JPH0135514B2 - - Google Patents

Info

Publication number
JPH0135514B2
JPH0135514B2 JP58165643A JP16564383A JPH0135514B2 JP H0135514 B2 JPH0135514 B2 JP H0135514B2 JP 58165643 A JP58165643 A JP 58165643A JP 16564383 A JP16564383 A JP 16564383A JP H0135514 B2 JPH0135514 B2 JP H0135514B2
Authority
JP
Japan
Prior art keywords
electrically insulating
copolymer resin
terephthalic acid
base material
conductive pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58165643A
Other languages
Japanese (ja)
Other versions
JPS6055695A (en
Inventor
Wataru Tanaka
Takeshi Kuri
Masanari Oosuga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daisoo Kk
Original Assignee
Daisoo Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daisoo Kk filed Critical Daisoo Kk
Priority to JP16564383A priority Critical patent/JPS6055695A/en
Publication of JPS6055695A publication Critical patent/JPS6055695A/en
Publication of JPH0135514B2 publication Critical patent/JPH0135514B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は回路基板の製造法に関するものであ
り、その目的は導電部分と絶縁部分が同一平面上
にあり、平滑な鏡面状の表面を有し、さらに耐熱
性、耐湿性、耐衝撃性等に優れた回路基板を提供
することにある。 従来、回路基板の導電パターンの形成方法に関
しては多数の提案がなされている。たとえば、図
面において、第1図aに示すように、紙−フエノ
ール樹脂やガラス繊維−エポキシ樹脂よりなる電
気絶縁基板3の上に有機系接着剤2を塗布し、銅
等の金属箔1を接着するか、あるいは第1図bに
示すように、ガラス繊維−ジアリルフタレート樹
脂プリプレグよりなる電気絶縁基板3に銅等の金
属箔1を熱圧成形して該プリプレグの硬化と金属
箔の接着を行なうか等があり、いずれにしても、
いわゆる銅張積層板を製造したのち、不要部分の
金属箔をエツチング等で除去する方法がある。ま
た、他方、金属箔の不要部分を除去するのでな
く、必要部分にのみ銅等の金属をメツキ等により
析出させて、導電パターンを形成させようとする
方法もある。 しかしながら、これらの方法で得られた回路基
板は、いずれも第2図に示すように、電気絶縁基
板3の上に導電パターン4が突出した形になつて
おり、導電部分と絶縁部分が同一平面上にあるよ
うにすることは不可能である。 これを可能にするために、離型板に印刷法によ
り導電パターンを形成させたのち、電気絶縁基板
上に反転貼着する方法、その他種々の提案がなさ
れているが、印刷法では使用しうる導電性材料に
制限があり、抵抗値の低い回路を組むことは極め
て困難でもあり、また印刷膜厚からみて、大きな
電流を流すには一般に無理があるばかりでなく、
微細なパターンを得ることも困難であつた。しか
も、これら従来の汎用の樹脂を電気絶縁基板の樹
脂として用いた回路基板は樹脂自体靭性が乏しい
ため、得られた回路基板は割れたり、欠けたり、
あるいはクラツクを生じたりする不都合があり、
また耐熱性、耐湿性についても十分とは云い難い
ものであつた。 本発明者等は上記の点を考慮し、導電部分と絶
縁部分が同一平面上にあり、平滑な鏡面状の表面
を有すると共に基板自体が耐熱性、耐湿性、耐衝
撃性等の物性に優れた回路基板を得る目的で種々
検討を重ねた結果、本出願が先に開発した新規な
アリル系樹脂を電気絶縁基板用材料として用いる
ことによりその目的を達成することができたもの
である。 すなわち、本発明は、アルミニウム基材上の不
要部分をマスクして電気メツキ法により銅を析出
させて導電パターンを形成させる工程、該導電パ
ターンを電気絶縁基板上に該パターン面が該絶縁
基板と接するように積層して熱圧成形により積層
体をうる工程、該積層体中のアルミニウム基材を
アルカリ処理により溶解除去する工程により導電
部分と絶縁部分とが同一平面上にある耐熱性、耐
湿性、耐衝撃性等に優れた回路基板を製造する方
法において、上記電気絶縁基板に用いる電気絶縁
性樹脂として下記のテレフタル酸ジアリルエステ
ル共重合樹脂を用いることを特徴とする回路基板
の製造法である。 上記テレフタル酸ジアリルエステル共重合樹脂
とは、テレフタル酸ジアリルエステルと下記式
()で表わされるベンジル位に少なくとも1個
の水素原子を有する芳香族炭化水素との共重合樹
脂をいう。 (但し、上式()においてR1及びR2は、それ
ぞれ水素原子及び低級アルキル基よりなる群から
選ばれた基を示し、n=1〜3の整数である。 以下図面によつて本発明を説明する。第3図a
〜第3図c及び第4図は本発明の一実施態様を示
す。第3図aのようにアルミニウム板またはアル
ミニウム箔は(以下アルミニウム基材という)5
上の、回路パターン部分(以下導電パターンと称
する)以外の不要部分をマスキング剤6でマスク
しておき、電気メツキにより必要部分に銅を析出
させたのちマスキング剤を除去すれば、第3図b
に示すようなアルミニウム基材5上に導電パター
ン4を形成させることができる。第3図cは電気
絶縁性のテレフタル酸ジアリルエステル共重合樹
脂からなる電気絶縁基板3と第3図bの導電パタ
ーンを積層して熱圧成形した積層体を示してお
り、アルミニウム基材5上に形成された導電パタ
ーン4は電気絶縁基板に埋め込まれている。第3
図cのアルミニウム基材5をアルカリからなるア
ルミニウムエツチング液で除去することにより、
第4図に示されるような導電パターン4が電気絶
縁基板3に埋め込まれた、導電部分と絶縁部分が
同一平面上にあり、平滑な鏡面状の表面を有する
回路基板を得ることができる。 さらに本発明によれば、銅層を用いる単なる導
通路のみでなく、第5図に示すように、アルミニ
ウム基材5の上に形成された導電パターン4の必
要な部分に、抵抗体素子7を印刷等の方法により
組み込んだのち、上記のように電気絶縁基板3と
積層して熱圧成形後、アルミニウム基材を除去す
れば、第6図に示すように、導電部分、抵抗体等
の素子部分および絶縁部分がすべて同一平面上に
ある回路基板を製造することができるのである。 アルミニウム基材の厚さは、取扱いおよび導電
パターン成形後の該基材の除去の容易さを考慮し
て選べばよいが、30〜100μ程度が本発明におい
ては最も使いやすい。 アルミニウム基材上に導電パターンを形成させ
るには電気メツキにより必要部分に銅を電着させ
るのがよい。必ず不要部分を溶剤除去型のメツキ
レジストでマスクしておき、硫酸銅浴、ピロリン
酸銅浴などのメツキ浴に浸して通電し、マスクし
たアルミニウム基材を陰極として銅の薄膜を電着
させる。電気メツキ法によれば、酸性条件下で行
うことができ、また析出速度が速く、アルミニウ
ム基材が容易には侵されないので有利である。電
気絶縁基板との接着をよくするためには、表面に
酸化銅をつけるなど適当な化学処理を施してもよ
いし、機械的に凹凸をつけてもよい。また電気絶
縁基板には適当な接着剤を塗布してもよい。 本発明の電気絶縁基板としては、上で得た導電
パターンを埋め込むためには電気絶縁性の樹脂と
して本出願人が新規に開発したテレフタル酸ジア
リルエステル共重合樹脂を用いるとよく、該樹脂
自体が電気特性、耐熱性、高温耐湿性、曲げ強さ
等に優れる他、耐衝撃性にも優れるという特性を
もつので好都合である。 上記テレフタル酸ジアリルエステル共重合樹脂
とは、テレフタル酸ジアリルエステルと芳香族炭
化水素とを有機過酸化物、アゾ化合物の存在下に
重合して得られた共重体をいい、本発明において
は、以下に述べるようなテレフタル酸ジアリルエ
ステル共重合樹脂が電気絶縁基板に使用される樹
脂として好ましい。即ち、次式() 但し、上式()中、R1及びR2は、それぞれ
水素原子及び低級アルキル基よりなる群から選ば
れた基を示し、n=1〜3の整数である。 で表わされるベンジル位に少なくとも1個の水素
原子を有する芳香族炭化水素と次式() で表わされるテレフタル酸ジアリルエステルとの
共重合樹脂であつて、 (a) 式()モノマー単位の末端に式()モノ
マー単位1個が、上記ベンジル位においた式
()モノマー単位のアリル基とその※ C及び/
又は※ Cと炭素−炭素結合した構造を有する。更
に、 (b) 該共重合樹脂の式()モノマー単位のアリ
ル基で形成された炭素−炭素結合分子鎖部分の
該式()モノマー単位の数3〜11個、好まし
くは3〜10個であるという構造的特徴を有する
共重合樹脂である。更に、以下に挙げるような
諸性質をもつ共重合樹脂が望ましい。 (c) ウイス(Wijs)法測定によるヨウ素価40〜
85。 (d) 25℃における真比重が1.20〜1.25。 (e) 軟化範囲 約50〜約120℃。 (f) 50重量%メチルエチルケトン溶液粘度80〜
300cps(30℃)。 (g) GPC(ゲル・パーミエーシヨン・クロマトグ
ラフイー)法で測定したポリスチレン換算数平
均分子量(n)が4000〜10000、重量平均分
子量(w)が70000〜200000で、且つnと
Mwとの比w/nで表わした分子量分布が
10〜40。 (h) ブラベンダープラストグラフで測定したブラ
ベンダー溶融粘度が250〜2600m・gで、プロ
セツシング時間が5〜65分。 なお、上記テレフタル酸ジアリルエステル共重
合樹脂の製法等の詳細は、本出願人の先の出願に
係る特願昭57−189981号(特開昭59−80409号公
報)に記載している。 本発明において、上記テレフタル酸ジアリルエ
ステル共重合樹脂を、紙、ガラスクロス、ガラス
マツト、ガラス不織布、合成繊維クロス、合成繊
維不織布等と組合せて、耐衝撃性、その他の性質
にすぐれた電気絶縁基板として用いることができ
る。該共重合樹脂は、他の樹脂、たとえばジアリ
ルフタレート樹脂や不飽和ポリエステル樹脂等で
変性して用いることも勿論可能である。 また、特にフレキシブルな回路基板が必要な場
合は、上記のテレフタル酸ジアリルエステル共重
合樹脂−ガラス繊維または合成繊維積層板等のプ
ラスチツクシートもしくはフイルムを使用するこ
とができる。あるいは積層板のみではなく、上記
のテレフタル酸ジアリルエステル共重合樹脂の成
形材料を用いて電気絶縁基板とすることもでき
る。これら電気絶縁基板中の樹脂の含量は40〜70
重量%の範囲が適当である。 アルミニウム基材上に形成させた導電パターン
のパターン面と上記の各種電気絶縁基板から選ん
だ材料とが接するように積層して、熱圧成形すれ
ば第3図cに示すようなアルミニウム基材をもつ
た回路基板が得られる。成形条件は、通常、温度
100〜190℃、圧力5〜1000Kg/cm2の範囲にある。 アルミニウム基材を除去するためには、アルカ
リ溶液、例えば水酸化ナトリウム50g/、グル
コン酸ナトリウム1g/等のエツチング液を用
いて、エツチングすればよい。アルミニウム層を
除いた後、水洗し、20%過硫酸アンモニウムなど
の弱い銅エツチング剤に浸して表面の汚れを除け
ば、第4図または第6図に示すような回路基板を
得ることができる。回路の表面保護とはんだ付性
を保持させるために、導電パターンには金、ス
ズ・ニツケル、スズ・鉛、スズメツキなどを行つ
てもよい。 本発明の方法を有効に利用すれば、片面および
両面に導電パターンをもつ回路基板のほか、多層
板を製造することも可能である。 本発明の方法によれば、アルミニウム基材上
で、予めマスキング剤塗布、電気メツキ、洗浄等
の各工程の処理を行うことができるため、有機物
を成分として含む電気絶縁基板がメツキ浴その他
の化学薬品、水分、熱等に曝されることが少く、
損傷を受けにくいという利点があり、寸法安定性
にすぐれた高精度の回路基板が得られることも重
要な特徴の一つである。 このようにして得られた回路基板は、導電部分
と絶縁部分が同一平面上にあり、平滑な鏡面状の
表面を有しており、さらに回路基板自体が耐熱
性、耐湿性、耐衝撃性等にも優れており、従つて
回路基板上に摺動するような用途には特に適して
いる。電気絶縁基板に耐摩耗剤等を配合して、耐
摩耗性を向上させておけばさらに有利である。 本発明の方法によつて得られる回路基板の用途
としては、すぐれた高性能のプリント配線基板と
して使用しうるのは勿論、そのほか例をあげるな
らば、多極型のコネクター、抵抗体等を組み込め
ば、各種複合素子、ポテンシヨメーター、エンコ
ーダー、センサー等に、小型モーターのコンミユ
テーターやカーボン電極を組み込めば、電源供給
回路となるなど、表面の平滑性による摺動性を生
かす多数の分野がある。 テレフタル酸ジアリルエステル共重合樹脂の製造 タービン翼式可変式撹拌機、モノマー及び触媒
供給用二重管式供給ノズル、チツ素パージロ、リ
ーク弁、サンプリング口、温度計及び圧力計を備
えた内径600mm、内容積120のジヤケツト付
SUS304製重合槽を使用した。モノマー及び触媒
供給用二重管式供給ノズルは重合層の胴部の液面
下に取り付け、重合槽にはいる前からは外管の内
径を1.5mmとし、供給配管中での滞留時間をでき
るだけ短くした。ノズルの閉塞に備えて、このよ
うなノズルを3個設置した。サンプリング口も重
合槽の胴部に設置し、重合反応中内圧を利用し
て、液相のサンプルが採取できるようにした。チ
ツ素パージロには油回転式真空ポンプチツ素ボン
ベを接続し、必要に応じて切替えられるようにし
た。 上記重合層に、後掲表1に示したようにキシレ
ン60Kgを仕込み、常温で、真空ポンプで減圧に
し、チツ素ガスで常圧に戻す操作を3回繰返して
槽内の空気をチツ素で置換したのち、再び減圧に
し、重合槽を密閉した。撹拌機を起動して
240RPMで撹拌しながら、ジヤケツトにスチーム
を通じて、温度140℃に昇温した。 撹拌速度を上げて720RPMとし、二重管式ノズ
ルの外管からテレフタル酸ジアリルエステルを所
定の速度で、また同時に過酸化ジ−tert−ブチル
(DTBPO)とキシレンをモル比0.5:1となるよ
うに予め混合しておいたものを所定の速度で、吐
出圧70Kg/cm2のポンプで重合槽へ供給した。この
間、重合槽の温度は140℃に保つようにスチーム
を調節した。なお供給すべきテレフタル酸ジアリ
ルエステル(DAT)は15℃に、過酸化ジ−tert
−ブチルとキシレンの混合物は5℃にそれぞれ冷
却し、重合槽へ至る配管はそれぞれ保冷した。重
合槽圧力は0.3〜2Kg/cm2Gであつた。 所定量のテレフタル酸ジアリルエステル、キシ
レン、過酸化ジ−tert−ブチルの供給が終了すれ
ば、スチームをとめ、撹拌速度を下げて240RPM
とし、ジヤケツトに冷却水を通して冷却した。常
温付近まで冷却したのち、リーク弁を開けて、常
圧に戻し、重合反応を終了した。 重合反応中はサンプリング口から適宜サンプル
を採取して、屈折率、及びGPCで反応を追跡し
た。 テレフタル酸ジアリルエステル、キシレン及び
過酸化ジ−tert−ブチルの供給速度と供給量を後
掲表1に示した。 上で得られた重合反応液を、薄膜式蒸発器を用
いて、揮発分を留去し、蒸発残分中の未反応キシ
レンの、共重合樹脂と未反応テレフタル酸ジアリ
ルエステルの合計に対する比率を、重量で0.3:
1とし、次いで蒸発残分を、供給したテレフタル
酸ジアリルエステルの、重量で5倍のメタノール
を仕込んだ撹拌槽に滴下しながら撹拌し、共重合
樹脂を析出させた。析出した共重合樹脂を同量の
メタノールでよく洗い、ろ過、乾燥、粉砕して粉
末状の共重合樹脂を得た。 共重合樹脂の収率及び物性を表1に示した。
The present invention relates to a method for manufacturing a circuit board, and its purpose is to have a conductive part and an insulating part on the same plane, a smooth mirror-like surface, and further have good heat resistance, moisture resistance, impact resistance, etc. Our goal is to provide superior circuit boards. Conventionally, many proposals have been made regarding methods of forming conductive patterns on circuit boards. For example, as shown in FIG. 1a, an organic adhesive 2 is applied onto an electrically insulating substrate 3 made of paper-phenolic resin or glass fiber-epoxy resin, and a metal foil 1 made of copper or the like is bonded. Alternatively, as shown in FIG. 1b, a metal foil 1 made of copper or the like is hot-press molded onto an electrically insulating substrate 3 made of a glass fiber-diallyl phthalate resin prepreg, and the prepreg is cured and the metal foil is bonded. etc., and in any case,
After manufacturing a so-called copper-clad laminate, there is a method of removing unnecessary portions of the metal foil by etching or the like. On the other hand, there is also a method in which, instead of removing unnecessary parts of the metal foil, a metal such as copper is deposited only on the necessary parts by plating or the like to form a conductive pattern. However, as shown in FIG. 2, the circuit boards obtained by these methods all have a conductive pattern 4 protruding from an electrically insulating substrate 3, and the conductive part and the insulating part are on the same plane. It is impossible to do as above. In order to make this possible, various proposals have been made, such as forming a conductive pattern on a release plate using a printing method and then inverting and pasting it onto an electrically insulating substrate. Due to the limitations of conductive materials, it is extremely difficult to build circuits with low resistance, and considering the thickness of the printed film, it is generally impossible to run a large current;
It was also difficult to obtain fine patterns. Moreover, circuit boards using these conventional general-purpose resins as resins for electrically insulating boards have poor toughness, so the resulting circuit boards may crack, chip, or
Or, there is an inconvenience that may cause a crack.
Furthermore, the heat resistance and moisture resistance were also far from satisfactory. Taking the above points into consideration, the present inventors realized that the conductive part and the insulating part are on the same plane, the board has a smooth mirror-like surface, and the board itself has excellent physical properties such as heat resistance, moisture resistance, and impact resistance. As a result of various studies for the purpose of obtaining a circuit board, the present application was able to achieve its purpose by using a new allyl resin developed earlier as a material for an electrically insulating board. That is, the present invention includes a step of masking unnecessary parts on an aluminum base material and depositing copper by electroplating to form a conductive pattern, and placing the conductive pattern on an electrically insulating substrate so that the pattern surface is aligned with the insulating substrate. The process of laminating them so that they are in contact and obtaining a laminate by thermo-pressing, and the process of dissolving and removing the aluminum base material in the laminate by alkali treatment, provide heat resistance and moisture resistance in which the conductive part and the insulating part are on the same plane. , a method for manufacturing a circuit board with excellent impact resistance, etc., characterized in that the following terephthalic acid diallyl ester copolymer resin is used as the electrically insulating resin used for the electrically insulating board. . The terephthalic acid diallyl ester copolymer resin refers to a copolymer resin of terephthalic acid diallyl ester and an aromatic hydrocarbon having at least one hydrogen atom at the benzyl position represented by the following formula (). (However, in the above formula (), R 1 and R 2 each represent a group selected from the group consisting of a hydrogen atom and a lower alkyl group, and n = an integer of 1 to 3. The present invention is described below with reference to the drawings. Figure 3 a.
~ Figures 3c and 4 show one embodiment of the present invention. As shown in Figure 3a, the aluminum plate or aluminum foil (hereinafter referred to as aluminum base material) is 5
If unnecessary parts other than the upper circuit pattern part (hereinafter referred to as conductive pattern) are masked with masking agent 6, copper is deposited on the necessary parts by electroplating and the masking agent is removed, Figure 3b is obtained.
A conductive pattern 4 can be formed on an aluminum base material 5 as shown in FIG. FIG. 3c shows a laminate obtained by laminating and hot-pressing an electrically insulating substrate 3 made of an electrically insulating terephthalic acid diallyl ester copolymer resin and the conductive pattern shown in FIG. 3b, on an aluminum substrate 5. The conductive pattern 4 formed in is embedded in an electrically insulating substrate. Third
By removing the aluminum base material 5 in Figure c with an alkaline aluminum etching solution,
It is possible to obtain a circuit board in which a conductive pattern 4 as shown in FIG. 4 is embedded in an electrically insulating substrate 3, the conductive portion and the insulating portion are on the same plane, and the surface is smooth and mirror-like. Further, according to the present invention, not only a simple conductive path using a copper layer but also a resistor element 7 is provided in a necessary portion of a conductive pattern 4 formed on an aluminum base material 5, as shown in FIG. After it is assembled by printing or other methods, it is laminated with the electrically insulating substrate 3 as described above, and after hot press molding, the aluminum base material is removed, and as shown in FIG. 6, elements such as conductive parts and resistors are formed. It is thus possible to produce circuit boards in which the sections and the insulating sections are all coplanar. The thickness of the aluminum base material may be selected in consideration of ease of handling and removal of the base material after forming the conductive pattern, but a thickness of about 30 to 100 microns is most convenient for use in the present invention. In order to form a conductive pattern on an aluminum base material, it is preferable to electrodeposit copper on necessary portions by electroplating. Be sure to mask unnecessary parts with a solvent-removable plating resist, immerse it in a plating bath such as a copper sulfate bath or a copper pyrophosphate bath, and apply electricity to electrodeposit a thin copper film using the masked aluminum substrate as a cathode. The electroplating method is advantageous because it can be carried out under acidic conditions, the deposition rate is fast, and the aluminum base material is not easily attacked. In order to improve adhesion to the electrically insulating substrate, the surface may be subjected to an appropriate chemical treatment such as applying copper oxide, or may be mechanically roughened. Further, a suitable adhesive may be applied to the electrically insulating substrate. As the electrically insulating substrate of the present invention, in order to embed the conductive pattern obtained above, it is preferable to use a terephthalic acid diallyl ester copolymer resin newly developed by the applicant as an electrically insulating resin, and the resin itself is It is advantageous because it has excellent electrical properties, heat resistance, high temperature and humidity resistance, bending strength, etc., as well as excellent impact resistance. The above-mentioned terephthalic acid diallyl ester copolymer resin refers to a copolymer obtained by polymerizing terephthalic acid diallyl ester and an aromatic hydrocarbon in the presence of an organic peroxide and an azo compound. A terephthalic acid diallyl ester copolymer resin as described in 1 is preferable as a resin used for the electrically insulating substrate. That is, the following formula () However, in the above formula (), R 1 and R 2 each represent a group selected from the group consisting of a hydrogen atom and a lower alkyl group, and n = an integer of 1 to 3. An aromatic hydrocarbon having at least one hydrogen atom at the benzylic position represented by the following formula () A copolymer resin with terephthalic acid diallyl ester represented by (a) one monomer unit of formula () at the end of the monomer unit of formula (), and an allyl group of the monomer unit of formula () placed at the benzyl position. *C and/
Or * Has a structure in which C and carbon-carbon bonds are formed. Furthermore, (b) the number of monomer units of the formula () in the carbon-carbon bond molecular chain portion formed by the allyl group of the monomer unit of the formula () of the copolymer resin is 3 to 11, preferably 3 to 10; It is a copolymer resin with certain structural characteristics. Furthermore, copolymer resins having the following properties are desirable. (c) Iodine value measured by Wijs method: 40~
85. (d) True specific gravity at 25°C is 1.20-1.25. (e) Softening range: approximately 50 to approximately 120°C. (f) 50% by weight methyl ethyl ketone solution viscosity 80~
300cps (30℃). (g) The polystyrene equivalent number average molecular weight (n) measured by GPC (gel permeation chromatography) method is 4,000 to 10,000, the weight average molecular weight (w) is 70,000 to 200,000, and the relationship between n and Mw is The molecular weight distribution expressed as the ratio w/n is
10-40. (h) Brabender melt viscosity measured with a Brabender plastograph is 250 to 2600 m·g, and processing time is 5 to 65 minutes. The details of the manufacturing method of the terephthalic acid diallyl ester copolymer resin are described in Japanese Patent Application No. 189981/1989 (Japanese Unexamined Patent Publication No. 80409/1989) filed by the present applicant. In the present invention, the above terephthalic acid diallyl ester copolymer resin is combined with paper, glass cloth, glass mat, glass nonwoven fabric, synthetic fiber cloth, synthetic fiber nonwoven fabric, etc. to produce an electrically insulating substrate with excellent impact resistance and other properties. Can be used. Of course, the copolymer resin can also be used after being modified with other resins, such as diallyl phthalate resin or unsaturated polyester resin. If a particularly flexible circuit board is required, a plastic sheet or film such as the above-mentioned terephthalic acid diallyl ester copolymer resin-glass fiber or synthetic fiber laminate may be used. Alternatively, in addition to the laminate, it is also possible to use the above-mentioned terephthalic acid diallyl ester copolymer resin molding material to form an electrically insulating substrate. The resin content in these electrically insulating substrates is 40 to 70
A range of weight percent is suitable. If the patterned surface of the conductive pattern formed on the aluminum base material and the material selected from the above-mentioned various electrically insulating substrates are laminated so as to be in contact with each other and then hot-press molded, an aluminum base material as shown in Figure 3c can be obtained. A sticky circuit board is obtained. Molding conditions are usually temperature
The temperature ranges from 100 to 190°C and the pressure from 5 to 1000 Kg/cm 2 . In order to remove the aluminum base material, etching may be performed using an alkaline solution, for example, an etching solution containing 50 g of sodium hydroxide or 1 g of sodium gluconate. After removing the aluminum layer, it is washed with water and dipped in a weak copper etching agent such as 20% ammonium persulfate to remove surface stains, yielding a circuit board as shown in FIG. 4 or FIG. 6. In order to protect the surface of the circuit and maintain solderability, the conductive pattern may be coated with gold, tin/nickel, tin/lead, tin plating, or the like. By effectively utilizing the method of the present invention, it is possible to manufacture multilayer boards as well as circuit boards having conductive patterns on one and both sides. According to the method of the present invention, each process such as applying a masking agent, electroplating, and cleaning can be performed on the aluminum base material in advance, so that the electrically insulating substrate containing organic matter as a component can be treated in a plating bath or other chemical treatment. Less exposed to chemicals, moisture, heat, etc.
Another important feature is that it has the advantage of being less susceptible to damage, and that a high-precision circuit board with excellent dimensional stability can be obtained. The circuit board thus obtained has a conductive part and an insulating part on the same plane, a smooth mirror-like surface, and the circuit board itself has heat resistance, moisture resistance, impact resistance, etc. Therefore, it is particularly suitable for applications such as sliding on circuit boards. It is further advantageous to improve the wear resistance by adding an anti-wear agent or the like to the electrically insulating substrate. The circuit board obtained by the method of the present invention can be used not only as an excellent high-performance printed wiring board, but also for incorporating multi-polar connectors, resistors, etc. For example, if a small motor commutator or carbon electrode is incorporated into various composite elements, potentiometers, encoders, sensors, etc., it can be used as a power supply circuit, and many other fields that take advantage of the sliding properties due to the smoothness of the surface can be used. be. Production of terephthalic acid diallyl ester copolymer resin.Inner diameter 600mm equipped with turbine blade type variable stirrer, double pipe type supply nozzle for monomer and catalyst supply, nitrogen purger, leak valve, sampling port, thermometer and pressure gauge. Comes with a jacket with an internal volume of 120
A polymerization tank made of SUS304 was used. The double-tube supply nozzle for monomer and catalyst supply is installed below the liquid level in the body of the polymerization layer, and the inner diameter of the outer tube is set to 1.5 mm before entering the polymerization tank to minimize the residence time in the supply piping. I made it shorter. Three such nozzles were installed in preparation for nozzle blockage. A sampling port was also installed in the body of the polymerization tank, making it possible to take samples of the liquid phase using the internal pressure during the polymerization reaction. An oil rotary vacuum pump and a nitrogen cylinder were connected to the nitrogen purger so that it could be switched as needed. 60 kg of xylene is charged into the above polymerization layer as shown in Table 1 below, and at room temperature, the pressure is reduced with a vacuum pump and the pressure is returned to normal pressure with nitrogen gas.The operation is repeated three times to replace the air in the tank with nitrogen. After that, the pressure was reduced again and the polymerization tank was sealed. start the stirrer
While stirring at 240 RPM, steam was passed through the jacket to raise the temperature to 140°C. The stirring speed was increased to 720 RPM, and terephthalic acid diallyl ester was added from the outer pipe of the double pipe nozzle at the specified speed, and at the same time, di-tert-butyl peroxide (DTBPO) and xylene were added at a molar ratio of 0.5:1. were mixed in advance and supplied to the polymerization tank at a predetermined speed using a pump with a discharge pressure of 70 kg/cm 2 . During this time, the steam was adjusted so that the temperature of the polymerization tank was maintained at 140°C. The terephthalic acid diallyl ester (DAT) to be supplied is heated to 15°C and di-tert peroxide.
- The mixtures of butyl and xylene were each cooled to 5° C., and the piping leading to the polymerization tank was kept cold. The polymerization tank pressure was 0.3 to 2 Kg/cm 2 G. Once the specified amounts of diallyl terephthalate, xylene, and di-tert-butyl peroxide have been supplied, the steam is turned off and the stirring speed is reduced to 240 RPM.
Then, cooling water was passed through the jacket to cool it. After cooling to around room temperature, the leak valve was opened to return to normal pressure, and the polymerization reaction was completed. During the polymerization reaction, samples were appropriately taken from the sampling port, and the reaction was monitored using refractive index and GPC. The feed rates and amounts of diallyl terephthalate, xylene, and di-tert-butyl peroxide are shown in Table 1 below. The volatile components of the polymerization reaction solution obtained above were distilled off using a thin film evaporator, and the ratio of unreacted xylene in the evaporation residue to the total of copolymer resin and unreacted diallyl terephthalate was determined. , 0.3 in weight:
1, and then the evaporation residue was added dropwise to a stirring tank containing methanol in an amount 5 times the weight of the supplied diallyl terephthalate and stirred to precipitate a copolymer resin. The precipitated copolymer resin was thoroughly washed with the same amount of methanol, filtered, dried, and pulverized to obtain a powdered copolymer resin. Table 1 shows the yield and physical properties of the copolymer resin.

【表】 上記表1において (1)は、ゲルパーミエーシヨンクロマトグラフ法に
よるポリスチレン換算測定値で、ウオーターズ
社製「150CGPC」装置を用いた。 (2)は、メトラー社製「PF61」光透過式自動融点
測定装置を用いた。 (3)は、ブラベンダー社(独)製のブラベンダープ
ラストグラフによる測定値。 混練室容量50c.c.、ロータ型式W50H、試料50
g+ステアリン酸亜鉛0.5g、混練室温度130
℃、ロータ回転数22RPMで混練抵抗が
5000m・gに達するまで行い、記録紙のトルク
曲線から、トルク最低値をブラベンダー溶液粘
度とし、試料投入終了時から5000m・gまでの
時間をプロセツシング時間とした。 実施例 <アルミニウム基材上への導電パターン形成> 厚さ40μのアルミニウム箔上に、導電パターン
部分のみアルミニウム層が露出するようにスクリ
ーン印刷により不要部分をメツキレジスト剤でマ
スクしておき、硫酸銅溶液をメツキ浴としてアル
ミニウムの露出部分に銅を析出させ、厚さ35μの
銅層からなる導電パターンを描いた後、上記レジ
スト剤を剥離した。 <電気絶縁基板の調製> 前記製造のテレフタル酸ジアリルエステル共重
合樹脂を用いて、以下に示す成形材料を調製し
た。 テレフタル酸ジアリルエステル共重合樹脂
80重量部 ジアリルフタレート樹脂 20 〃 パークミルD 2 〃 ガラス短繊維 60 〃 炭酸カルシウム 35 〃 ウオラストナイトNYAD400(カルシウムメタシ
リケート) 5 〃 シランカツプリング剤A174 0.6 〃 ハイドロキノン 0.01重量部 なお上記の各成分は次の通りである。 ジアリルフタレート樹脂:大阪曹達社製 パークミルD:日本油脂社製 ガラス短繊維:旭フアイバーグラス社製「CSO
3HB 830A」 炭酸カルシウム:日本粉化工業社製「NS−100」 ウオラストナイト:長瀬産業社製 シランカツプリング剤:日本コニカー社製 上記の成分をメチルエチルケトン100重量部と
共によく混合したのち、メチルエチルケトンを除
去して乾燥させ、粉砕して電気絶縁基板材料を得
た。 <回路基板の成形> 上記アルミニウム基材上に形成させた導電パタ
ーンのパターン面を上記電気絶縁基板材料と接す
るように積層して、鏡面を用いて温度165℃、圧
力100Kg/cm2で30分間成形し、積層体を得た。 <アルミニウム基材の除去> 水酸化ナトリウム50g/、グルコン酸ナトリ
ウム1g/からなるエツチング液に、温度70℃
で上記積層体を浸してアルミニウム層を除去し、
十分水洗後20%過硫酸アンモニウム溶液に10秒間
浸して洗浄し、回路基板を得た。得られた回路基
板は、導電部分と絶縁部分が同一平面上にあり、
平滑な鏡面状の表面を有していた。またこの回路
基板についてJISK7211に準ずる落錘衝撃試験
(デユポン式落球試験後、荷重500g、支持台フラ
ツト撃芯1/2インチR)を行つたところ、デイク
ソン・モード法による50%被壊高さは570mmであ
つた。因に、上記回路基板電気絶縁基板に用いた
テレフタル酸ジアリルエステル共重合樹脂を含む
樹脂の代りにジアリルフタレート樹脂95重量部及
びジアリルフタレートモノマー5重量部からなる
樹脂を用いた以外は上記同様に行つて得られた回
路基板の落錘衝撃試験のデイクソン・モード法に
よる50%の破壊高さは470mmであつた。
[Table] In Table 1 above, (1) is the polystyrene equivalent value measured by the gel permeation chromatography method using a "150CGPC" device manufactured by Waters. For (2), a light transmission type automatic melting point measuring device "PF61" manufactured by Mettler was used. (3) is the value measured by Brabender Plastograph manufactured by Brabender (Germany). Kneading chamber capacity 50c.c., rotor model W50H, sample 50
g+zinc stearate 0.5g, kneading chamber temperature 130
℃, the kneading resistance at rotor rotation speed 22 RPM
The processing was continued until reaching 5000 m·g, and from the torque curve of the recording paper, the lowest torque value was taken as the Brabender solution viscosity, and the time from the end of sample introduction to 5000 m·g was taken as the processing time. Example <Formation of a conductive pattern on an aluminum base material> On an aluminum foil with a thickness of 40μ, unnecessary parts were masked with a plating resist agent by screen printing so that only the conductive pattern part was exposed, and copper sulfate was applied. The solution was used as a plating bath to deposit copper on the exposed parts of the aluminum, and after drawing a conductive pattern consisting of a 35 μm thick copper layer, the resist agent was peeled off. <Preparation of electrically insulating substrate> The molding material shown below was prepared using the terephthalic acid diallyl ester copolymer resin produced above. Terephthalic acid diallyl ester copolymer resin
80 parts by weight Diaryl phthalate resin 20 Permil D 2 Short glass fiber 60 Calcium carbonate 35 Wollastonite NYAD400 (calcium metasilicate) 5 Silane coupling agent A174 0.6 Hydroquinone 0.01 part by weight Each of the above components is as follows It is as follows. Diaryl phthalate resin: Osaka Soda Co., Ltd. Percmill D: Nippon Oil & Fats Co., Ltd. Short glass fiber: Asahi Fiberglass Co., Ltd. “CSO”
3HB 830A" Calcium carbonate: "NS-100" manufactured by Nippon Funka Kogyo Co., Ltd. Wollastonite: Manufactured by Nagase Sangyo Co., Ltd. Silane Coupling agent: Manufactured by Nippon Konika Co., Ltd. After thoroughly mixing the above ingredients with 100 parts by weight of methyl ethyl ketone, add methyl ethyl ketone. It was removed, dried, and ground to obtain an electrically insulating substrate material. <Molding of circuit board> The patterned surface of the conductive pattern formed on the aluminum base material is laminated so as to be in contact with the electrically insulating board material, and is heated using a mirror surface at a temperature of 165°C and a pressure of 100 kg/cm 2 for 30 minutes. It was molded to obtain a laminate. <Removal of aluminum base material> Add an etching solution containing 50 g of sodium hydroxide and 1 g of sodium gluconate at a temperature of 70°C.
immerse the above laminate in water to remove the aluminum layer,
After thorough washing with water, it was immersed in a 20% ammonium persulfate solution for 10 seconds to obtain a circuit board. The resulting circuit board has conductive parts and insulating parts on the same plane.
It had a smooth mirror-like surface. In addition, when this circuit board was subjected to a falling weight impact test according to JISK7211 (after the Dupont type falling ball test, load 500g, support flat impact core 1/2 inch R), the 50% damage height according to the Dickson mode method was It was 570mm. Incidentally, the same procedure as above was carried out except that a resin consisting of 95 parts by weight of diallyl phthalate resin and 5 parts by weight of diallyl phthalate monomer was used instead of the resin containing diallyl terephthalate copolymer resin used for the electrically insulating circuit board. The 50% failure height of the circuit board obtained by the Dickson mode method of the falling weight impact test was 470 mm.

【図面の簡単な説明】[Brief explanation of drawings]

第1図a及び第1図bは従来の金属箔張積層板
の断面図、第2図は従来の回路基板の断面図、第
3図a〜第3図c及び第4図は本発明の一実施例
を示すもので、第3図a〜第3図cは各工程断面
図、第4図は回路基板の断面図、第5図及び第6
図は本発明の他の実施例を示し、第5図は工程断
面図、第6図は回路基板の断面図である。 1:金属箔、2:接着剤、3:電気絶縁基板、
4:導電パターン、5:アルミニウム基材、6:
マスキング剤、7:抵抗体素子。
1a and 1b are sectional views of a conventional metal foil-clad laminate, FIG. 2 is a sectional view of a conventional circuit board, and 3a to 3c and 4 are sectional views of a conventional circuit board. 3a to 3c are sectional views of each process, FIG. 4 is a sectional view of a circuit board, and FIGS.
The figures show other embodiments of the present invention, with FIG. 5 being a sectional view of the process, and FIG. 6 being a sectional view of the circuit board. 1: Metal foil, 2: Adhesive, 3: Electrical insulating substrate,
4: Conductive pattern, 5: Aluminum base material, 6:
Masking agent, 7: Resistor element.

Claims (1)

【特許請求の範囲】 1 アルミニウム基材上の不要部分をマスクして
電気メツキ法により銅を析出させて導電パターン
を形成させる工程、該導電パターンを電気絶縁基
板上に該パターン面が該絶縁基板と接するように
積層して熱圧成形により積層体をうる工程、該積
層体中のアルミニウム基材をアルカリ処理により
溶解除去する工程により導電部分と絶縁部分とが
同一平面上にある耐熱性、耐湿性、耐衝撃性等に
優れた回路基板を製造する方法において、上記電
気絶縁基板に用いる電気絶縁性樹脂として下記の
テレフタル酸ジアリルエステル共重合樹脂を用い
ることを特徴とする回路基板の製造法。 上記テレフタル酸ジアリルエステル共重合樹脂
とは、テレフタル酸ジアリルエステルと下記式
()で表わされるベンジル位に少なくとも1個
の水素原子を有する芳香族炭化水素との共重合樹
脂をいう。 但し、上式()においてR1及びR2は、それ
ぞれ水素原子及び低級アルキル基よりなる群から
選ばれた基を示し、n=1〜3の整数である。
[Claims] 1. A step of masking unnecessary portions on an aluminum base material and depositing copper by electroplating to form a conductive pattern, placing the conductive pattern on an electrically insulating substrate so that the pattern surface is on the insulating substrate. The process of laminating them so that they are in contact with each other and obtaining a laminate by thermoforming, and the process of dissolving and removing the aluminum base material in the laminate by alkali treatment, make it heat resistant and moisture resistant, with conductive parts and insulating parts being on the same plane. 1. A method for manufacturing a circuit board having excellent properties, impact resistance, etc., characterized in that the following terephthalic acid diallyl ester copolymer resin is used as the electrically insulating resin used in the electrically insulating board. The terephthalic acid diallyl ester copolymer resin refers to a copolymer resin of terephthalic acid diallyl ester and an aromatic hydrocarbon having at least one hydrogen atom at the benzyl position represented by the following formula (). However, in the above formula (), R 1 and R 2 each represent a group selected from the group consisting of a hydrogen atom and a lower alkyl group, and n = an integer of 1 to 3.
JP16564383A 1983-09-07 1983-09-07 Conductive pattern forming unit of circuit board Granted JPS6055695A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16564383A JPS6055695A (en) 1983-09-07 1983-09-07 Conductive pattern forming unit of circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16564383A JPS6055695A (en) 1983-09-07 1983-09-07 Conductive pattern forming unit of circuit board

Publications (2)

Publication Number Publication Date
JPS6055695A JPS6055695A (en) 1985-03-30
JPH0135514B2 true JPH0135514B2 (en) 1989-07-25

Family

ID=15816258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16564383A Granted JPS6055695A (en) 1983-09-07 1983-09-07 Conductive pattern forming unit of circuit board

Country Status (1)

Country Link
JP (1) JPS6055695A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6318693A (en) * 1986-07-11 1988-01-26 三井金属鉱業株式会社 Manufacture of printed circuit board
JPS6345888A (en) * 1986-08-13 1988-02-26 宇部興産株式会社 Manufacture of wiring board with bumps
JP4392157B2 (en) 2001-10-26 2009-12-24 パナソニック電工株式会社 WIRING BOARD SHEET MATERIAL AND ITS MANUFACTURING METHOD, AND MULTILAYER BOARD AND ITS MANUFACTURING METHOD
JP2007081423A (en) * 2001-10-26 2007-03-29 Matsushita Electric Works Ltd Wiring board sheet and manufacturing method thereof, multilayer board and manufacturing method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5772396A (en) * 1980-10-24 1982-05-06 Shin Kobe Electric Machinery Method of fabricating printed circuit board

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5772396A (en) * 1980-10-24 1982-05-06 Shin Kobe Electric Machinery Method of fabricating printed circuit board

Also Published As

Publication number Publication date
JPS6055695A (en) 1985-03-30

Similar Documents

Publication Publication Date Title
KR100610649B1 (en) Resin composition, prepreg, laminate sheet and printed wiring board using the same
CN102176808B (en) Laminated body, method of manufacturing susbtrate, substrate, and semiconductor device
CN104053724A (en) Resin Composition, Layered Product, Multilayered Printed Wiring Board, Multilayered Flexible Wiring Board, And Process For Producing Same
US20110278053A1 (en) Dry film and multilayer printed wiring board
JP2008536292A (en) Multilayer structure for forming resistors and capacitors
CA2562936A1 (en) Epoxy resin composition
US5928757A (en) Multiple wire printed circuit board and process for making the same
CN101583647A (en) Thermosetting resin composition
US11958951B2 (en) Resin composition, prepreg, resin-equipped film, resin-equipped metal foil, metal-cladded layered sheet, and wiring board
US20220356289A1 (en) Resin composition, prepreg, film with resin, metal foil with resin, metal-clad laminated board, and wiring board
US6455784B1 (en) Curable sheet for circuit transfer
JPH0135514B2 (en)
US20220356279A1 (en) Resin composition, prepreg, film with resin, metal foil with resin, metal-clad laminate, and wiring board
JP4132755B2 (en) Resin composition, prepreg and printed wiring board using the same
JPH0135512B2 (en)
JP3072704B2 (en) Poly (aryl ether benzimidazole) and electronic package using the same
JP4550324B2 (en) Low dielectric loss tangent resin composition, cured product thereof, and prepreg, laminate and multilayer printed board using the composition
JP2006278994A (en) Resin composition, laminated body, wiring board, and manufacturing method thereof
JP6853370B2 (en) Surface-treated copper foil and copper-clad laminate
JP2009067852A (en) Insulation resin sheet impregnated with glass fiber woven fabric, laminated plate, multilayered printed wiring board, and semiconductor device
JP5087819B2 (en) Resin composition, laminate, wiring board and method for manufacturing wiring board
JP4150178B2 (en) Resin composition, prepreg and printed wiring board using the same
JPH0260079B2 (en)
JP2021152107A (en) Resin composition, prepreg, film with resin, metal foil with resin, metal-clad laminate, and wiring board
JP2000159970A (en) Fumaric acid diester-based resin composition for cross- linking and its cross-linked product