JPH0135968B2 - - Google Patents

Info

Publication number
JPH0135968B2
JPH0135968B2 JP56181325A JP18132581A JPH0135968B2 JP H0135968 B2 JPH0135968 B2 JP H0135968B2 JP 56181325 A JP56181325 A JP 56181325A JP 18132581 A JP18132581 A JP 18132581A JP H0135968 B2 JPH0135968 B2 JP H0135968B2
Authority
JP
Japan
Prior art keywords
heat
heat storage
runway
storage tank
solar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56181325A
Other languages
Japanese (ja)
Other versions
JPS5883710A (en
Inventor
Takeo Hanaoka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takasago Thermal Engineering Co Ltd
Original Assignee
Takasago Thermal Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takasago Thermal Engineering Co Ltd filed Critical Takasago Thermal Engineering Co Ltd
Priority to JP56181325A priority Critical patent/JPS5883710A/en
Publication of JPS5883710A publication Critical patent/JPS5883710A/en
Publication of JPH0135968B2 publication Critical patent/JPH0135968B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Description

【発明の詳細な説明】 本発明は、航空機滑走路の除霧並びに凍結防止
を図つた装置に係り、より詳しく言えば、除霧並
びに凍結防止のためのエネルギーを年間を通じて
の大容量太陽熱によつてまかなえるようにした装
置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a device for removing fog and preventing freezing from an aircraft runway. More specifically, the present invention relates to a device for removing fog and preventing freezing from an aircraft runway. This relates to a device that can be used for various purposes.

空港における濃霧事故対策はこれまで種々検討
されてきたが、経済的かつ有効にこれを実施でき
る技術は完成されてはいない。過去の例におい
て、第1次大戦中英国で滑走路両端ラインで燃料
を燃やし、この燃焼ガスによるドラフトと昇温に
よつて一時的に除霧が成功したと報告されている
が、現在に至つてもこの実例よりも進歩の跡が見
られないのが実状である。例えば、仏国のシヤル
ルドゴール空港においても前記の燃焼がガスに変
換されたにすぎない。このような燃料を用いて除
霧を行なう場合には、非常に多量の燃料消費が伴
ない、ランニングコストは大巾に増加することは
否めない。
Although various countermeasures against dense fog accidents at airports have been studied, no technology has been developed to implement them economically and effectively. In the past, it has been reported that fuel was burned at both end lines of a runway in Britain during World War I, and fog removal was temporarily successful due to the draft and temperature rise caused by the combustion gas, but this has not been done until now. However, the reality is that there has been less progress than in this example. For example, at Charles de Gaulle Airport in France, the combustion described above was simply converted to gas. When performing mist removal using such fuel, it is undeniable that a very large amount of fuel is consumed and the running cost increases significantly.

本発明は、燃料使用を極限まで低減してこれを
実施する装置の開発を目的としてなされたもの
で、滑走路近傍の平地面を太陽熱受熱面として利
用すると共にこの太陽熱を大容量かつ長期に貯蔵
し、年間を通じて貯蔵された熱を除霧並びに滑走
路の凍結防止に有効に取出せるようにした装置を
提供するものである。すなわち本発明は、滑走路
近傍の地表に設置された太陽熱集熱器と地中に設
置された蓄熱槽との間に熱媒循環路を形成して蓄
熱槽に太陽熱を蓄熱する構成とし、この蓄熱を用
いて加温した空気を滑走路に沿つて配置された空
気吹出ノズルから大気中に噴射するようにした滑
走路の除霧装置であつて、前記の蓄熱槽が蓄熱物
質を封入した多数の蓄熱器ユニツトの集合体から
なり、この各々の蓄熱器ユニツトは太陽熱集熱器
で集熱された熱によつて融解可能な蓄熱物質を封
入した容器からなり、この各々の容器内には熱媒
流体を流すための通路が形成されていることを特
徴とするものである。そして、この装置は蓄熱槽
の熱をヒートパイプを介して滑走路面内に伝熱す
ることによつて滑走路の凍結防止もあわせて効果
的に行ない得るものである。
The present invention was made with the aim of developing a device that can reduce fuel consumption to the maximum extent possible, and utilizes the flat ground near the runway as a solar heat receiving surface and stores this solar heat in a large capacity for a long period of time. The purpose of the present invention is to provide a device that can effectively extract heat stored throughout the year to remove fog and prevent runways from freezing. That is, the present invention has a configuration in which a heat medium circulation path is formed between a solar heat collector installed on the ground surface near the runway and a heat storage tank installed underground, and solar heat is stored in the heat storage tank. A runway fog removal device that injects air warmed using heat storage into the atmosphere from air blowing nozzles arranged along the runway, the heat storage tank being a large number of air storage tanks filled with a heat storage material. Each heat storage unit consists of a container filled with a heat storage material that can be melted by the heat collected by the solar collector. It is characterized in that a passage is formed through which a medium fluid flows. This device can also effectively prevent the runway from freezing by transferring the heat from the heat storage tank into the runway surface through the heat pipe.

本発明装置による滑走路上方の除霧は、第15
図に図解的に示したように、滑走路の両サイドに
多数設けられた空気吹出ノズルから高温空気を上
方に向けて噴射することによつて行なうものであ
り、この高温空気を得るのに太陽熱を利用して行
なうようにしたものである。すなわち除霧できる
に十分な熱量を年間を通じて蓄熱された太陽熱に
よつてまかなえるようにしたものであり、例えば
夏期に蓄熱された太陽熱を数ケ月ないし半年以上
も貯蔵できるような蓄熱槽を滑走路近傍の地中に
地下構造物として設置するものである。この大容
量かつ長期にわたる蓄熱を行なうために、本発明
装置では潜熱蓄熱によつてこれを行なう。すなわ
ち本発明装置は、滑走路近傍の空地に設置した太
陽熱集熱器によつて集熱された熱を地中の潜熱蓄
熱槽に蓄熱し、この蓄熱を濃霧発生時において大
気に高温空気流をもつて放出できるようにしたも
のであり、潜熱の形態で太陽熱を霧発生時までの
長期にわたつて大容量に貯えられるような特殊な
蓄熱槽を用いることに大きな特徴がある。
The fog removal above the runway by the device of the present invention is carried out in the 15th
As shown schematically in the figure, this is done by injecting high-temperature air upward from numerous air blowing nozzles installed on both sides of the runway, and solar heat is used to obtain this high-temperature air. This is done by using . In other words, sufficient heat for fog removal can be provided by solar heat stored throughout the year.For example, a heat storage tank that can store solar heat stored in the summer for several months or more than half a year is installed near the runway. It is installed as an underground structure underground. In order to store heat in a large capacity and over a long period of time, the device of the present invention uses latent heat storage. In other words, the device of the present invention stores heat collected by a solar heat collector installed in an open area near the runway in a latent heat storage tank underground, and uses this heat storage by sending a high-temperature air stream into the atmosphere when dense fog occurs. Its main feature is that it uses a special heat storage tank that can store a large amount of solar heat in the form of latent heat over a long period of time until the onset of fog.

従つてまづ、この太陽熱を大容量かつ長期に蓄
熱するための本発明に従う蓄熱装置の原理並びに
構造を説明してから、本発明の滑走路除霧装置の
全体構成を説明する。
Therefore, first, the principle and structure of the heat storage device according to the present invention for storing solar heat in a large capacity and for a long period of time will be explained, and then the overall structure of the runway misting device of the present invention will be explained.

本発明の蓄熱装置で使用する潜熱の形態で蓄熱
するための蓄熱物質としては各種の水和塩や含水
塩混合物類例えば、CaCl2・6H2O、Na2SO4
1OH2O、Na2S2O3・5H2O、Na2HPO4
NaH2PO4−KH2PO4−H2O系混合物、有機化合
物類例えばエチレンジアミン、または油脂類例え
ばパラフインやシリコンオイルなどの融点が比較
的低くかつ潜熱の比較的大きな物質類が好適であ
る。従来から物質の固相−液相間の相変態におけ
る潜熱を利用して蓄熱することの有利性が原理的
に判つていてもこれの実用規模での装置は未だ出
現していない。すなわち、大容量の蓄熱とこれの
回収をくり返し行なえるような潜熱利用の蓄熱装
置実用化は、熱媒と大容量の蓄熱物質全体との熱
交換を、蓄熱物質の変成や劣化を起さずかつ蓄熱
物質による汚染の問題なくこれを行なうことが技
術的に困難なために至難であるとされていた。本
発明においては、このような潜熱蓄熱を地中構造
物の中にとじ込めて行なうものであり、このため
にこの蓄熱物質を封入する蓄熱槽として特殊な蓄
熱器ユニツトの集合体でこれを構成する。
The heat storage materials for storing heat in the form of latent heat used in the heat storage device of the present invention include various hydrated salts and hydrated salt mixtures, such as CaCl 2 .6H 2 O, Na 2 SO 4 .
1OH 2 O, Na 2 S 2 O 3・5H 2 O, Na 2 HPO 4
Substances with relatively low melting points and relatively large latent heat such as NaH 2 PO 4 -KH 2 PO 4 -H 2 O mixtures, organic compounds such as ethylenediamine, or oils and fats such as paraffin and silicone oil are suitable. Although it has long been known in principle that it is advantageous to store heat by utilizing latent heat during phase transformation between solid and liquid phases of a substance, a practical scale device for this has not yet appeared. In other words, the practical application of a heat storage device using latent heat that can repeatedly store a large amount of heat and recover it will enable heat exchange between the heating medium and the entire large-capacity heat storage material without causing transformation or deterioration of the heat storage material. Moreover, it was considered to be extremely difficult to do so without causing the problem of contamination by heat storage substances because it is technically difficult. In the present invention, such latent heat storage is carried out by confining it in an underground structure, and for this purpose, a collection of special heat storage units is used as a heat storage tank for enclosing this heat storage material. do.

そこでまず、滑走路近傍の地中内に設置する蓄
熱槽を構成するための1要素としての蓄熱器ユニ
ツトについて説明し、次いでその集合のしかたお
よび配置を説明した上で(第1〜12図)、本発
明の装置の全体構成(第13〜15図)を順次図
面の実施例に従つて説明する。
First, we will explain the heat storage unit as one element for configuring the heat storage tank installed underground near the runway, and then explain how it is assembled and its arrangement (Figures 1 to 12). , the overall structure of the apparatus of the present invention (FIGS. 13 to 15) will be explained sequentially according to the embodiments shown in the drawings.

第1図は本発明の蓄熱ユニツトの基本型の1実
施例を示した断面図である。第1図において、1
は円筒型の罐体であり、この罐体1の上下には上
蓋2と下蓋2′が気密に取付けられている。この
上蓋2と下蓋2′の中心部には罐体1と同軸の小
円筒3が気密に取付けられると共に、この小円筒
3を取巻くようにしたコイル4が配置してある。
コイル4の1方の端は罐体1の下方に、他方の端
は罐体1の上方に突出しており、この罐体1への
コイル端の接続も気密が保持されている。5は蓄
熱物質の注入口、6は蓄熱物質の排出口であり、
蓄熱物質充填後はこの注入口5と排出口6はめく
らにしておく。このようにして蓄熱物質を封入す
る容器が形成され、この容器内に熱媒流体を流す
ための通路、すなわち小円筒3とコイル4が形成
される。後述するが、この小円筒3は気体例えば
空気を流す通路として使用され、コイル4は液体
例えば水を流す通路として使用される。この図示
の蓄熱器ユニツトは上下左右が実質上対称であ
り、図示の位置を上下逆さにしても同一形状に表
われ、これを同軸的に接合した場合、図の破線で
示す他の同型の蓄熱器ユニツトにおける小円筒
3′の出口は実線の小円筒3の入口と整合して連
結され、同様にコイル4も出口と入口が配管接続
されたようになつている。
FIG. 1 is a sectional view showing one embodiment of the basic type of the heat storage unit of the present invention. In Figure 1, 1
is a cylindrical case, and an upper cover 2 and a lower cover 2' are airtightly attached to the upper and lower sides of the case 1. A small cylinder 3 coaxial with the housing 1 is airtightly attached to the center of the upper cover 2 and lower cover 2', and a coil 4 is arranged to surround the small cylinder 3.
One end of the coil 4 projects below the housing 1, and the other end projects above the housing 1, and the connection of the coil end to the housing 1 is also maintained airtight. 5 is a heat storage material injection port, 6 is a heat storage material discharge port,
After filling with the heat storage material, the injection port 5 and the discharge port 6 are kept blind. In this way, a container for enclosing the heat storage material is formed, and a passage for flowing the heat transfer fluid, that is, a small cylinder 3 and a coil 4, is formed in this container. As will be described later, this small cylinder 3 is used as a passage for a gas such as air to flow, and the coil 4 is used as a passage for a liquid such as water to flow. The heat storage unit shown in this figure is substantially symmetrical vertically and horizontally, and appears to have the same shape even if the position shown in the figure is turned upside down. The outlet of the small cylinder 3' in the device unit is aligned with and connected to the inlet of the small cylinder 3 shown by the solid line, and similarly, the outlet and inlet of the coil 4 are connected by piping.

第2図は第1図の蓄熱器ユニツトを8個組み合
わせて1単位の蓄熱槽を構成した状態を、また第
3図ではこの8個の蓄熱器ユニツトからなる1単
位蓄熱槽をさらに集合した状態を、それぞれ図解
的に示したものである。
Figure 2 shows a state in which eight heat storage units in Figure 1 are combined to form one unit of heat storage tank, and Figure 3 shows a state in which one unit of heat storage tank made up of these eight heat storage units is further assembled. are shown diagrammatically.

1単位の蓄熱槽は、第2図に示したように、方
形の4隅に組まれたa〜dの4本の中空パイプ
と、これらの中空パイプa〜b,b〜c,c〜
d,d〜a間の中心の辺に配置された4本の中空
パイプイ〜ニと、中央に位置する1本の中空パイ
プCPとからなる枠組みの中に、8個の蓄熱器ユ
ニツトを2段にして収めることによつて構成され
ている。これらの中空パイプのうち、中央のパイ
プCPを除いた周辺のものは、この1単位の蓄熱
槽を隣り合わせて集合するさいに、その隣接する
槽と共用される。
As shown in Figure 2, one unit of heat storage tank consists of four hollow pipes a to d assembled at the four corners of a rectangle, and these hollow pipes a to b, b to c, c to
Eight heat storage units are placed in two stages in a framework consisting of four hollow pipes A to D arranged on the center sides between d and d to a, and one hollow pipe CP located in the center. It is composed of the following: Among these hollow pipes, the peripheral ones except for the central pipe CP are shared with the adjacent tanks when one unit of heat storage tanks is assembled next to each other.

この状態は第3図の配置に示すように、1単位
の蓄熱槽(Ui)における隅のパイプa〜dが、
或る方向(図では紙面の上下方向)では隣接する
単位蓄熱槽の隅のパイプとして共用されるが、或
る方向(図では紙面の左右方向)では隣接する単
位蓄熱槽の辺のパイプとして共用される。そし
て、これらのパイプの全て(a〜d,イ〜ニ,
CP)は蓄熱器ユニツトを組み合わせて固定する
支柱としての役割のほかに、各蓄熱器ユニツトの
内部に配されたコイル4(第1図)を互いに連結
して熱媒液体を循環させるための熱媒配管として
機能させるようにしてある。各々の単位蓄熱槽に
おいて、各パイプは第4図に示したような支持板
7を3枚使用して互いに位置決めされ、このよう
に位置決めされた9本のパイプと3枚の支持板に
よつて、8個の蓄熱器ユニツトが2個づつ軸心に
合わせて接合された4本の筒となり、この4本の
筒で1単位の蓄熱槽に構成される。この軸心に合
わせて接合されることによつて、小円筒3(第1
図)は互いに整合して連結され、この中に熱媒気
体が通される。
In this state, as shown in the arrangement in Fig. 3, the pipes a to d at the corners of one unit of heat storage tank (Ui) are
In one direction (up and down in the figure), it is shared as a corner pipe of adjacent unit heat storage tanks, but in a certain direction (in the left and right direction in the figure), it is shared as a side pipe of adjacent unit heat storage tanks. be done. And all of these pipes (a~d, i~d,
In addition to serving as a support for assembling and fixing the heat storage units, the CP) also serves as a heat source for circulating the heat medium liquid by connecting the coils 4 (Fig. 1) arranged inside each heat storage unit to each other. It is designed to function as a medium pipe. In each unit heat storage tank, the pipes are positioned relative to each other using three support plates 7 as shown in FIG. 4, and the nine pipes positioned in this way and the three support plates , eight heat storage units are joined two by two along the axis to form four cylinders, and these four cylinders constitute one unit of heat storage tank. By joining along this axis, the small cylinder 3 (first
) are aligned and connected to each other, and a heat transfer gas is passed through them.

熱媒液体は、各々の中空パイプa〜d,イ〜
ニ,CPを利用して各蓄熱器ユニツトのコイルに
循環されるが、この接続関係は第3図の配置にお
ける矢印で示してある。例えば第3図のUiの単
位蓄熱槽について見れば、中央のパイプCPに熱
媒液体が各々の内部コイルから流出するように接
続され、かつ辺のパイプイとロから熱媒液体が
各々の内部コイルに流入するように接続される。
他方、このUiの右隣りの単位蓄熱槽においては、
中央のパイプCPとの接続はUiと同じであるが、
Uiでは隅のパイプa〜dとして機能していたも
のが辺のパイプイ〜ニとして機能し、これから熱
媒液体が流入するようになる。つまり、単位蓄熱
槽の隣接にさいして蓄熱器ユニツト1個分をずら
して隣接させることによつて、隣の単位蓄熱槽で
は液体循環用に使用されなかつたパイプが隣りの
単位蓄熱槽では液体循環用に使用され、しかもそ
のさい、単位蓄熱槽として個別に見た場合、いづ
れにおいても、各パイプと各ユニツト内のコイル
との接続位置は不変とすることができる。この不
変の接続関係を保つて単位蓄熱槽を無限に集合す
ることができ、実際には、受熱または放熱の熱容
量に合わせてこの集合の度合いを任意に調節する
ことができる。なお、この集合の場合、第3図の
ような広がりの方向のほかに上下方向の接続も随
意であり、3次元的な任意の構造をもつた蓄熱槽
構造物を構築することができる。構築された蓄熱
槽において、熱媒気体は各蓄熱器ユニツトの小円
筒を通すようにすると共に、各蓄熱器ユニツトの
間の空隙、すなわち罐体1の外側にも通すように
すれば、各蓄熱器ユニツト内の蓄熱物質はこの熱
媒気体との熱交換面積が一層増大してその熱交換
効率が向上する。実際の運転にあたつて、熱媒気
体は蓄熱用に、また、コイルに通す熱媒液体は放
熱用に利用するとよいが、その逆の運転も場合に
よつては行ない得る。
The heat medium liquid flows through each hollow pipe a to d, i to
D. The heat is circulated to the coils of each heat storage unit using the CP, and this connection relationship is shown by the arrows in the layout of FIG. For example, if we look at the unit heat storage tank Ui in Figure 3, the heat medium liquid is connected to the central pipe CP so that it flows out from each internal coil, and the heat medium liquid flows from the side pipes A and B to each internal coil. connected so that it flows into the
On the other hand, in the unit heat storage tank to the right of this Ui,
The connection with the central pipe CP is the same as Ui, but
In Ui, the corner pipes a to d function as side pipes i to d, and the heat medium liquid begins to flow in from now on. In other words, by shifting one heat storage unit adjacent to the unit heat storage tank, pipes that are not used for liquid circulation in the adjacent unit heat storage tank can be used for liquid circulation in the adjacent unit heat storage tank. When viewed individually as a unit heat storage tank, the connection position between each pipe and the coil in each unit can remain unchanged. Unit heat storage tanks can be assembled infinitely while maintaining this unchanging connection relationship, and in fact, the degree of this collection can be arbitrarily adjusted according to the heat capacity for heat reception or heat radiation. In addition, in the case of this set, in addition to the spreading direction as shown in FIG. 3, connections in the vertical direction are also optional, and a heat storage tank structure having an arbitrary three-dimensional structure can be constructed. In the constructed heat storage tank, if the heat medium gas is made to pass through the small cylinder of each heat storage unit and also through the gap between each heat storage unit, that is, the outside of the housing 1, each heat storage The heat storage material within the heat exchanger unit has a further increased heat exchange area with the heat transfer gas, and its heat exchange efficiency is improved. In actual operation, it is preferable to use the heat medium gas for heat storage and the heat medium liquid passed through the coil for heat radiation, but the opposite operation may be performed depending on the case.

以下さらに本発明の蓄熱器ユニツトの他の利用
のしかた並びに他の形状構造例を示す。
Below, other ways of using the heat storage unit of the present invention and other examples of shapes and structures will be shown.

第5図は蓄熱器ユニツトを軸方向に接続するさ
いにリングジヨイント9を利用した例を示す。こ
のリングジヨイント9は第6図に示したように、
気体が透過する開口10が上下リング11と12
の間に設けられており、このリング11と12に
対し、接続しようとする蓄熱器ユニツトの端部を
嵌め込む。そして、第4図に示した支持板7をこ
のリングジヨイント9の中央部で支持させる。1
3はこの支持板7を受けるための張り出し片を示
している。この支持板7を使用しかつ蓄熱器ユニ
ツトの接合にさいして小円筒同志の接続を若干切
離しておくと、小円筒から小円筒へ流れる気体の
1部は開口10を経て罐体の外側へ流れ出るし、
逆に罐体の外側を流れる気体は支持板7に衝突し
て(この支持板7がバツフルプレートとして機能
して)この開口10から小円筒内に流入するよう
な気流の流れが生じ、罐体の外側と内側(小円
筒)に気流が混合しながら流れることになり、こ
の気体と蓄熱物質との熱交換が各蓄熱器ユニツト
内の蓄熱物質の全域にわたつて効果的に行なわれ
る。
FIG. 5 shows an example in which a ring joint 9 is used to connect heat storage units in the axial direction. As shown in Fig. 6, this ring joint 9 is
The opening 10 through which gas passes is located between the upper and lower rings 11 and 12.
The ends of the heat storage unit to be connected are fitted into the rings 11 and 12. Then, the support plate 7 shown in FIG. 4 is supported at the center of this ring joint 9. 1
3 indicates a projecting piece for receiving this support plate 7. If this support plate 7 is used and the connections between the small cylinders are slightly separated when joining the heat storage unit, a portion of the gas flowing from one small cylinder to the other will flow out through the openings 10 to the outside of the casing. death,
Conversely, the gas flowing outside the case collides with the support plate 7 (this support plate 7 functions as a buffer plate), creating an air flow that flows into the small cylinder from the opening 10, and the gas flows into the small cylinder. The airflow flows in a mixed manner between the outside and inside of the body (small cylinder), and heat exchange between this gas and the heat storage material is effectively performed over the entire area of the heat storage material in each heat storage unit.

第7図は、第1図の蓄熱器ユニツトを最もコン
パクトに配置する場合の配置図である。この場
合、1個の蓄熱器ユニツトに対し2本のパイプ1
4と15が用いられ、その1方は蓄熱器ユニツト
内のコイルに熱媒液体を流入する流入管、他方は
熱媒液体をコイルから流出させる流出管として使
用される。各蓄熱器ユニツトの軸方向への接続
は、この第7図の配置を保つたまま積層される
が、1方の蓄熱器ユニツトで流出管となつたパイ
プは流出管とするような接続のしかたをしてもよ
い。つまり、各蓄熱器ユニツトのコイルをパイプ
14と15にシリーズに接続してもよい。このシ
リーズに接続するかあるいはパラレルに接続する
かは、受熱容量、熱媒流体量、蓄熱物質の種類と
量によつて決定される。この積層にあたつて、第
6図の如きリングジヨイントの使用も可能であ
り、罐体の外側と内側(小円筒)に熱媒気体を流
すようにすることもできる。ただし、この第7図
の配置では第3図の配置よりも各蓄熱器ユニツト
同志の間隙は小さいので、必ずしも第4図のよう
なバツフルプレートを使用しなくともよい。
FIG. 7 is a layout diagram in which the heat storage unit of FIG. 1 is arranged in the most compact manner. In this case, two pipes are used for one heat storage unit.
4 and 15 are used, one of which is used as an inlet pipe for introducing the heat transfer liquid into the coil in the regenerator unit, and the other as an outlet pipe for causing the heat transfer liquid to flow out of the coil. The connections in the axial direction of each heat storage unit are stacked while maintaining the arrangement shown in Figure 7, but the pipe that was used as an outflow pipe in one heat storage unit can be connected as an outflow pipe. You may do so. That is, the coils of each heat storage unit may be connected to the pipes 14 and 15 in series. Whether to connect in series or in parallel is determined by the heat receiving capacity, the amount of heat medium fluid, and the type and amount of heat storage material. In this lamination, it is also possible to use a ring joint as shown in FIG. 6, and it is also possible to flow the heat transfer gas to the outside and inside (small cylinder) of the housing. However, in the arrangement shown in FIG. 7, the gaps between the heat accumulator units are smaller than in the arrangement shown in FIG. 3, so it is not necessarily necessary to use the buffle plate as shown in FIG. 4.

第8〜12図は、角形(直方体)の外形をもつ
蓄熱器ユニツトの例を示したもので、第8図はこ
の直方体の罐体1の長手方向の中心に小円筒3を
1本取付けたもの、第9図は同じく長手方向に4
本の小円筒3を平行に取付けたものを示してい
る。蓄熱物質はこの罐体1内の小円筒3の囲りに
封入され、この罐体1を長手方向に貫通する小円
筒に熱媒通体例えば空気を通すことにより、この
熱媒通体と蓄熱物質の熱交換が行なわれる。第8
図および第9図のそれぞれは同形のものを小円筒
同志が接続するように隣接して集合することによ
り、所望容量の蓄熱槽に構成することができる。
第10図は罐体1の中に2本の独立した屈曲通路
を設けたもので、罐体1内に封入される蓄熱物質
の全域内にこの通路が行きわたるようにすると共
に、熱媒流体の出入口を1方の面に集約した例で
ある。なわち、第10図において、161と162
は1方の通路の出入口、171と172は他方の通
路の出入口であり、これら4個のポートはいづれ
も罐体1の1方の面に集約してある。第11図は
第10図と同様の屈曲通路を1本と、第8図同様
の小円筒3とを組み合わせた例、第12図は第1
0図と同様の屈曲通路を1本と、第9図同様の4
本の小円筒3とを組み合わせた例を示している。
第10〜12図において屈曲通路は液体の熱媒
を、また小円筒は気体の熱媒を通すようにすると
よい。
Figures 8 to 12 show an example of a heat storage unit having a rectangular (rectangular parallelepiped) external shape. Figure 8 shows a case in which one small cylinder 3 is attached to the longitudinal center of the rectangular parallelepiped housing 1. Figure 9 also shows 4 in the longitudinal direction.
A small cylinder 3 of books is shown attached in parallel. The heat storage material is sealed around a small cylinder 3 in the case 1, and by passing a heat medium, such as air, through the small cylinder that passes through the case 1 in the longitudinal direction, the heat medium and the heat storage material are separated. Heat exchange takes place. 8th
In each of FIGS. and 9, a heat storage tank of a desired capacity can be constructed by assembling pieces of the same shape adjacently so that the small cylinders are connected to each other.
FIG. 10 shows a case in which two independent curved passages are provided in the case 1, so that the passages are spread over the entire area of the heat storage material sealed in the case 1, and the heat transfer medium is This is an example in which the entrances and exits are concentrated on one side. That is, in Figure 10, 16 1 and 16 2
are the entrances and exits of one passage, and 17 1 and 17 2 are the entrances and exits of the other passage, and these four ports are all concentrated on one surface of the housing 1. Fig. 11 shows an example in which one bent passage similar to Fig. 10 is combined with a small cylinder 3 similar to Fig. 8;
One curved passage similar to Figure 0 and four similar to Figure 9.
An example in which a small cylinder 3 of a book is combined is shown.
In FIGS. 10 to 12, it is preferable that the bent passages pass a liquid heat medium and the small cylinders pass a gas heat medium.

これら第8〜12図のものは、それぞれ同型の
ものを熱媒通路の出口を他のものの熱媒通路の入
口に接続することによつて接続し積層化すること
ができる。
The devices shown in FIGS. 8 to 12 can be connected and stacked by connecting the same type of devices to the inlet of the heat medium path of another device by connecting the outlet of the heat medium path to the inlet of the heat medium path of the other device.

本発明においては、以上の実施例で示したよう
な蓄熱器ユニツトを用い、これらの熱媒通路3ま
たは4内に熱媒が流れるように互いに集合してこ
の集合体を滑走路近傍の地下構造物の中に設置す
る。そして、この地下の蓄熱槽と、好ましくはこ
の蓄熱槽の上部地表に設置した太陽熱集熱器との
間で熱媒循環路を形成して太陽熱を蓄熱器ユニツ
ト内の蓄熱物質に潜熱の形態で蓄熱し、これを除
霧並びに滑走路凍結防止用の熱源として適宜取り
出せるようにする。
In the present invention, heat storage units as shown in the above embodiments are used, and the heat storage units are assembled together so that the heat medium flows in the heat medium passages 3 or 4, and this assembly is installed in an underground structure near the runway. Place it inside something. A heat medium circulation path is formed between this underground heat storage tank and a solar heat collector preferably installed on the ground surface above the heat storage tank, and solar heat is transferred to the heat storage material in the heat storage unit in the form of latent heat. It stores heat and allows it to be taken out as a heat source for fog removal and runway freeze prevention.

第13図は、滑走路19のわきにおいて、太陽
熱集熱器20を地表に、またこの太陽熱集熱器2
0の下部の地中に蓄熱槽構造物を設置した例を示
したもので、20は空気式太陽熱蓄熱器、21は
地下コンクリート構造物、UiやUjは蓄熱器ユニ
ツトの複数個からなる単位蓄熱槽、22は送風
機、23は空気チヤンバー、24は切替ダンパ、
25は給気口、26は還気口、28〜31は液体
配管、32は液タンクを示している。図示のよう
に、この太陽熱の蓄熱装置は、地表の日射面に配
置された空気式太陽熱集熱器20の真下の地下構
造物内に、先に説明したような蓄熱器ユニツトを
集合配列したものである。この蓄熱器ユニツトの
集合体は、例えば第2図で説明した8個の蓄熱器
ユニツトからなる単位蓄熱槽を、第2図の状態か
ら90゜回転して、つまり罐体の中心軸を水平方向
にして、上下、左右、前後の3次元方向に積層し
たものであり、単位蓄熱槽UiやUjには水平方に
空気が流れるようにしてある。
FIG. 13 shows a solar heat collector 20 placed on the ground beside the runway 19, and a solar heat collector 20 placed on the ground.
The figure shows an example in which a heat storage tank structure is installed underground at the bottom of 0, where 20 is an air solar heat storage device, 21 is an underground concrete structure, and Ui and Uj are unit heat storage units consisting of multiple heat storage units. tank, 22 is a blower, 23 is an air chamber, 24 is a switching damper,
25 is an air supply port, 26 is a return air port, 28 to 31 are liquid pipes, and 32 is a liquid tank. As shown in the figure, this solar heat storage device has heat storage units as described above arranged in a collective arrangement in an underground structure directly below an air-type solar heat collector 20 placed on the solar radiation surface of the earth's surface. It is. This assembly of heat storage units can be constructed by, for example, rotating the unit heat storage tank consisting of the eight heat storage units explained in FIG. 2 by 90 degrees from the state shown in FIG. The heat storage tanks Ui and Uj are stacked in three-dimensional directions: top and bottom, left and right, and front and back, and air is allowed to flow horizontally through the unit heat storage tanks Ui and Uj.

まず、この蓄熱装置内の空気の流れについて説
明すると、蓄熱運転においては、送風機22の吐
出空気は空気チヤンバー23から切替ダンパ24
を経て空気式太陽熱集熱器20に入り、この集熱
器20によつて加熱された空気は上段の単位蓄熱
槽の列から下段の単位蓄熱槽の列へと蛇行しなが
ら流れてゆき、各々の蓄熱器ユニツト内の蓄熱物
質に与熱したあと、最終的には再び送風機22に
吸込まれ、再びこの循環をくり返す。この蓄熱運
転を続行することにより、蓄熱器ユニツト内の蓄
熱物質は融解し、特に日射の強い場合には、ほと
んどの蓄熱器ユニツトは融解した蓄熱物質を収容
することになる。1たん融解した蓄熱物質は、本
蓄熱装置内への熱媒の流れを止めると、部分的に
は凝固を開始しても、その発熱によつて装置内が
所定の温度に保持されるので、長期にわたつてそ
の大部分が融解したままの状態に維持される。
First, to explain the flow of air in this heat storage device, during heat storage operation, the air discharged from the blower 22 is transferred from the air chamber 23 to the switching damper 24.
The air heated by the heat collector 20 flows in a meandering manner from the upper row of unit heat storage tanks to the lower row of unit heat storage tanks. After heating the heat storage material in the heat storage unit, the heat is finally sucked into the blower 22 again, and this cycle is repeated again. By continuing this heat storage operation, the heat storage material in the heat storage unit will melt, and most of the heat storage units will contain the molten heat storage material, especially in cases of strong solar radiation. Once the heat storage material has been melted, when the flow of the heat medium into the heat storage device is stopped, even if it partially begins to solidify, the inside of the device is maintained at a predetermined temperature by the heat generated. Most of it remains molten for a long period of time.

霧の発生は、大気状態を常時監視する温湿度セ
ンサー(これは、例えば誘導用ビーコンと同じ単
位に設置すればよい)によつて、これを事前に察
知し、これの除霧運転、すなわち放熱運転を行な
う。この放熱運転においては切替ダンパ24を作
動して空気チヤンバー23の空気を空気吹出しノ
ズル25の方に導き、還気口26からの空気を空
気式太陽熱集熱器20に流し込むようにすればよ
い。これによつて送風機22だけの動力で還気口
26からの取入れ空気は単位蓄熱槽内を通過する
ことにより蓄熱物質の凝固熱により加熱され、空
気吹出ノズル25から滑走路19の上方に噴射さ
れ、これによつて滑走路上方の霧が除かれる。
The occurrence of fog can be detected in advance by a temperature/humidity sensor that constantly monitors the atmospheric conditions (for example, this can be installed in the same unit as the guidance beacon), and the fog removal operation, that is, heat dissipation, is carried out. Drive. In this heat dissipation operation, the switching damper 24 may be operated to guide the air in the air chamber 23 toward the air blowing nozzle 25, and the air from the return air port 26 may be caused to flow into the pneumatic solar heat collector 20. As a result, the air taken in from the return air port 26 is heated by the heat of solidification of the heat storage material as it passes through the unit heat storage tank with the power of the blower 22 alone, and is injected above the runway 19 from the air blowing nozzle 25. , this removes the fog above the runway.

また、滑走路19の凍結防止のための放熱運転
は、各蓄熱器ユニツトのコイル4(第1図)に通
水してこの蓄熱を回収し、これをヒートパイプ3
1によつて滑走路19に伝熱することによつて効
果的に行なうことができる。この場合も、滑走路
の代表点に設置されたた温度センサーにより凍結
予測を自動的に行ない、運転指令を本システムに
与えるようにする。例えば第2図に示したような
中空パイプa〜d,イ〜ニ、およびCPの配管を
施して単位蓄熱槽Uiを構成し、これらのパイプ
を単位蓄熱槽間で連結して一連の連続した水配管
となし、各蓄熱器ユニツトのコイル内に通水でき
るようにする。そしてこれらの配管にポンプ33
によつてタンク32の水を循環させ、得られた高
温水をヒートパイプ31の1端に接触させればよ
い。滑走路19の中に埋設されるヒートパイプ1
9は配筋の役割も果たすと同時に凍結防止用のヒ
ーターとして機能することになる。
In addition, in the heat dissipation operation to prevent the runway 19 from freezing, water is passed through the coil 4 (Fig. 1) of each heat storage unit to recover this heat, and the heat is transferred to the heat pipe 3.
1 to the runway 19. In this case as well, freezing predictions are automatically made using temperature sensors installed at representative points on the runway, and operational instructions are given to the system. For example, a unit heat storage tank Ui is constructed by installing hollow pipes a to d, a to d, and CP as shown in Figure 2, and these pipes are connected between unit heat storage tanks to form a series of continuous pipes. Water piping will be provided to allow water to flow through the coils of each heat storage unit. And pump 33 is connected to these pipes.
The water in the tank 32 may be circulated by the heat pipe 32, and the obtained high-temperature water may be brought into contact with one end of the heat pipe 31. Heat pipe 1 buried in runway 19
9 will also serve as reinforcement and at the same time function as a heater to prevent freezing.

第14図は、第13図の太陽熱蓄熱装置にさら
に補助熱源装置を付設した装置の略断面図であ
る。図示のように空気循環路にガスバーナ40お
よび燃焼室41を設け、この燃焼空気を空気チヤ
ンバー23に送り込めるようにしたものである。
第14図において、42は燃料ガスのボンベ、4
3はガス配管、241〜246は切替ダンパを示し
ており、太陽熱単独による蓄熱運転、太陽熱と燃
焼ガスによる蓄熱運転、蓄熱ユニツトの蓄熱を放
熱する運転、この放熱運転にさらに燃焼空気を混
入する運転、あるいはこれら運転のさらに組み合
わさつた運転、さらには蓄熱槽の部分使用の運転
などを切替ダンパ241〜246の開度制御によつ
て行なえるようにしたものである。ヒートパイプ
並びに流体配管は図に現われていないが、これら
は第13図同様に設置されており、補助熱源が適
宜導入される以外は第13図と同様に運転される
ものであり、太陽熱を利用して蓄熱する方式には
変りはない。
FIG. 14 is a schematic cross-sectional view of a device in which an auxiliary heat source device is further attached to the solar heat storage device of FIG. 13. As shown in the figure, a gas burner 40 and a combustion chamber 41 are provided in the air circulation path so that this combustion air can be fed into the air chamber 23.
In FIG. 14, 42 is a fuel gas cylinder;
3 is a gas pipe, and 24 1 to 24 6 are switching dampers, which can be used for heat storage operation using solar heat alone, heat storage operation using solar heat and combustion gas, operation that radiates heat stored in the heat storage unit, and combustion air that is further mixed into this heat radiation operation. An operation in which the heat storage tank is partially used, an operation in which these operations are combined, an operation in which the heat storage tank is partially used, etc. can be performed by controlling the opening degrees of the switching dampers 24 1 to 24 6 . Heat pipes and fluid piping are not shown in the figure, but they are installed in the same way as in Figure 13, and are operated in the same way as in Figure 13, except that auxiliary heat sources are introduced as appropriate, and they utilize solar heat. There is no change in the method of storing heat.

なお、第13〜14図の例では太陽熱集熱器と
して空気式のものを使用し、集熱器と蓄熱槽との
間で空気を熱媒として循環させる例を示したが、
太陽熱集熱器として液体式のものを使用して集熱
器と蓄熱槽との間で液体(例えば水)を熱媒とし
て蓄熱する方式とすることもできる。すなわち、
第1図のコイル4に蓄熱用の熱媒を流し、小円筒
3または容器外に放熱運転(除霧運転)用の空気
を通すようにしてもよい。また、ヒートパイプ3
1の加熱端はこの放熱運転の高温空気と接触させ
て凍結防止を図ることもできる(第14図)。
In addition, in the examples shown in FIGS. 13 and 14, an air-type solar heat collector is used and air is circulated as a heat medium between the heat collector and the heat storage tank.
It is also possible to use a liquid type solar heat collector and store heat between the heat collector and the heat storage tank using a liquid (for example, water) as a heat medium. That is,
A heat medium for heat storage may be passed through the coil 4 shown in FIG. 1, and air for heat dissipation operation (fog removal operation) may be passed outside the small cylinder 3 or the container. Also, heat pipe 3
The heating end of No. 1 can be brought into contact with the high-temperature air of this heat dissipation operation to prevent freezing (Fig. 14).

第15図は、本発明による滑走路除霧装置の全
体略図であり、滑走路19に沿つた両側に、先に
詳述した太陽熱集熱器20を地表に配置すると共
にその下部の地中に先に詳述した蓄熱装置を設置
した状態を示している。空気吹出ノズル25は滑
走路19の両サイドに等間隔で多数配置され、こ
こから蓄熱装置の放熱運転によつて得られた高温
空気が滑走路19の上方に噴射され、周囲の誘引
空気を伴つて上昇気流を発生させて除霧が行なわ
れる。
FIG. 15 is an overall schematic diagram of the runway misting device according to the present invention, in which the solar heat collectors 20 described in detail above are placed on the ground surface on both sides along the runway 19, and the solar heat collectors 20 are placed in the ground below. This shows the state in which the heat storage device described in detail above is installed. A large number of air blowing nozzles 25 are arranged at equal intervals on both sides of the runway 19, from which high-temperature air obtained by the heat dissipation operation of the heat storage device is injected above the runway 19, accompanied by surrounding induced air. The fog is removed by generating an upward air current.

第16図は滑走路19の中にヒートパイプ31
を配設した状態を示しており、このヒートパイプ
31の1端を蓄熱装置の熱発生源45に開放する
と共にこのヒートパイプ31の他の側の実質長さ
部分を滑走路19の中に埋設して配筋の役割を果
たさせながら、このヒートパイプ31内の熱媒の
蒸発凝縮サイクルにより熱発生源45の熱を滑走
路19に効率よく伝え、速やかに滑走路を加温で
きるようにしたものである。
Figure 16 shows a heat pipe 31 inside the runway 19.
One end of the heat pipe 31 is open to the heat generation source 45 of the heat storage device, and the substantial length of the other side of the heat pipe 31 is buried in the runway 19. While playing the role of reinforcement, the heat from the heat generation source 45 is efficiently transferred to the runway 19 through the evaporation and condensation cycle of the heat medium in the heat pipe 31, so that the runway can be quickly heated. This is what I did.

このようにして本発明装置は、従来から嘱望さ
れていた空港濃霧対策に対し、使用燃料の消費を
極限まで低減した状態で除霧が行なわれ、また滑
走路の凍結も効果的に防止できるので、極めて有
益な発明である。
In this way, the device of the present invention can remove fog while minimizing fuel consumption, and can effectively prevent runways from freezing, as a countermeasure against dense airport fog, which has been desired for a long time. , is an extremely useful invention.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に従う蓄熱器ユニツトの代表例
を示す断面略図、第2図は8個の蓄熱器ユニツト
で1単位の蓄熱槽を構成した例を示す斜視図、第
3図は単位蓄熱槽を集合した配置図、第4図は単
位蓄熱槽を構成するさいに使用する支持板(バツ
フルプレート)の斜視図、第5図は蓄熱器ユニツ
トの接続部を示す略正面図、第6図はその接続部
に使用するリングジヨイントの斜視図、第7図は
蓄熱器ユニツトの他の配置例を示す配置図、第8
〜12図はいづれも角形の外形をもつ蓄熱器ユニ
ツトの例を示す斜視図、第13図は空気式太陽熱
集熱装置と蓄熱槽集合体との装置構成例を示す断
面図、第14図は第13図の装置の変形例を示す
断面図、第15図は本発明の滑走路除霧装置の例
を示す全体略断面図、第16図は滑走路の凍結防
止構造を示す略断面図である。 1……罐体、2……蓋、3……小円筒(熱媒気
体通路)、4……コイル(熱媒液体通路)、7……
支持板(バツフルプレート)、9……リングジヨ
イント、19……滑走路、20……太陽熱集熱
器、22……送風機、25……空気吹出ノズル、
31……ヒートパイプ、U……蓄熱器ユニツトの
複数個からなる単位蓄熱槽。
Fig. 1 is a schematic cross-sectional view showing a typical example of a heat storage unit according to the present invention, Fig. 2 is a perspective view showing an example in which one unit of heat storage tank is constituted by eight heat storage units, and Fig. 3 is a unit heat storage tank. Figure 4 is a perspective view of the support plate (bumpful plate) used to construct the unit heat storage tank, Figure 5 is a schematic front view showing the connection part of the heat storage unit, Figure 6 7 is a perspective view of the ring joint used for the connection, FIG. 7 is a layout diagram showing another example of the arrangement of the heat storage unit, and FIG.
Figures 12 to 12 are perspective views showing examples of heat storage units each having a rectangular outer shape, Figure 13 is a sectional view showing an example of a device configuration of an air type solar heat collector and a heat storage tank assembly, and Figure 14 is a perspective view showing an example of a heat storage unit having a square outer shape. FIG. 13 is a sectional view showing a modification of the device, FIG. 15 is an overall schematic sectional view showing an example of the runway misting device of the present invention, and FIG. 16 is a schematic sectional view showing a structure for preventing freezing of a runway. be. 1... Housing, 2... Lid, 3... Small cylinder (heat medium gas passage), 4... Coil (heat medium liquid passage), 7...
Support plate (full plate), 9...Ring joint, 19...Runway, 20...Solar heat collector, 22...Blower, 25...Air blowing nozzle,
31... Heat pipe, U... A unit heat storage tank consisting of a plurality of heat storage units.

Claims (1)

【特許請求の範囲】 1 滑走路近傍の地表に設置された太陽熱集熱器
と地中に設置された蓄熱槽との間に熱媒循環路を
形成して蓄熱槽に太陽熱を蓄熱する構成とし、こ
の蓄熱を用いて加温した空気を滑走路に沿つて配
置された空気吹出ノズルから大気中に噴射するよ
うにした滑走路の除霧装置であつて、前記の蓄熱
槽が蓄熱物質を封入した多数の蓄熱器ユニツトの
集合体からなり、この各々の蓄熱器ユニツトは太
陽熱集熱器で集熱された熱によつて融解可能な蓄
熱物質を封入した容器からなり、この各々の容器
内には熱媒流体を流すための通路が形成されてい
ることを特徴とする滑走路除霧装置。 2 滑走路近傍の地表に設置された太陽熱集熱器
と地中に設置された蓄熱槽との間に熱媒循環路を
形成して蓄熱槽に太陽熱を蓄熱する構成とし、こ
の蓄熱を用いて加温した空気を滑走路に沿つて配
置された空気吹出ノズルから大気中に噴射するよ
うにした滑走路の除霧装置であつて、前記の蓄熱
槽が蓄熱物質を封入した多数の蓄熱器ユニツトの
集合体からなり、この各々の蓄熱器ユニツトは太
陽熱集熱器で集熱された熱によつて融解可能な蓄
熱物質を封入した容器からなり、この各々の容器
内には熱媒流体を流すための通路が形成されてお
り、そして蓄熱槽内の熱をヒートパイプを介して
滑走路面内に伝熱するようにしたことを特徴とす
る路面凍結防止を兼用した滑走路除霧装置。
[Scope of Claims] 1. A structure in which a heat medium circulation path is formed between a solar heat collector installed on the ground surface near the runway and a heat storage tank installed underground, and solar heat is stored in the heat storage tank. , a runway fog removal device that uses this heat storage to inject heated air into the atmosphere from air blowing nozzles arranged along the runway, wherein the heat storage tank encloses a heat storage material. Each heat storage unit consists of a container filled with a heat storage material that can be melted by the heat collected by the solar collector. 1. A runway fog removal device, characterized in that a passage is formed through which a heat transfer fluid flows. 2. A heat medium circulation path is formed between a solar heat collector installed on the ground surface near the runway and a heat storage tank installed underground, and solar heat is stored in the heat storage tank. A runway fog removal device that injects heated air into the atmosphere from air blowing nozzles arranged along the runway, the heat storage tank comprising a number of heat storage units sealed with heat storage material. Each heat storage unit consists of a container filled with a heat storage material that can be melted by the heat collected by the solar collector, and a heat transfer fluid is allowed to flow inside each container. 1. A runway fog removal device which also serves to prevent road surface freezing, characterized in that a passageway is formed for the purpose of preventing freezing of a road surface, and the heat in the heat storage tank is transferred to the runway surface via a heat pipe.
JP56181325A 1981-11-12 1981-11-12 Frost removing apparatus of runway Granted JPS5883710A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56181325A JPS5883710A (en) 1981-11-12 1981-11-12 Frost removing apparatus of runway

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56181325A JPS5883710A (en) 1981-11-12 1981-11-12 Frost removing apparatus of runway

Publications (2)

Publication Number Publication Date
JPS5883710A JPS5883710A (en) 1983-05-19
JPH0135968B2 true JPH0135968B2 (en) 1989-07-27

Family

ID=16098710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56181325A Granted JPS5883710A (en) 1981-11-12 1981-11-12 Frost removing apparatus of runway

Country Status (1)

Country Link
JP (1) JPS5883710A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02252806A (en) * 1989-03-25 1990-10-11 Nkk Corp Removal of fog
KR20040097100A (en) * 2004-10-27 2004-11-17 최은성 a dence fog removal system and method of the runway and road

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2969920A (en) * 1958-01-27 1961-01-31 Giannoni Roberto Fog dispersal system, particularly for airport runways
JPS52103750A (en) * 1976-02-27 1977-08-31 Mitsui Eng & Shipbuild Co Ltd Heat accumulating capsule
JPS5693908A (en) * 1979-12-27 1981-07-29 Oki Electric Cable Preventive system for freezing

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2969920A (en) * 1958-01-27 1961-01-31 Giannoni Roberto Fog dispersal system, particularly for airport runways
JPS52103750A (en) * 1976-02-27 1977-08-31 Mitsui Eng & Shipbuild Co Ltd Heat accumulating capsule
JPS5693908A (en) * 1979-12-27 1981-07-29 Oki Electric Cable Preventive system for freezing

Also Published As

Publication number Publication date
JPS5883710A (en) 1983-05-19

Similar Documents

Publication Publication Date Title
ES2760915T3 (en) Solid state thermal solar energy collector
KR102466367B1 (en) ENERGY-EFFICIENT HIGH LEVEL DEVICE, PLANT AND METHOD FOR THE USE OF THERMAL ENERGY OF SOLAR ORIGIN
CN203175655U (en) Heat storage device for engine and system for engine
ES2587031T3 (en) Device, system and method for high level of energy efficiency for the storage and use of solar thermal energy
US4124018A (en) Solar heat collecting, storing and utilizing apparatus
CA1179224A (en) Solar furnace
CN106716040A (en) Charging system with a high temperature thermal energy exchange system and method
CN101909429A (en) Algae production
US20020000306A1 (en) Methods and devices for storing energy
RU2651276C1 (en) Soil heating device
CN107436100A (en) Improved diversion equipment and diversion method for modularization heat exchange columns
WO2014053677A1 (en) Heat storage system and method for the charging and discharging thereof
JPH0135968B2 (en)
CN107747813A (en) Enclosed modular panel phase-changing energy-storing case and solar energy heat distribution system heat supply method
US4919245A (en) Heat economizer
DE3710861C2 (en)
JPH0135967B2 (en)
JPH0354327Y2 (en)
JPH0253716B2 (en)
JPH02204514A (en) Fog removing method from runway and its vicinity
JPH0132425B2 (en)
JPS5869360A (en) Heater or hot water feeder utilizing solar heat
CN207196947U (en) A kind of enclosed modular panel phase-changing energy-storing case
IE893566L (en) Steam condensing apparatus, used as means for storing heat
BR112016027079A2 (en) module for solar solid particle receiver, solar receiver and method working in conjunction with it