JPH0135512B2 - - Google Patents
Info
- Publication number
- JPH0135512B2 JPH0135512B2 JP58165642A JP16564283A JPH0135512B2 JP H0135512 B2 JPH0135512 B2 JP H0135512B2 JP 58165642 A JP58165642 A JP 58165642A JP 16564283 A JP16564283 A JP 16564283A JP H0135512 B2 JPH0135512 B2 JP H0135512B2
- Authority
- JP
- Japan
- Prior art keywords
- electrically insulating
- copolymer resin
- terephthalic acid
- circuit board
- insulating substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 229910052782 aluminium Inorganic materials 0.000 claims description 28
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 28
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 27
- 239000000758 substrate Substances 0.000 claims description 25
- 229920006026 co-polymeric resin Polymers 0.000 claims description 24
- ZDNFTNPFYCKVTB-UHFFFAOYSA-N bis(prop-2-enyl) benzene-1,4-dicarboxylate Chemical compound C=CCOC(=O)C1=CC=C(C(=O)OCC=C)C=C1 ZDNFTNPFYCKVTB-UHFFFAOYSA-N 0.000 claims description 23
- 238000000034 method Methods 0.000 claims description 23
- 229910052802 copper Inorganic materials 0.000 claims description 20
- 239000010949 copper Substances 0.000 claims description 20
- 239000000463 material Substances 0.000 claims description 20
- 239000002585 base Substances 0.000 claims description 15
- 229920005989 resin Polymers 0.000 claims description 15
- 239000011347 resin Substances 0.000 claims description 15
- 238000004519 manufacturing process Methods 0.000 claims description 8
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 6
- 150000004945 aromatic hydrocarbons Chemical class 0.000 claims description 4
- 125000000217 alkyl group Chemical group 0.000 claims description 3
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 claims description 3
- 239000003513 alkali Substances 0.000 claims description 2
- 238000010030 laminating Methods 0.000 claims description 2
- 238000007731 hot pressing Methods 0.000 claims 1
- 238000006116 polymerization reaction Methods 0.000 description 14
- 238000005530 etching Methods 0.000 description 12
- 239000000243 solution Substances 0.000 description 12
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 9
- 229910052751 metal Inorganic materials 0.000 description 9
- 239000002184 metal Substances 0.000 description 9
- ROOXNKNUYICQNP-UHFFFAOYSA-N ammonium persulfate Chemical compound [NH4+].[NH4+].[O-]S(=O)(=O)OOS([O-])(=O)=O ROOXNKNUYICQNP-UHFFFAOYSA-N 0.000 description 8
- 239000003795 chemical substances by application Substances 0.000 description 8
- 239000011889 copper foil Substances 0.000 description 8
- 239000011888 foil Substances 0.000 description 7
- 239000000178 monomer Substances 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 239000011521 glass Substances 0.000 description 6
- 239000008096 xylene Substances 0.000 description 6
- LSXWFXONGKSEMY-UHFFFAOYSA-N di-tert-butyl peroxide Chemical compound CC(C)(C)OOC(C)(C)C LSXWFXONGKSEMY-UHFFFAOYSA-N 0.000 description 5
- 229910001870 ammonium persulfate Inorganic materials 0.000 description 4
- 238000000465 moulding Methods 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 3
- 239000004641 Diallyl-phthalate Substances 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- 239000004744 fabric Substances 0.000 description 3
- 238000005227 gel permeation chromatography Methods 0.000 description 3
- 238000004898 kneading Methods 0.000 description 3
- 238000005070 sampling Methods 0.000 description 3
- 239000012209 synthetic fiber Substances 0.000 description 3
- 229920002994 synthetic fiber Polymers 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- QUDWYFHPNIMBFC-UHFFFAOYSA-N bis(prop-2-enyl) benzene-1,2-dicarboxylate Chemical compound C=CCOC(=O)C1=CC=CC=C1C(=O)OCC=C QUDWYFHPNIMBFC-UHFFFAOYSA-N 0.000 description 2
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000004745 nonwoven fabric Substances 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 239000002985 plastic film Substances 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000007639 printing Methods 0.000 description 2
- 238000010926 purge Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229920006305 unsaturated polyester Polymers 0.000 description 2
- 229920006337 unsaturated polyester resin Polymers 0.000 description 2
- AEQDJSLRWYMAQI-UHFFFAOYSA-N 2,3,9,10-tetramethoxy-6,8,13,13a-tetrahydro-5H-isoquinolino[2,1-b]isoquinoline Chemical compound C1CN2CC(C(=C(OC)C=C3)OC)=C3CC2C2=C1C=C(OC)C(OC)=C2 AEQDJSLRWYMAQI-UHFFFAOYSA-N 0.000 description 1
- XMNIXWIUMCBBBL-UHFFFAOYSA-N 2-(2-phenylpropan-2-ylperoxy)propan-2-ylbenzene Chemical compound C=1C=CC=CC=1C(C)(C)OOC(C)(C)C1=CC=CC=C1 XMNIXWIUMCBBBL-UHFFFAOYSA-N 0.000 description 1
- 102220497133 5-hydroxytryptamine receptor 3B_W50H_mutation Human genes 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- RGHNJXZEOKUKBD-SQOUGZDYSA-N D-gluconic acid Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C(O)=O RGHNJXZEOKUKBD-SQOUGZDYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- LGRFSURHDFAFJT-UHFFFAOYSA-N Phthalic anhydride Natural products C1=CC=C2C(=O)OC(=O)C2=C1 LGRFSURHDFAFJT-UHFFFAOYSA-N 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- WPPDFTBPZNZZRP-UHFFFAOYSA-N aluminum copper Chemical compound [Al].[Cu] WPPDFTBPZNZZRP-UHFFFAOYSA-N 0.000 description 1
- -1 azo compound Chemical class 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 125000001743 benzylic group Chemical group 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- JHIWVOJDXOSYLW-UHFFFAOYSA-N butyl 2,2-difluorocyclopropane-1-carboxylate Chemical compound CCCCOC(=O)C1CC1(F)F JHIWVOJDXOSYLW-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- CREMABGTGYGIQB-UHFFFAOYSA-N carbon carbon Chemical group C.C CREMABGTGYGIQB-UHFFFAOYSA-N 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000004070 electrodeposition Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- 125000005395 methacrylic acid group Chemical group 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000012778 molding material Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 150000001451 organic peroxides Chemical class 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000000176 sodium gluconate Substances 0.000 description 1
- 229940005574 sodium gluconate Drugs 0.000 description 1
- 235000012207 sodium gluconate Nutrition 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000003856 thermoforming Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 239000002966 varnish Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000003643 water by type Substances 0.000 description 1
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical compound [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 description 1
Landscapes
- Reinforced Plastic Materials (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Structure Of Printed Boards (AREA)
- Manufacturing Of Printed Wiring (AREA)
Description
本発明は回路基板の製造法に関するものであ
り、その目的は導電部分と絶縁部分が同一平面上
にあり、平滑な鏡面状の表面を有し、さらに耐熱
性、耐湿性、耐衝撃性等に優れた回路基板を提供
することにある。
従来、回路基板の導電パターンの形成方法に関
しては多数の提案がなされている。たとえば、図
面において、第1図aに示すように、紙−フエノ
ール樹脂やガラス繊維−エポキシ樹脂よりなる電
気絶縁基板3の上に有機系接着剤2を塗布し、銅
等の金属箔1を接着するか、あるいは第1図bに
示すように、ガラス繊維−ジアリルフタレート樹
脂プリプレグよりなる電気絶縁基板3に銅等の金
属箔1を熱圧成形して該プリプレグの硬化と金属
箔の接着を同時に行なうか等があり、いずれにし
ても、いわゆる銅張積層板を製造したのち、不要
部分の金属箔をエツチング等で除去する方法があ
る。また、他方、金属箔の不要部分を除去するの
ではなく、必要部分にのみ銅等の金属をメツキ等
により析出させて、導電パターンを形成させよう
とする方法もある。
しかしながら、これらの方法で得られた回路基
板は、いずれも第2図に示すように、電気絶縁基
板3の上に導電パターン4が突出した形になつて
おり、導電部分と絶縁部分が同一平面上にあるよ
うにすることは不可能である。
これを可能にするために、離型板に印刷法によ
り導電パターンを形成させたのち、電気絶縁基板
上に反転貼着する方法、その他種々の提案がなさ
れているが、印刷法では使用しうる導電性材料に
制限があり、抵抗値の低い回路を組むことは極め
て因難でもあり、また印刷膜厚からみて、大きな
電流を流すには一般に無理があるばかりでなく、
微細なパターンを得ることも困難であつた。しか
も、これら従来の汎用の樹脂を電気絶縁基板の軸
脂として用いた回路基板は樹脂自体靭性が乏しい
ため、得られた回路基板は割れたり、欠けたり、
あるいはクラツクを生じたりする不都合があり、
また耐熱性、耐湿性についても十分とは云い難い
ものであつた。
本発明者等は上記の点を考慮し、銅張積層板の
すぐれた特徴を生かしつつ、導電部分と絶縁部分
が同一平面上にあり、平滑な鏡面状の表面を有す
ると共に基板自体が耐熱性、耐湿性、耐衝撃性等
の物性に優れた回路基板を得る目的で種々検討を
重ねた結果、本出願人が先に開発した新規なアリ
ル系樹脂を電気絶縁基板用材料として用いること
によりその目的を達成することができたものであ
る。
すなわち、本発明は、アルミニウム基材上に電
着させた銅層の不要部分を除去して導電パターン
を形成させる工程、該導電パターンを電気絶縁基
板上に該パターン面が該絶縁基板と接するように
積層して熱圧成形により積層体をうる工程、該積
層体中のアルミニウム基材をアルカリ処理により
溶解除去する工程により導電部分と絶縁部分とが
同一平面上にある耐熱性、耐湿性、耐衝撃性等に
優れた回路基板を製造する方法において、上記電
気絶縁基板に用いる電気絶縁性樹脂として下記の
テレフタル酸ジアリルエステル共重合樹脂を用い
ることを特徴とする回路基板の製造法である。
上記テレフタル酸ジアリルエステル共重合樹脂
とは、テレフタル酸ジアリルエステルと下記式
()で表わされるベンジル位に少なくとも1個
の水素原子を有する芳香族炭化水素との共重合樹
脂をいう。
(但し、上式()においてR1及びR2は、それ
ぞれ水素原子及び低級アルキル基よりなる群から
選ばれた基を示し、n=1〜3の整数である。)
以下図面によつて本発明を説明する。第3図a
〜第4図は本発明の一実施態様を示す。第3図a
はアルミニウム基材5の上に銅層6を電着させた
ものである(以下これをアルミ付銅箔という)。
銅とアルミニウムは強固に結合しており、電着で
銅層を形成させているため、界面の平滑性が良好
である。銅層6の表面は電気絶縁基板との接着強
度を増すためめに、適当な処理を施しておいても
よい。第3図bは、周知の種々の方法により、ア
ルミニウム基材5の上に、銅層の不要部分をアル
ミニウムを侵さないエツチング液等で除いて、導
電パターン4を形成させたものである。第3図c
は、電気絶縁性のテレフタル酸ジアリルエステル
共重合樹脂からなる電気絶縁基板3と第3図bの
導電パターンを積層して熱圧成形した状態を示
し、アルミニウム基材5の上に形成された導電パ
ターン4は電気絶縁基板に埋め込まれている。第
3図cのアルミニウム基材5をアルカリからなる
アルミニウムエツチング液で除去したものが第4
図であり、導電パターン4は電気絶縁基板3に埋
め込まれており、導電部分と絶縁部分が同一平面
上にあり、平滑な鏡面状の表面を有する回路基板
となつている。
さらに本発明によれば、銅層を用いる単なる導
通路のみではなく、第5図に示すように、アルミ
ニウム基材5の上に形成された導電パターン4の
必要な部分に、抵抗体素子7を印刷等の方法によ
り組みこんだのち、上記のように電気絶縁基板と
積層して熱圧成形後、アルミニウム基材を除去す
れば、第6図に示すように、導電部分、抵抗体等
の素子部分および絶縁部分がすべて同一平面上に
ある回路基板を製造することができるのである。
アルミ付銅箔のアルミニウム基材の厚さは、取
扱いおよび導電パターン成形後のアルミニウムの
除去の容易さを考慮して選べばよいが、30〜
100μ程度が本発明においては最も使いやすい。
銅層の厚さは回路基板の使用目的によつて決ま
る。2.54mmのICのピン間に3本の線を通すような
微細なパターンを形成させるには、たとえば5μ
のような薄い銅層を用いる方が、エツチングによ
るアンダーカツトが少いなどの有利な点があるの
に対し、大電流を流すような目的には、さらに厚
い銅層が有利となる。
アルミ付銅箔に導電パターンを形成させるには
周知の方法を種々適用できる。たとえば、該銅層
上にアルミニウム基材を侵さないために、溶剤可
溶型のレジスト剤を均一に塗布し、仮キユアー
後、パターンマスクを通して紫外線を照射し、不
要のレジス剤を現像処理により除去する。次い
で、たとえば過硫酸アンモニウム溶液からなるエ
ツチング液に漬け、非レジスト部分の銅層を溶解
させた後、レジスト剤を剥離して、導電パターン
を形成させる。
電気絶縁基板に用いる材料としては、上で得た
導電パターンを埋め込むためには電気絶縁性の樹
脂として本出願人が新規に開発したテレフタル酸
ジアリルエステル共重合樹脂を用いるとよく、該
樹脂自体が電気特性、耐熱性、高温耐湿性、曲げ
強さ等に優れる他、耐衝撃性にも優れるという特
性をもつので好都合である。
上記テレフタル酸ジアリルエステル共重合樹脂
とは、テレフタル酸ジアリルエステルと芳香族炭
化水素とを有機過酸化物、アゾ化合物の存在下に
重合して得られた共重体をいい、本発明において
は、以下に述べるようなテレフタル酸ジアリルエ
ステル共重合体が電気絶縁基板に使用される樹脂
として好ましい。即ち、次式()
但し、上式()中、R1及びR2は、それぞれ
水素原子及び低級アルキル基よりなる群から選ば
れた基を示し、n=1〜3の整数である。
で表わされるベンジル位に少なくとも1個の水素
原子を有する芳香族炭化水素と次式()
で表わされるテレフタル酸ジアリルエステルとの
共重合樹脂であつて、
(a) 式()モノマー単位の末端に式()モノマー
単位1個が、上記ベンジル位において式()モ
ノマー単位のアリル基とその※
C
及び/又は※
C
と
炭素−炭素結合した構造を有する。更に、
(b) 該共重合樹脂の式()モノマー単位のアリ
ル基で形成された炭素−炭素結合分子鎖部分の
該式()モノマー単位の数3〜11個、好まし
くは3〜10個であるという構造的特徴を有する
共重合樹脂である。更に、以下に挙げるような
諸性質をもつ共重合樹脂が望ましい。
(c) ウイス(Wijs)法測定によるヨウ素価40〜
85。
(d) 25℃における真比重が1.20〜1.25。
(e) 軟化範囲 約50〜約120℃。
(f) 50重量%メチルエチルケトン溶液粘度80〜
300cps(30℃)。
(g) GPC(ゲル・パーミエーシヨン・クロマトグ
ラフイー)法で測定したポリスチレン換算数平
均分子量(n)が4000〜10000、重量平均分
子量(w)が70000〜200000で、且つnと
Mwとの比w/nで表わした分子量分布が
10〜40。
(h) ブラベンダープラストグラフで測定したブラ
ベンダー溶融粘度が250〜2600m・gで、プロ
セツシング時間が5〜65分。
なお、上記テレフタル酸ジアリルエステル共重
合樹脂の製法等の詳細は、本出願人の先の出願に
係る特願昭57−189981号(特開昭59−80409号公
報)に記載している。
本発明において、上記テレフタル酸ジアリルエ
ステル共重合樹脂を、紙、ガラスクロス、ガラス
マツト、ガラス不織布、合成繊維クロス、合成繊
維不織布等と組合せて、耐衝撃性、その他の性質
にすぐれた電気絶縁基板として用いることができ
る。該共重合樹脂は、他の樹脂、たとえばジアリ
ルフタレート樹脂や不飽和ポリエステル樹脂等で
変性して用いることも勿論可能である。
また、特にフレキシブルな回路基板が必要な場
合は、上記のテレフタル酸ジアリルエステル共重
合樹脂−ガラス繊維または合成繊維積層板等のプ
ラスチツクシートもしくはフイルムを使用するこ
とができる。あるいは積層板のみではなく、成形
材料を用いて電気絶縁基板とすることもできる。
これら電気絶縁基板中の樹脂の含量は40〜70重量
%の範囲が適当である。
アルミ付銅箔上に形成させた導電パターンのパ
ターン面と上記の各種電気絶縁基板から選んだ材
料とが接するように積層して、熱圧成形すれば第
3図cに示すようなアルミニウム基材をもつた回
路基板が得られる。成形条件は、通常、温度100
〜190℃、圧力5〜1000Kg/cm2の範囲にある。
アルミニウム基材を除去するためには、アルカ
リ溶液、例えば水酸化ナトリウム50g/、グリ
コン酸ナトリウム1g/等のエツチング液を用
いて、エツチングすればよい。アルミニウム層を
除いた後、水洗し、20%過流酸アンモニウムなど
の弱い銅エツチング剤に浸して表面の汚れを除け
ば、第4図または第6図に示すような回路基板を
得ることができる。回路の表面保護とはんだ付性
を保持させるために、導電パターンには金、ス
ズ・ニツケル、スズ・鉛、スズメツキなどを行つ
てもよい。
本発明の方法を有効に利用すれば、片面および
両面に導電パターンをもつ回路基板のほか、多層
板を製造することも可能である。
本発明の方法によれば、アルミ付銅箔のまま、
予めレジスト塗布、現像、エツチング等の各工程
の処理を行うことができるため、有機物を成分と
して含む電気絶縁基板が、エツチング液その他の
化学薬品、水分、熱等に曝されることが少く、損
傷を受けにくいという利点があり、寸法安定性に
すぐれた高精度の回路基板が得られることも重要
な特徴の一つである。
このようにして得られた回路基板は、導電部分
と絶縁部分が同一平面上にあり、平滑な鏡面状の
表面を有しており、さらに回路基板自体が耐熱
性、耐湿性、耐衝撃性等にも優れており、従つて
回路基板上を摺動するような用途には特に適して
いる。電気絶縁基板に耐摩耗剤等を配合して、耐
摩耗性を向上させておけばさらに有利である。
本発明の方法によつて得られる回路基板の用途
としては、すぐれた高性能のプリント配線基板と
して使用しうるのは勿論、そのほか例をあげるな
らば、多極型のコネクター、抵抗体等を組み込め
ば、各種複合素子、ポテンシヨメーター、エンコ
ーダー、センサー等に、小型モーターのコンミユ
テーターやカーボン電極を組み込めば、電源供給
回路となるなど、表面の平滑性による摺動性を生
かす多数の分野がある。
テレフタル酸ジアリルエステル共重合樹脂の製造
タービン翼式可変式撹拌機、モノマー及び触媒
供給用二重管式供給ノズル、チツ素パージ口、リ
ーク弁、サンプリング口、温度計及び圧力計を備
えた内径600mm、内容積120のジヤケツト付
SUS304製重合槽を使用した。モノマー及び触媒
供給用二重管式供給ノズルは重合層の胴部の液面
下に取り付け、重合槽にはいる前からは外管の内
径を1.5mmとし、供給配管中での滞留時間をでき
るだけ短くした。ノズルの閉塞に備えて、このよ
うなノズルを3個設置した。サンプリング口も重
合槽の胴部に設置し、重合反応中内圧を利用し
て、液相のサンプルが採取できるようにした。チ
ツ素パージ口には油回転式真空ポンプとチツ素ボ
ンベを接続し、必要に応じて切替えられるように
した。
上記重合層に、後掲表1に示したようにキシレ
ン60Kgを仕込み、常温で、真空プンプで減圧に
し、チツ素ガスで常圧に戻す操作を3回繰返して
槽内の空気をチツ素で置換したのち、再び減圧に
し、重合槽を密閉した。撹拌機を起動して
240RPMで撹拌しながら、ジヤケツトにスチーム
を通じて、温度140℃に昇温した。
撹拌速度を上げて720RPMとし、二重管式ノズ
ルの外管からテレフタル酸ジアリルエステルを所
定の速度で、また同時に過酸化ジ−tert−ブチル
(DTBPO)とキシレンをモル比0.5:1となるよ
うに予め混合しておいたものを所定の速度で、吐
出圧70Kg/cm2のポンプで重合槽へ供給した。この
間、重合槽の温度は140℃を保つようにスチーム
を調節した。なお供給すべき式()テレフタル
酸ジアリルエステル(DAT)は15℃に、過酸化
ジ−tert−ブチルとキシレンの混合物は5℃にそ
れぞれ冷却し、重合槽へ至る配管はそれぞれ保冷
した。重合槽圧力は0.3〜2Kg/cm2Gであつた。
所定量のテレフタル酸ジアリルエステル、キシ
レン、過酸化ジ−tert−ブチルの供給が終了すれ
ば、スチームをとめ、撹拌速度を下げて240RPM
とし、ジヤケツトに冷却水を通して冷却した。常
温付近まで冷却したのち、リーク弁を開けて、常
圧に戻し、重合反応を終了した。
重合反応はサンプリング口から適宜サンプルを
採取して、屈折率、及びGPCで反応を追跡した。
テレフタル酸ジアリルエステル、キシレン及び
過酸化ジ−tert−ブチルの供給速度と供給量を後
掲表1に示した。
上で得られた重合反応液を、薄膜式蒸発器を用
いて、揮発分を留去し、蒸発残分中の未反応キシ
レンの、共重合樹脂と未反応テレフタル酸ジアリ
ルエステルの合計に対する比率を、重量で0.3:
1とし、次いで蒸発残分を、供給したテレフタル
酸ジアリルエステルの、重量で5倍のメタノール
を仕込んだ撹拌槽に滴下しながら撹拌し、共重合
樹脂を析出させた。析出した共重合樹脂を同量の
メタノールでよく洗い、ろ過、乾燥、粉砕して粉
末状の共重合樹脂を得た。
共重合樹脂の収率及び物性を表1に示した。
The present invention relates to a method for manufacturing a circuit board, and its purpose is to have a conductive part and an insulating part on the same plane, a smooth mirror-like surface, and further have good heat resistance, moisture resistance, impact resistance, etc. Our goal is to provide superior circuit boards. Conventionally, many proposals have been made regarding methods of forming conductive patterns on circuit boards. For example, as shown in FIG. 1a, an organic adhesive 2 is applied onto an electrically insulating substrate 3 made of paper-phenolic resin or glass fiber-epoxy resin, and a metal foil 1 made of copper or the like is bonded. Alternatively, as shown in FIG. 1b, a metal foil 1 made of copper or the like is hot-press molded onto an electrically insulating substrate 3 made of glass fiber-diallyl phthalate resin prepreg, and the prepreg is cured and the metal foil is bonded at the same time. In any case, there is a method of manufacturing a so-called copper-clad laminate and then removing unnecessary portions of the metal foil by etching or the like. On the other hand, there is also a method in which, instead of removing unnecessary parts of the metal foil, a metal such as copper is deposited only on the necessary parts by plating or the like to form a conductive pattern. However, as shown in FIG. 2, the circuit boards obtained by these methods all have a conductive pattern 4 protruding from an electrically insulating substrate 3, and the conductive part and the insulating part are on the same plane. It is impossible to do as above. In order to make this possible, various proposals have been made, such as forming a conductive pattern on a release plate using a printing method and then inverting and pasting it onto an electrically insulating substrate. There are restrictions on conductive materials, making it extremely difficult to build a circuit with low resistance, and considering the thickness of the printed film, it is generally impossible to run a large current;
It was also difficult to obtain fine patterns. Moreover, circuit boards using these conventional general-purpose resins as the shaft fat for electrically insulating boards have poor toughness, so the resulting circuit boards may crack, chip, or
Or, there is an inconvenience that may cause a crack.
Furthermore, the heat resistance and moisture resistance were also far from satisfactory. Taking the above points into consideration, the inventors of the present invention took advantage of the excellent features of copper-clad laminates, while making sure that the conductive and insulating parts are on the same plane, that the board itself has a smooth mirror-like surface, and that the board itself is heat resistant. As a result of various studies aimed at obtaining a circuit board with excellent physical properties such as moisture resistance and impact resistance, the present applicant has developed a novel allyl resin that has been previously developed by the applicant as a material for electrically insulating boards. It was possible to achieve the purpose. That is, the present invention includes a step of forming a conductive pattern by removing unnecessary portions of a copper layer electrodeposited on an aluminum base material, and placing the conductive pattern on an electrically insulating substrate so that the pattern surface is in contact with the insulating substrate. The process of laminating the laminate into a laminate by thermoforming, and the process of dissolving and removing the aluminum base material in the laminate by alkali treatment, provide heat resistance, moisture resistance, and A method for manufacturing a circuit board with excellent impact resistance, etc., characterized in that the following terephthalic acid diallyl ester copolymer resin is used as the electrically insulating resin used for the electrically insulating board. The terephthalic acid diallyl ester copolymer resin refers to a copolymer resin of terephthalic acid diallyl ester and an aromatic hydrocarbon having at least one hydrogen atom at the benzyl position represented by the following formula (). (However, in the above formula (), R 1 and R 2 each represent a group selected from the group consisting of a hydrogen atom and a lower alkyl group, and n = an integer of 1 to 3.) Explain the invention. Figure 3a
~FIG. 4 shows one embodiment of the present invention. Figure 3a
A copper layer 6 is electrodeposited on an aluminum base material 5 (hereinafter referred to as aluminum-coated copper foil).
Copper and aluminum are strongly bonded, and the copper layer is formed by electrodeposition, so the interface has good smoothness. The surface of the copper layer 6 may be subjected to an appropriate treatment in order to increase the adhesive strength with the electrically insulating substrate. In FIG. 3B, a conductive pattern 4 is formed on an aluminum base material 5 by removing unnecessary portions of the copper layer using an etching solution that does not attack aluminum using various well-known methods. Figure 3c
3 shows a state in which an electrically insulating substrate 3 made of an electrically insulating terephthalic acid diallyl ester copolymer resin and the conductive pattern shown in FIG. Pattern 4 is embedded in an electrically insulating substrate. The fourth material is the one in which the aluminum base material 5 in FIG. 3c is removed using an alkaline aluminum etching solution.
In the figure, the conductive pattern 4 is embedded in the electrically insulating substrate 3, the conductive part and the insulating part are on the same plane, and the circuit board has a smooth mirror-like surface. Furthermore, according to the present invention, not only a conductive path using a copper layer but also a resistor element 7 is provided in a necessary part of a conductive pattern 4 formed on an aluminum base material 5, as shown in FIG. After assembling by printing or other methods, the aluminum base material is removed after lamination with an electrically insulating substrate as described above and hot-press molding, as shown in Figure 6. Elements such as conductive parts and resistors It is thus possible to produce circuit boards in which the sections and the insulating sections are all coplanar. The thickness of the aluminum base material for aluminum-coated copper foil can be selected taking into consideration ease of handling and removal of aluminum after forming the conductive pattern, but it is 30~
A value of about 100μ is easiest to use in the present invention.
The thickness of the copper layer depends on the intended use of the circuit board. For example, to form a fine pattern such as passing three lines between the pins of a 2.54mm IC, a 5μ
While it is advantageous to use a thin copper layer, such as less undercutting due to etching, a thicker copper layer is advantageous for purposes such as passing large currents. Various known methods can be applied to form a conductive pattern on aluminum-coated copper foil. For example, in order not to attack the aluminum base material, a solvent-soluble resist agent is uniformly applied onto the copper layer, and after temporary curing, ultraviolet rays are irradiated through a pattern mask, and unnecessary resist agent is removed by development. do. Next, it is immersed in an etching solution consisting of, for example, ammonium persulfate solution to dissolve the non-resist portions of the copper layer, and then the resist agent is peeled off to form a conductive pattern. As the material used for the electrically insulating substrate, in order to embed the conductive pattern obtained above, it is recommended to use a terephthalic acid diallyl ester copolymer resin newly developed by the applicant as an electrically insulating resin, and the resin itself is It is advantageous because it has excellent electrical properties, heat resistance, high temperature and humidity resistance, bending strength, etc., as well as excellent impact resistance. The above-mentioned terephthalic acid diallyl ester copolymer resin refers to a copolymer obtained by polymerizing terephthalic acid diallyl ester and an aromatic hydrocarbon in the presence of an organic peroxide and an azo compound. A terephthalic acid diallyl ester copolymer as described in 1. is preferable as the resin used for the electrically insulating substrate. That is, the following formula () However, in the above formula (), R 1 and R 2 each represent a group selected from the group consisting of a hydrogen atom and a lower alkyl group, and n = an integer of 1 to 3. An aromatic hydrocarbon having at least one hydrogen atom at the benzylic position represented by the following formula () A copolymer resin with terephthalic acid diallyl ester represented by (a) one monomer unit of formula () at the end of the monomer unit of formula (), and an allyl group of the monomer unit of formula () at the benzyl position and its It has a carbon-carbon bonded structure with *C and/or *C. Furthermore, (b) the number of monomer units of the formula () in the carbon-carbon bond molecular chain portion formed by the allyl group of the monomer unit of the formula () of the copolymer resin is 3 to 11, preferably 3 to 10; It is a copolymer resin with certain structural characteristics. Furthermore, copolymer resins having the following properties are desirable. (c) Iodine value measured by Wijs method: 40~
85. (d) True specific gravity at 25°C is 1.20-1.25. (e) Softening range: approximately 50 to approximately 120°C. (f) 50% by weight methyl ethyl ketone solution viscosity 80~
300cps (30℃). (g) The polystyrene equivalent number average molecular weight (n) measured by GPC (gel permeation chromatography) method is 4,000 to 10,000, the weight average molecular weight (w) is 70,000 to 200,000, and the relationship between n and Mw is The molecular weight distribution expressed as the ratio w/n is
10-40. (h) The Brabender melt viscosity measured with a Brabender plastograph is 250 to 2600 m·g, and the processing time is 5 to 65 minutes. The details of the manufacturing method of the terephthalic acid diallyl ester copolymer resin are described in Japanese Patent Application No. 189981/1989 (Japanese Unexamined Patent Publication No. 80409/1989) filed by the present applicant. In the present invention, the above terephthalic acid diallyl ester copolymer resin is combined with paper, glass cloth, glass mat, glass nonwoven fabric, synthetic fiber cloth, synthetic fiber nonwoven fabric, etc. to produce an electrically insulating substrate with excellent impact resistance and other properties. Can be used. Of course, the copolymer resin can also be used after being modified with other resins, such as diallyl phthalate resin or unsaturated polyester resin. If a particularly flexible circuit board is required, a plastic sheet or film such as the above-mentioned terephthalic acid diallyl ester copolymer resin-glass fiber or synthetic fiber laminate may be used. Alternatively, it is also possible to use not only a laminate but also a molding material to form an electrically insulating substrate.
The content of resin in these electrically insulating substrates is suitably in the range of 40 to 70% by weight. If the patterned surface of the conductive pattern formed on the aluminum-coated copper foil is in contact with the material selected from the various electrical insulating substrates mentioned above, and the material is laminated and hot-pressed, an aluminum base material as shown in Figure 3c is obtained. A circuit board with Molding conditions are usually a temperature of 100
~190°C, pressure 5~1000Kg/ cm2 . In order to remove the aluminum base material, etching may be performed using an alkaline solution, for example, an etching solution containing 50 g of sodium hydroxide or 1 g of sodium glyconate. After removing the aluminum layer, it is washed with water and soaked in a weak copper etching agent such as 20% ammonium persulfate to remove surface dirt, resulting in a circuit board as shown in Figure 4 or Figure 6. . In order to protect the surface of the circuit and maintain solderability, the conductive pattern may be coated with gold, tin/nickel, tin/lead, tin plating, or the like. By effectively utilizing the method of the present invention, it is possible to manufacture multilayer boards as well as circuit boards having conductive patterns on one and both sides. According to the method of the present invention, as the aluminum-coated copper foil,
Since each process such as resist coating, development, and etching can be performed in advance, electrically insulating substrates containing organic substances are less likely to be exposed to etching solutions, other chemicals, moisture, heat, etc., and are less likely to be damaged. One of the important features is that it has the advantage of being less susceptible to damage, and that a high-precision circuit board with excellent dimensional stability can be obtained. The circuit board thus obtained has a conductive part and an insulating part on the same plane, a smooth mirror-like surface, and the circuit board itself has heat resistance, moisture resistance, impact resistance, etc. Therefore, it is particularly suitable for applications such as sliding on circuit boards. It is further advantageous to improve the wear resistance by adding an anti-wear agent or the like to the electrically insulating substrate. The circuit board obtained by the method of the present invention can of course be used as an excellent high-performance printed wiring board, but also can be used to incorporate multi-polar connectors, resistors, etc. For example, if a small motor commutator or carbon electrode is incorporated into various composite elements, potentiometers, encoders, sensors, etc., it can become a power supply circuit, and many other fields that take advantage of the sliding properties due to the smoothness of the surface can be used. be. Production of terephthalic acid diallyl ester copolymer resin. Inner diameter 600 mm equipped with turbine blade type variable stirrer, double pipe type supply nozzle for monomer and catalyst supply, nitrogen purge port, leak valve, sampling port, thermometer and pressure gauge. , with jacket of internal volume 120
A polymerization tank made of SUS304 was used. The double-tube supply nozzle for monomer and catalyst supply is installed below the liquid level in the body of the polymerization layer, and the inner diameter of the outer tube is set to 1.5 mm before entering the polymerization tank to minimize the residence time in the supply piping. I made it shorter. Three such nozzles were installed in preparation for nozzle blockage. A sampling port was also installed in the body of the polymerization tank, making it possible to take samples of the liquid phase using the internal pressure during the polymerization reaction. An oil rotary vacuum pump and a nitrogen cylinder were connected to the nitrogen purge port so that they could be switched as needed. Charge 60 kg of xylene to the above polymerization layer as shown in Table 1 below, reduce the pressure with a vacuum pump at room temperature, and return to normal pressure with nitrogen gas three times to replace the air in the tank with nitrogen. After that, the pressure was reduced again and the polymerization tank was sealed. start the stirrer
While stirring at 240 RPM, steam was passed through the jacket to raise the temperature to 140°C. The stirring speed was increased to 720 RPM, and terephthalic acid diallyl ester was added from the outer pipe of the double pipe nozzle at the specified speed, and at the same time, di-tert-butyl peroxide (DTBPO) and xylene were added at a molar ratio of 0.5:1. were mixed in advance and supplied to the polymerization tank at a predetermined speed using a pump with a discharge pressure of 70 kg/cm 2 . During this time, the steam was adjusted so that the temperature of the polymerization tank was maintained at 140°C. Note that the formula () diallyl terephthalate (DAT) to be supplied was cooled to 15°C, the mixture of di-tert-butyl peroxide and xylene was cooled to 5°C, and the piping leading to the polymerization tank was kept cool. The polymerization tank pressure was 0.3 to 2 Kg/cm 2 G. Once the specified amounts of diallyl terephthalate, xylene, and di-tert-butyl peroxide have been supplied, the steam is turned off and the stirring speed is reduced to 240 RPM.
Then, cooling water was passed through the jacket to cool it. After cooling to around room temperature, the leak valve was opened to return to normal pressure, and the polymerization reaction was completed. For the polymerization reaction, samples were appropriately taken from the sampling port, and the reaction was monitored by refractive index and GPC. The feed rates and amounts of diallyl terephthalate, xylene, and di-tert-butyl peroxide are shown in Table 1 below. The volatile components of the polymerization reaction solution obtained above were distilled off using a thin film evaporator, and the ratio of unreacted xylene in the evaporation residue to the total of copolymer resin and unreacted diallyl terephthalate was determined. , 0.3 in weight:
1, and then the evaporation residue was added dropwise to a stirring tank containing methanol in an amount 5 times the weight of the supplied diallyl terephthalate and stirred to precipitate a copolymer resin. The precipitated copolymer resin was thoroughly washed with the same amount of methanol, filtered, dried, and pulverized to obtain a powdered copolymer resin. Table 1 shows the yield and physical properties of the copolymer resin.
【表】【table】
【表】
上記表1において
(1)は、ゲルバーミエ−シヨンクロマトグラフ法に
よるポリスチレン換算測定値で、ウオーターズ
社製「150CGPC」装置を用いた。
(2)は、メトラー社製「PF61」光透過式自動融点
測定装置を用いた。
(3)は、ブラベンダー社(独)製のブラベンダープ
ラストグラフによる測定値。
混練室容量50c.c.、ロータ型式W50H、試料50
g+ステアリン酸亜鉛0.5g、混練室温度130
℃、ロータ回転数22RPMで混練抵抗が
5000m・gに達するまで行い、記録紙のトルク
曲線から、トルク最低値をブラベンダー溶融粘
度とし、試料投入終了時から5000m・gまでの
時間をプロセツシング時間とした。
実施例
<アルミ付銅箔上の導電パターン形成>
アルミ銅箔(三井金属鉱業(株)製「UTC箔40E
9」)の銅層面に溶剤可溶性のレジスト剤を均一
に塗布し、乾燥後パターンマスクを通して紫外線
を照射したのち、不要のレジスト剤を溶剤で除去
した。次いで過硫酸アンモニウム溶液からなるエ
ツチング液に浸し、非レジスト部分の銅層を溶解
させた後、レジスト剤を剥離した。
<電気絶縁基板の調製>
前記製造のテレフタル酸ジアリルエステル共重
合樹脂80重量部、不飽和ポリエステル20重量部、
過酸化ジクミル2重量部、メチルエチルケトン
100重量部を混合して含浸ワニスをつくり、これ
に、メタクリルシラン処理した平織ガラスクロス
(坪量202g/m2)に含浸し、室温乾燥後さらに80
℃で30分間乾燥し、プリプレグを得た。プリプレ
グ中の樹脂含量は45.5重量%であつた。ここに、
用いた不飽和ポリエステルは無水フタル酸0.5モ
ル、無水マレイン酸0.5モルおよびプロピレング
リコール1モルを溶融法により脱水縮合した酸価
28.0、軟化温度80℃のポリエステルである。
<回路基板の成形>
アルミ付銅箔上の導電パターンのパターン面を
上記電気絶縁基板プリプレグと接するようにして
積層した。該プリプレグは6枚を使用した。熱盤
温度165℃、圧力50Kg/cm2で30分間成形し、積層
体を得た。
<アルミニウム基材の除去>
水酸化ナトリウム50g/、グルコン酸ナトリ
ウム1g/からなるエツチング液に、温度70℃
で上記積層体を浸してアルミニウム層を除去し、
十分水洗後20%過硫酸アンモニウム溶液に10秒間
浸して洗浄し、回路基板を得た。得られた回路基
板は、導電部分と絶縁部分が同一平面上にあり、
平滑な鏡面状の表面を有していた。またこの回路
基板について行つたJISC6481に基く耐熱性試験
(200℃×1hr)は良好であり、同じく吸水性試験
(E−24/50+D−24/30)は吸水率0.1%以下で
あつた。因に、上記回路基板の電気絶縁基板に用
いたテレフタル酸ジアリルエステル共重合樹脂を
含む樹脂の代りにジアリルフタレート樹脂単独又
はこの樹脂と不飽和ポリエステル樹脂との(1:
1)混合物を用いた以外は上記同様に行つて得ら
れた回路基板の耐熱性試験ではいずれもフクレを
生じ、また吸水性試験ではそれぞれ0.1%以上の
給水率を有していた。[Table] In Table 1 above, (1) is the polystyrene equivalent value measured by the gel vermiaction chromatography method, using a "150CGPC" device manufactured by Waters. For (2), a light transmission type automatic melting point measuring device "PF61" manufactured by Mettler was used. (3) is the value measured by Brabender Plastograph manufactured by Brabender (Germany). Kneading chamber capacity 50c.c., rotor model W50H, sample 50
g+zinc stearate 0.5g, kneading chamber temperature 130
℃, the kneading resistance at rotor rotation speed 22 RPM
The processing was continued until reaching 5000 m·g, and from the torque curve of the recording paper, the lowest torque value was taken as the Brabender melt viscosity, and the time from the end of sample loading to 5000 m·g was taken as the processing time. Example <Formation of conductive pattern on copper foil with aluminum> Aluminum copper foil (“UTC foil 40E” manufactured by Mitsui Metal Mining Co., Ltd.)
A solvent-soluble resist agent was uniformly applied to the surface of the copper layer (No. 9), and after drying, ultraviolet rays were irradiated through a pattern mask, and unnecessary resist agent was removed with a solvent. Next, it was immersed in an etching solution consisting of ammonium persulfate solution to dissolve the copper layer in non-resist areas, and then the resist agent was removed. <Preparation of electrically insulating substrate> 80 parts by weight of the terephthalic acid diallyl ester copolymer resin produced above, 20 parts by weight of unsaturated polyester,
2 parts by weight of dicumyl peroxide, methyl ethyl ketone
An impregnated varnish was prepared by mixing 100 parts by weight, which was impregnated into a plain-woven glass cloth (basis weight 202 g/m 2 ) treated with methacrylic silane.
It was dried at ℃ for 30 minutes to obtain a prepreg. The resin content in the prepreg was 45.5% by weight. Here,
The unsaturated polyester used was obtained by dehydrating and condensing 0.5 mol of phthalic anhydride, 0.5 mol of maleic anhydride, and 1 mol of propylene glycol using a melting method.
28.0, a polyester with a softening temperature of 80°C. <Molding of circuit board> The patterned surface of the conductive pattern on the aluminum-coated copper foil was laminated so that it was in contact with the electrically insulating substrate prepreg. Six prepregs were used. Molding was carried out for 30 minutes at a hot platen temperature of 165° C. and a pressure of 50 kg/cm 2 to obtain a laminate. <Removal of aluminum base material> Add an etching solution containing 50 g of sodium hydroxide and 1 g of sodium gluconate at a temperature of 70°C.
immerse the above laminate in water to remove the aluminum layer,
After thorough washing with water, it was immersed in a 20% ammonium persulfate solution for 10 seconds to obtain a circuit board. The resulting circuit board has conductive parts and insulating parts on the same plane.
It had a smooth mirror-like surface. Further, the heat resistance test (200°C x 1 hr) conducted on this circuit board based on JISC6481 was good, and the water absorption rate was 0.1% or less in the water absorption test (E-24/50+D-24/30). Incidentally, instead of the resin containing terephthalic acid diallyl ester copolymer resin used for the electric insulating substrate of the circuit board, diallyl phthalate resin alone or a combination of this resin and unsaturated polyester resin (1:
1) In the heat resistance test of the circuit boards obtained in the same manner as above except that a mixture was used, blistering occurred in all cases, and in the water absorption test, each had a water supply rate of 0.1% or more.
第1図a及び第1図bは従来の金属箔張積層板
の断面図、第2図は従来の回路基板の断面図、第
3図a〜第3図c及び第4図は本発明の一実施例
を示すもので、第3図a〜第3図cは各工程断面
図、第4図は回路基板の断面図、第5図及び第6
図は本発明の他の実施例を示し、第5図は工程断
面図、第6図は回路基板の断面図である。
1:金属箔、2:接着剤、3:電気絶縁基板、
4:導電パターン、5:アルミニウム基材、6:
銅層、7:抵抗体素子。
1a and 1b are sectional views of a conventional metal foil-clad laminate, FIG. 2 is a sectional view of a conventional circuit board, and 3a to 3c and 4 are sectional views of a conventional circuit board. 3a to 3c are sectional views of each process, FIG. 4 is a sectional view of a circuit board, and FIGS.
The figures show other embodiments of the present invention, with FIG. 5 being a sectional view of the process, and FIG. 6 being a sectional view of the circuit board. 1: Metal foil, 2: Adhesive, 3: Electrical insulating substrate,
4: Conductive pattern, 5: Aluminum base material, 6:
Copper layer, 7: resistor element.
Claims (1)
部分を除去して導電パターンを形成させる工程、
該導電パターンを電気絶縁基板上に該パターン面
が該絶縁基板と接するように積層して熱圧成形に
より積層体をうる工程、該積層体中のアルミニウ
ム基材をアルカリ処理により溶解除去する工程に
より導電部分と絶縁部分とが同一平面上にある耐
熱性、耐湿性、耐衝撃性等に優れた回路基板を製
造する方法において、上記電気絶縁基板に用いる
電気絶縁性樹脂として下記のテレフタル酸ジアリ
ルエステル共重合樹脂を用いることを特徴とする
回路基板の製造法。 上記テレフタル酸ジアリルエステル共重合樹脂
とは、テレフタル酸ジアリルエステルと下記式
()で表わされるベンジル位に少なくとも1個
の水素原子を有する芳香族炭化水素との共重合樹
脂をいう。 但し、上式()においてR1及びR2は、それ
ぞれ水素原子及び低級アルキル基よりなる群から
選ばれた基を示し、n=1〜3の整数である。[Claims] 1. A step of forming a conductive pattern by removing unnecessary portions of a copper layer electrodeposited on an aluminum base material,
A step of laminating the conductive pattern on an electrically insulating substrate so that the pattern surface is in contact with the insulating substrate to obtain a laminate by hot pressing, and a step of dissolving and removing the aluminum base material in the laminate by an alkali treatment. In a method for manufacturing a circuit board with excellent heat resistance, moisture resistance, impact resistance, etc., in which a conductive part and an insulating part are on the same plane, the following terephthalic acid diallyl ester is used as an electrically insulating resin for the electrically insulating board. A method for manufacturing a circuit board characterized by using a copolymer resin. The terephthalic acid diallyl ester copolymer resin refers to a copolymer resin of terephthalic acid diallyl ester and an aromatic hydrocarbon having at least one hydrogen atom at the benzyl position represented by the following formula (). However, in the above formula (), R 1 and R 2 each represent a group selected from the group consisting of a hydrogen atom and a lower alkyl group, and n = an integer of 1 to 3.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16564283A JPS6055691A (en) | 1983-09-07 | 1983-09-07 | Conductive pattern forming unit of circuit board |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16564283A JPS6055691A (en) | 1983-09-07 | 1983-09-07 | Conductive pattern forming unit of circuit board |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6055691A JPS6055691A (en) | 1985-03-30 |
JPH0135512B2 true JPH0135512B2 (en) | 1989-07-25 |
Family
ID=15816238
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16564283A Granted JPS6055691A (en) | 1983-09-07 | 1983-09-07 | Conductive pattern forming unit of circuit board |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6055691A (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60164392A (en) * | 1984-02-07 | 1985-08-27 | 日本電産コパル株式会社 | Method of forming circuit board |
JP2652163B2 (en) * | 1987-06-25 | 1997-09-10 | イビデン株式会社 | Printed wiring board for IC card |
JP3416658B2 (en) * | 2000-02-09 | 2003-06-16 | 松下電器産業株式会社 | Transfer material, method of manufacturing the same, and wiring board manufactured using the same |
US6871396B2 (en) | 2000-02-09 | 2005-03-29 | Matsushita Electric Industrial Co., Ltd. | Transfer material for wiring substrate |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5291172A (en) * | 1976-01-23 | 1977-08-01 | Synthane Taylor Corp | Electric circuit carrier and method of producing same |
JPS5772396A (en) * | 1980-10-24 | 1982-05-06 | Shin Kobe Electric Machinery | Method of fabricating printed circuit board |
-
1983
- 1983-09-07 JP JP16564283A patent/JPS6055691A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5291172A (en) * | 1976-01-23 | 1977-08-01 | Synthane Taylor Corp | Electric circuit carrier and method of producing same |
JPS5772396A (en) * | 1980-10-24 | 1982-05-06 | Shin Kobe Electric Machinery | Method of fabricating printed circuit board |
Also Published As
Publication number | Publication date |
---|---|
JPS6055691A (en) | 1985-03-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI342886B (en) | Resin composition and prepreg for laminate and metal-clad laminate | |
KR100610649B1 (en) | Resin composition, prepreg, laminate sheet and printed wiring board using the same | |
CN104053724A (en) | Resin Composition, Layered Product, Multilayered Printed Wiring Board, Multilayered Flexible Wiring Board, And Process For Producing Same | |
CN102176808A (en) | Laminated body, method of manufacturing susbtrate, substrate, and semiconductor device | |
CN101784614A (en) | Resin composition and multilayer resin film employing the same | |
JP7378090B2 (en) | Resin compositions, prepregs, resin-coated films, resin-coated metal foils, metal-clad laminates, and wiring boards | |
CN101583647A (en) | Thermosetting resin composition | |
JP2019001965A (en) | Resin composition, prepreg, metal-clad laminate, and printed wiring board | |
US11958951B2 (en) | Resin composition, prepreg, resin-equipped film, resin-equipped metal foil, metal-cladded layered sheet, and wiring board | |
US20030045757A1 (en) | Modified polyphenylene ether | |
CN102017821A (en) | Resist ink and method for manufacturing multilayer printed wiring board | |
CN108727942A (en) | Resin combination | |
US6455784B1 (en) | Curable sheet for circuit transfer | |
JP4572423B2 (en) | Method for producing copper-clad laminate, printed wiring board using the same, and multilayer printed wiring board | |
JPH0135512B2 (en) | ||
JP7352799B2 (en) | Resin compositions, prepregs, resin-coated films, resin-coated metal foils, metal-clad laminates, and printed wiring boards | |
JP3072704B2 (en) | Poly (aryl ether benzimidazole) and electronic package using the same | |
JP4550324B2 (en) | Low dielectric loss tangent resin composition, cured product thereof, and prepreg, laminate and multilayer printed board using the composition | |
JPH0135514B2 (en) | ||
JP2004087638A (en) | Heat-resistant porous resin multilayer substrate | |
TWI859291B (en) | Resin composition, prepreg, resin-coated film, resin-coated metal foil, metal-clad laminate, and wiring board | |
JP3660733B2 (en) | Photosensitive film material for circuit board insulation, flexible printed wiring board using the same, and sequential multilayer board | |
JPH0260079B2 (en) | ||
JP7580070B2 (en) | Resin composition, prepreg, resin-coated film, resin-coated metal foil, metal-clad laminate, and wiring board | |
CN219204782U (en) | White covering film for printed circuit board |