic elements 3 and 6 are brought into contact with the flow cell body 1 and the metal wall 4, respectively, via a thermal compound 11.

以上の構成において、次にその作用を説明する。In the above configuration, its operation will be explained next.

このよう罠構成された恒温フローセルは図示しない適宜
の自動生化学分析装置に装着して使用される。被測定物
が吸引管6から7μmセル5内に吸引される前圧電源が
投入さnる。熱電子素子3として知られているベルチェ
素子は周知の如く、ペルチェ効果、即ち、2種の物質、
例えば2種の金属と牛導体とを接合してそこに電流を流
すと、その接合点でジュール熱以外に熱の発生又は吸収
が起るという効果を利用したものであシ、この熱電子素
子6の対向面が熱的に同様(例えば加熱側と加熱側)と
なるように取付けられている為設定温度に安定している
。この状態で被測定物が吸入管6から吸引されてフロー
セル5および更に排出管7の途中まで充填される。温度
制御用センナ10が被測定物の温度を設定温度以下と判
断すると図示しない制御回路を動作させ被測定物を加熱
させる為熱電子素子3を動作させる。熱電子素子6で発
熱された熱はサーマルコンパウンド11.金属壁12.
熱膨張差吸収用部材9およびフローセル本体5を介して
被測定物に伝達される。温度制御用センサ10が被測定
物の温度を設定温度と一致したと判断すると熱電子素子
3は加熱をやめ、微妙な温度変化でもって被測定物を加
熱冷却して制御する。従って温度制御センナ10に接し
ている被測定物は一定温度に保持される。
The thermostatic flow cell having such a trap structure is used by being attached to an appropriate automatic biochemical analyzer (not shown). Before the object to be measured is sucked into the 7 μm cell 5 from the suction tube 6, the power source is turned on. As is well known, the Vertier element known as the thermionic element 3 has the Peltier effect, that is, two kinds of materials,
For example, this thermionic element utilizes the effect that when two types of metals and a conductor are joined together and a current is passed through them, heat other than Joule heat is generated or absorbed at the junction. Since the opposing surfaces of 6 are installed so that they are thermally similar (for example, the heating side and the heating side), the set temperature is stable. In this state, the object to be measured is sucked through the suction pipe 6 and is filled halfway into the flow cell 5 and further into the discharge pipe 7. When the temperature control sensor 10 determines that the temperature of the object to be measured is below the set temperature, it operates a control circuit (not shown) to operate the thermionic element 3 to heat the object. The heat generated by the thermionic element 6 is transferred to the thermal compound 11. Metal wall 12.
It is transmitted to the object to be measured via the thermal expansion difference absorbing member 9 and the flow cell main body 5. When the temperature control sensor 10 determines that the temperature of the object to be measured matches the set temperature, the thermionic element 3 stops heating and controls the object by heating and cooling it with subtle temperature changes. Therefore, the object to be measured that is in contact with the temperature control sensor 10 is maintained at a constant temperature.

〔発明の効果〕〔Effect of the invention〕

以上述べた如く、フローセルをガラスにて形成した為、
被測定物である流体の流れに沿った穴の曲が9等加工を
容易に行うことができ、また流路の内面は凹凸が少なく
空気の付着あるいは被測定物の残留汚染等がなくなシ測
定データの精度を向上させることができる。従来の金属
製のフローセルでは測定が困難であった金属を腐食させ
る有害な項目も測定可能となる。
As mentioned above, since the flow cell is made of glass,
The curve of the hole, which follows the flow of the fluid being measured, makes it easy to perform 9-grade machining, and the inner surface of the flow path has few irregularities, so there is no air adhesion or residual contamination of the measured object. The accuracy of measurement data can be improved. It is now possible to measure harmful items that corrode metals, which were difficult to measure with conventional metal flow cells.

また金属壁とフローセルとの境界部を熱膨張差吸収用部
材で埋めることKよシ、金属とガラスの熱膨張差を吸収
でき、熱的変化の大きい中で、ガラス製の70−セルを
破損することがない。また金属壁からガラス製の70−
セルへの熱伝導率が良くなり、被測定物を短時間で設定
温度に保持することができる。
In addition, by filling the boundary between the metal wall and the flow cell with a material that absorbs the difference in thermal expansion, the difference in thermal expansion between metal and glass can be absorbed, and the glass 70-cell can be damaged under large thermal changes. There's nothing to do. Also, from the metal wall to the glass 70-
Thermal conductivity to the cell is improved, and the object to be measured can be maintained at the set temperature in a short time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の恒温フローセルの一実施例を示す一部
切欠斜視図、第2図は第1図の恒温フローセル本体のA
−A矢視断面図、第6図は第1図の恒温フルーセルのB
方向から見た正面図である。 1・・・フローセル、  2・・・測光用窓、  3・
・・熱電子素子、 4・・・放熱板、  6・・・吸入
管、 7・・・排水管、  9・・・熱膨張差吸収用部
材、  12・・・金属壁。
FIG. 1 is a partially cutaway perspective view showing an embodiment of the constant temperature flow cell of the present invention, and FIG. 2 is an A of the constant temperature flow cell main body in FIG.
-A cross-sectional view, Figure 6 is B of the constant temperature full cell in Figure 1.
It is a front view seen from the direction. 1... Flow cell, 2... Photometric window, 3...
...Thermionic element, 4... Heat sink, 6... Suction pipe, 7... Drain pipe, 9... Member for absorbing thermal expansion difference, 12... Metal wall.

Claims (1)

【特許請求の範囲】[Claims] 被測定物が流し込まれるフローセルに直接又は熱伝導性
の良い物質を介して接触配置された熱電子素子罠通電す
ることにより熱の移送を行ない、前記被測定物を加熱或
いは冷却することによシ、被測定物を恒温状態に保持す
る恒温フローセルにおいて、被測定物が流動する流路を
ガラスで形成し、このガラス製流路の外側部を覆う金属
壁と前記流路との境界部に前記ガラスと前記金属との熱
膨張差吸収用の部材を埋め込んだことを特徴とする恒温
フローセル。
Heat is transferred by energizing a thermionic element trap, which is placed in contact with the flow cell into which the object to be measured is poured, either directly or through a material with good thermal conductivity, and heats or cools the object to be measured. In a constant-temperature flow cell that maintains an object to be measured at a constant temperature, a flow path through which the object to be measured flows is formed of glass, and a metal wall covering the outside of the glass flow path and the boundary between the flow path are A constant temperature flow cell characterized in that a member for absorbing the difference in thermal expansion between glass and the metal is embedded.
JP14485682A 1982-08-23 1982-08-23 Thermostatic flow cell Granted JPS5935131A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14485682A JPS5935131A (en) 1982-08-23 1982-08-23 Thermostatic flow cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14485682A JPS5935131A (en) 1982-08-23 1982-08-23 Thermostatic flow cell

Publications (2)

Publication Number Publication Date
JPS5935131A true JPS5935131A (en) 1984-02-25
JPH0136895B2 JPH0136895B2 (en) 1989-08-03

Family

ID=15371996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14485682A Granted JPS5935131A (en) 1982-08-23 1982-08-23 Thermostatic flow cell

Country Status (1)

Country Link
JP (1) JPS5935131A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010146079A1 (en) * 2009-06-19 2010-12-23 Siemens Aktiengesellschaft Heatable flow-through measuring cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010146079A1 (en) * 2009-06-19 2010-12-23 Siemens Aktiengesellschaft Heatable flow-through measuring cell
DE102009029949B3 (en) * 2009-06-19 2011-01-05 Siemens Aktiengesellschaft Heatable flow cell
US9021861B2 (en) 2009-06-19 2015-05-05 Siemens Aktiengesellschaft Heatable flow-through measurement cell

Also Published As

Publication number Publication date
JPH0136895B2 (en) 1989-08-03

Similar Documents

Publication Publication Date Title
CN100374862C (en) Method and apparatus for side flow analysis
Schmalzing et al. Immunoassay for thyroxine (T4) in serum using capillary electrophoresis and micromachined devices
CN1947016B (en) Detector and detecting method
JPH01167652A (en) Integrated temperature control/alignment system for electrophoretic apparatus
EP1102066A2 (en) Assay test system for regulating temperature
CN101156063B (en) Method and apparatus for providing an electrochemical sensor at an adjustable temperature
KR102007507B1 (en) Ir spectrometry cell with temperature control means
JPS5935131A (en) Thermostatic flow cell
US20040040842A1 (en) Electrochemical analytical apparatus and method of using the same
CN109507230A (en) A kind of Mechanical Sealed Type micro thermal conductivity detector
JPH0125422B2 (en)
JPS61212764A (en) Thermostatic cell for automatic chemical analyzer
CN102692444A (en) Analysis apparatus and analysis method
JP2001305031A (en) Heating concentration device
JPH0634698B2 (en) Reaction analyzer
GB1604482A (en) Apparatus for thermogravimetric measurements of materials
US4912304A (en) Thick-film incubator
JPS60259947A (en) Ion selective electrode
JPS60128341A (en) Temperature control method of liquid sample
JPH0429400Y2 (en)
JPH08313442A (en) Emission detector
JP2007064879A (en) Specimen analyzing apparatus
JPH0346367Y2 (en)
JPH06273329A (en) Method and apparatus for measuring refractive index
JPS6135958Y2 (en)