JPH0135278B2 - - Google Patents

Info

Publication number
JPH0135278B2
JPH0135278B2 JP5303382A JP5303382A JPH0135278B2 JP H0135278 B2 JPH0135278 B2 JP H0135278B2 JP 5303382 A JP5303382 A JP 5303382A JP 5303382 A JP5303382 A JP 5303382A JP H0135278 B2 JPH0135278 B2 JP H0135278B2
Authority
JP
Japan
Prior art keywords
heat storage
heat
electrode
hydrophobic polymer
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5303382A
Other languages
Japanese (ja)
Other versions
JPS58168892A (en
Inventor
Tokio Hashimoto
Yasuo Kotani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Synthetic Chemical Industry Co Ltd
Original Assignee
Nippon Synthetic Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Synthetic Chemical Industry Co Ltd filed Critical Nippon Synthetic Chemical Industry Co Ltd
Priority to JP5303382A priority Critical patent/JPS58168892A/en
Publication of JPS58168892A publication Critical patent/JPS58168892A/en
Publication of JPH0135278B2 publication Critical patent/JPH0135278B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D11/00Central heating systems using heat accumulated in storage masses

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Secondary Cells (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は太陽熱を利用する冷暖房器に使用され
る蓄熱装置の改良に関するものである。 従来、冷暖房等の比較的低い温度領域で蓄熱す
る場合、水等の顕熱を利用することが行われて来
たが、最近無機塩又は有機塩特にその水和塩の融
解熱を利用する方法が試みられている。 しかし、無機塩又は有機塩を蓄熱材料とする場
合は蓄熱密度が大であると共に所定の温度で放熱
出来るという利点を有するものの、上記蓄熱材料
は一般に過冷却が著しく、融解蓄熱後、適当な温
度で凝固せず放熱が効率良く出来ない難点があ
る。 かかる過冷却防止の対策として核生成助剤を添
加したり、機械的シヨツクを与える付属装置を蓄
熱装置に備え付けることが行われているが、その
効果は必ずしも充分でない。 そこで本発明者は無機塩又は有機塩を主剤とす
る蓄熱材料の過冷却を小さく抑え蓄熱―放熱サイ
クルを効率良く行ない得る手段を見出すべく鋭意
研究を行つたところ、任意の形状の容器に無機塩
又は有機塩を収納し、且つ少くとも一対の電極を
具備してなる蓄熱装置を用いる場合かかる目的を
容易に達成し得ることを見出し先に特許出願を行
つた。 該装置においては電極間に電圧が印加出来る様
に設計されそれによつて、蓄熱材料の過冷却が防
止出来、望ましい温度で溶融液の結晶化即ち凝固
が始まり、効率の良い放熱を発現させ得るのであ
る。 しかし本発明者が更に検討を重ねたところ、長
期にわたつて電圧の印加をくり返すと蓄熱材料の
性能劣化あるいは電極の消耗により発熱効率の低
下が起こりがちで更に改良の余地があることが判
明した。 しかるに本発明者はかかる原因が電圧印加時に
電極表面で蓄熱材料の一部が電気分解等の副次的
な反応を受けるためではないかと考え、何等かの
方法で電極表面を保護して上記問題を解決しよう
と研究をつづけたところ、電極の表面を疎水性高
分子で被覆しておく場合、過冷却の防止に何等の
支障をおこすことなく蓄熱材料の劣化、電極の消
耗を極力抑えることが出来るという顕蓄な効果を
見出し本発明を完成するに到つた。 即ち、本発明は任意の形状の容器に無機塩又は
有機塩を収納し、且つ表面が疎水性高分子で被覆
された少くとも一対の電極を具備している蓄熱装
置であり、以下具体的に説明する。 まず本発明における容器はその材質あるいは形
状に限定はなく、任意のものであつて良く、要は
無機塩又は有機塩を収納出来さえすれば良い。材
質はプラスチツク、金属、炭素材、ガラス、コン
クリート、レンガ等が例示される。形状としては
第1〜6図に示される様に立方体型、長方体型、
球型、バイプ状型、ソーセージ型、パネル型等任
意の型が挙げられる。但し本発明はこれらの形状
のみに限定されない。 装置には少くとも一対の電極が付設され、その
間に電圧が印加来る様に設計されることが不可欠
である。該装置を組み入れることによつて、蓄熱
材料の過冷却が防止出来、望ましい温度で溶融液
の結晶化即ち凝固が始まり、効率の良い放熱を発
現させ得るのである。 電極は少くとも一対付設されておれば良い。容
器のどの位置でも良く、容器自体が一方又は両方
の電極を形成していても差支えない。但し、いず
れの場合であつても蓄熱材料と該電極とは必らず
接触させておかなければならない。 電極の材質は特定されないが水素過電圧の大き
いものが好ましい。無定形炭素、人造黒鉛、珪化
銅、鉛、鉛アンチモン合金、鉛銀合金、鉄、鉄珪
素合金、熔融マグネタイト、白金、銀、アルミニ
ウム、銅、亜鉛、アンチモン、スズ、水銀、各種
アマルガム、クロム、カドミウム等が例示され
る。特に銅アマルガム、銅合金(例え銅と鉄、亜
鉛、スズ、ニツケル、マンガン、クロム、アル
ミ、モリブデン、アンチモン、等の少くとも1種
の合金)アマルガムが有効に用いられる。 一対の電極においてその形状は同一であつても
異形であつても良い。又電極材料は異種電極の組
合せであつても差支えない。 該電極の表面は疎水性高分子で被覆されていな
ければならない。被覆の手段は特に限定されず疎
水性高分子溶液中に電極を浸漬後、乾燥必要であ
れば適宜熱処理等を施して電極表面に被覆層を形
成させる方法、疎水性高分子溶液を電極表面に噴
霧する方法、疎水性高分子のフイルム状物、繊維
状物を電極表面に密着させる方法、等任意の方法
が実施出来る。該疎水性高分子の膜厚によつて効
果に多少の影響が表われるので通常は1000μ以
下、好ましくは1μ〜100μ特に好ましくは10μ〜
30μの膜厚が有利である。又疎水性高分子はゲル
状あるいは発泡状等の任意の状態で被覆層を形成
していて差支えない。 本発明で使用する疎水性高分子としてはポリエ
チレン、ポリプロピレン等のオレフイン重合体又
は共重合体、スチレン系重合体又は共重合体、酢
酸ビニル系重合体又は共重合体、アクリル酸エス
テル系重合体又は共重合体、メタクリル酸エステ
ル系重合体又は共重合体、塩化ビニル系重合体又
は共重合体、塩化ビニリデン系重合体又は共重合
体、アクリロニトリル系重合体又は共重合体、メ
タクリロニトリル系重合体又は共重合体、ビニル
エーテル系重合体又は共重合体、その他、ポリ―
P―キシリレン、フツ素系プラスチツク、ポリカ
ーボネート、ポリエステル、ポリアミド、ジエン
系プラスチツク、ウレタン系プラスチツク、尿素
樹脂、メラミン樹脂、フエノール樹脂、フラン樹
脂、アルキツド樹脂、不飽和ポリエステル樹脂、
エポキシ樹脂、等が例示される。 該疎水性高分子は架橋剤、ゲル化剤、増粘剤、
可塑剤、造膜助剤等の任意の化合物で後処理した
り、混合されたりしても可等差支えない。 過冷却の防止のために電圧をかけるが、その電
圧は1μV〜10V好ましくは0.2〜3Vが適当である。
電圧の印加時間は1n秒〜100秒程度である。電源
の種類は直流、交流(低周波、高周波)、パルス
のいずれであつても差支えない。電圧の印加時期
は過冷却状態が認められる時が最も有効である。 次に蓄熱材料として容器に収納される無機塩又
は有機塩としては、その目的とする温度範囲によ
つて多少差はあるが、例えば30〜60℃用の蓄熱材
料としては塩化カルシウム6水塩、硫酸ナトリウ
ム10水塩、炭酸ナトリウム10水塩、リン酸水素2
ナトリウム12水塩、硝酸カルシウム4水塩、チオ
硫酸ナトリウム5水塩、酢酸ナトリウム3水塩等
が、80〜120℃用の蓄熱材料としは、硝酸マグネ
シウム6水塩、カリ明バン(12水塩)、アンモニ
ウム明バン(12水塩)、塩化マグネシウム6水塩、
硝酸カリウム/硝酸リチウム、硝酸カリウム/硝
酸リチウム/硝酸ナトリウム等がそれぞれ挙げら
れる。 上記した蓄熱装置は1個あるいは普通は複数個
を直列および/又は並列に組み合せて蓄熱槽とし
て用いられる。 第7図は最も簡単なモデル蓄熱器の1例を示し
たもので、(勿論本発明がかかる例のみに限定さ
れるものではない)1は本発明の蓄熱装置で内部
に無機塩又は有機塩が充填収納されている。2は
電極、3は電源、4は電源開閉器、5は銅製のパ
イプをコイル状にした熱交換器、Pはポンプ、6
は水槽で水が充填されておりポンプにより熱交換
器と水槽及び放熱器7を循環するようになつてい
る。又、8は循環水切替えのコツクである。 まず昼間、太陽熱によつて加熱された6中の水
はパイプを通じて1中に送られる。熱交換器5に
より1中の蓄熱材料が溶融され蓄熱される。熱交
換した水は6に循環され、加熱後再び1中に導入
される。夜間、コツク8を切り替えて循環水が放
熱器に流れる様にする。1中の蓄熱材料が放熱を
始め、熱交換器5により循環水が加温され、これ
が放熱器に入り暖房用に使用される。放熱が進み
過冷却が認められ凝固熱の発生がない時点で4の
開閉器を閉じて電極2の間に電圧をかける。する
と数秒後には過冷却が破壊されて凝固が始まり、
凝固熱の発生により、引きつづき循環水の加塩が
行われる。 上記の如き蓄熱装置には、蓄熱材料の温度を確
認するための温度検知装置、電圧を調節するため
の加電圧制御装置等、任意の付属装置を併設する
ことによつて、より実用的なものに出来る。 以下、実例を挙げて本発明を更に詳しく説明す
る。 実例 1 銅アマルガム電極(直径2mm、長さ10cmの棒状
体)をメタクリル酸メチル/メタクリル酸n―ブ
チル共重合体(組成比6/4)の10%トルエン溶
液に浸漬しその表面に該共重合体を付着せしめ乾
燥して膜厚6.4μの疎水性高分子被覆電極を得た。 内径5cmの大型試験管に酢酸ナトリウム3水塩
を充填し、更に水分蒸発防止剤として少量の流動
パラフインを添加した。この充填物に接触する様
に試験管の上部より一対の上記銅アマルガム電極
を挿入した。 80℃に加熱して酢酸ナトリウム3水塩を溶融し
たのち放冷し、内温が50℃まで下降した時電極に
電圧(2.4V、60ヘルツの交流)を印加したとこ
ろ、7秒後に酢酸ナトリウム3水塩の結晶が析出
して凝固が始まり内温が58℃に上昇した。 その後45℃−80℃のヒートサイクルを300回以
上くり返したが酢酸ナトリウム3水塩の品質劣化
(着色、発熱量の低下)及びアマルガム電極の劣
化はいずれも認められなかつた。 尚、疎水性高分子で被覆しない電極を用いて上
記と同じ実験をくり返すと、酢酸ナトリウム3水
塩がやや茶色に着色し始めた。 実例 2〜9 第1表に示す如き電極を用いて実例1に準じて
実験を行つた。その結果を第1表に示す。
The present invention relates to improvements in heat storage devices used in air conditioners that utilize solar heat. Conventionally, when storing heat in a relatively low temperature range such as in air conditioning or heating, the sensible heat of water, etc. has been used, but recently methods have been developed that utilize the heat of fusion of inorganic salts or organic salts, especially their hydrated salts. is being attempted. However, when an inorganic salt or an organic salt is used as a heat storage material, it has the advantage of having a high heat storage density and being able to radiate heat at a predetermined temperature. It has the disadvantage that it does not solidify and does not dissipate heat efficiently. Measures to prevent such overcooling include adding nucleation aids and equipping the heat storage device with an accessory device that provides a mechanical shock, but the effects are not always sufficient. Therefore, the present inventor conducted intensive research to find a means to minimize supercooling of heat storage materials based on inorganic salts or organic salts, and efficiently carry out the heat storage-heat release cycle. Alternatively, the inventors have found that this object can be easily achieved by using a heat storage device containing an organic salt and having at least one pair of electrodes, and have filed a patent application. This device is designed so that a voltage can be applied between the electrodes, thereby preventing overcooling of the heat storage material, and crystallization or solidification of the molten liquid begins at a desired temperature, allowing for efficient heat dissipation. be. However, upon further investigation by the present inventor, it was found that repeated application of voltage over a long period of time tends to cause a decrease in heat generation efficiency due to performance deterioration of the heat storage material or wear of the electrodes, and it was found that there is room for further improvement. did. However, the inventor of the present invention believes that the cause of this problem is that part of the heat storage material undergoes side reactions such as electrolysis on the electrode surface when voltage is applied, and the above problem can be solved by protecting the electrode surface in some way. As we continued our research to solve this problem, we found that if the surface of the electrode was coated with a hydrophobic polymer, it would be possible to minimize the deterioration of the heat storage material and the wear and tear of the electrode without causing any problems in preventing supercooling. The present invention was completed after discovering the remarkable effect that it is possible. That is, the present invention is a heat storage device that stores an inorganic salt or an organic salt in a container of any shape and is equipped with at least a pair of electrodes whose surfaces are coated with a hydrophobic polymer. explain. First, the container in the present invention is not limited to its material or shape, and may be of any type, as long as it can contain an inorganic salt or an organic salt. Examples of the material include plastic, metal, carbon material, glass, concrete, and brick. As shown in Figures 1 to 6, the shapes are cubic, rectangular,
Any type may be used, such as a spherical type, a vipe type, a sausage type, and a panel type. However, the present invention is not limited to only these shapes. It is essential that the device be designed to have at least one pair of electrodes and a voltage applied between them. By incorporating this device, overcooling of the heat storage material can be prevented, crystallization or solidification of the molten liquid begins at a desired temperature, and efficient heat dissipation can be realized. It is sufficient that at least one pair of electrodes be provided. It may be located anywhere on the container, and the container itself may form one or both electrodes. However, in any case, the heat storage material and the electrode must be kept in contact. Although the material of the electrode is not specified, it is preferably one with a large hydrogen overvoltage. Amorphous carbon, artificial graphite, copper silicide, lead, lead-antimony alloy, lead-silver alloy, iron, iron-silicon alloy, fused magnetite, platinum, silver, aluminum, copper, zinc, antimony, tin, mercury, various amalgams, chromium, Examples include cadmium. In particular, copper amalgam and copper alloy (for example, an alloy of copper and at least one of iron, zinc, tin, nickel, manganese, chromium, aluminum, molybdenum, antimony, etc.) amalgam are effectively used. The shape of the pair of electrodes may be the same or different. Further, the electrode materials may be a combination of different types of electrodes. The surface of the electrode must be coated with a hydrophobic polymer. The method of coating is not particularly limited, and the method includes immersing the electrode in a hydrophobic polymer solution, drying it, and subjecting it to appropriate heat treatment if necessary to form a coating layer on the electrode surface, or applying a hydrophobic polymer solution to the electrode surface. Any method can be used, such as a method of spraying, a method of bringing a hydrophobic polymer film or fibrous material into close contact with the electrode surface, etc. The effect is somewhat influenced by the thickness of the hydrophobic polymer, so it is usually less than 1000μ, preferably 1μ to 100μ, particularly preferably 10μ to
A film thickness of 30μ is advantageous. Further, the hydrophobic polymer may form the coating layer in any desired state, such as a gel state or a foam state. Hydrophobic polymers used in the present invention include olefin polymers or copolymers such as polyethylene and polypropylene, styrene polymers or copolymers, vinyl acetate polymers or copolymers, acrylic ester polymers, or Copolymers, methacrylic acid ester polymers or copolymers, vinyl chloride polymers or copolymers, vinylidene chloride polymers or copolymers, acrylonitrile polymers or copolymers, methacrylonitrile polymers or copolymers, vinyl ether polymers or copolymers, other poly-
P-xylylene, fluorine plastic, polycarbonate, polyester, polyamide, diene plastic, urethane plastic, urea resin, melamine resin, phenolic resin, furan resin, alkyd resin, unsaturated polyester resin,
Examples include epoxy resin. The hydrophobic polymer includes a crosslinking agent, a gelling agent, a thickening agent,
It may be post-treated or mixed with any compound such as a plasticizer or a film-forming aid. A voltage is applied to prevent overcooling, and the appropriate voltage is 1 μV to 10V, preferably 0.2 to 3V.
The voltage application time is about 1 ns to 100 seconds. The type of power source may be direct current, alternating current (low frequency, high frequency), or pulse. The timing of voltage application is most effective when a supercooled state is recognized. Next, the inorganic salt or organic salt to be stored in the container as a heat storage material varies somewhat depending on the intended temperature range, but for example, as a heat storage material for 30 to 60°C, calcium chloride hexahydrate, Sodium sulfate decahydrate, sodium carbonate decahydrate, hydrogen phosphate 2
Sodium dodecahydrate, calcium nitrate tetrahydrate, sodium thiosulfate pentahydrate, sodium acetate trihydrate, etc. are used as heat storage materials for temperatures between 80 and 120°C, such as magnesium nitrate hexahydrate, potassium alum (decahydrate), etc. ), ammonium alum (12 hydrate), magnesium chloride hexahydrate,
Examples include potassium nitrate/lithium nitrate, potassium nitrate/lithium nitrate/sodium nitrate, and the like. One or more of the above-mentioned heat storage devices are used as a heat storage tank by combining them in series and/or in parallel. FIG. 7 shows one example of the simplest model heat storage device (of course, the present invention is not limited to such an example), and 1 is a heat storage device of the present invention with an inorganic or organic salt inside. is filled and stored. 2 is an electrode, 3 is a power source, 4 is a power switch, 5 is a heat exchanger made of a coiled copper pipe, P is a pump, 6
is a water tank filled with water, which is circulated between the heat exchanger, the water tank, and the radiator 7 by a pump. Also, 8 is a switch for switching the circulating water. First, during the day, the water heated by the sun's heat in 6 is sent into 1 through a pipe. The heat storage material in 1 is melted by the heat exchanger 5 and heat is stored. The heat-exchanged water is circulated to 6, and after heating is introduced into 1 again. At night, switch the Kotoku 8 so that the circulating water flows to the radiator. The heat storage material in 1 begins to radiate heat, and the circulating water is heated by the heat exchanger 5, which enters the radiator and is used for heating. When heat dissipation progresses and supercooling is recognized and no solidification heat is generated, switch 4 is closed and a voltage is applied between electrodes 2. Then, after a few seconds, the supercooling is destroyed and solidification begins.
The generation of heat of solidification continues to salt the circulating water. The heat storage device described above can be made more practical by being equipped with optional accessory devices such as a temperature detection device to check the temperature of the heat storage material and a voltage control device to adjust the voltage. I can do it. Hereinafter, the present invention will be explained in more detail by giving examples. Example 1 A copper amalgam electrode (rod-shaped body with a diameter of 2 mm and a length of 10 cm) was immersed in a 10% toluene solution of methyl methacrylate/n-butyl methacrylate copolymer (composition ratio 6/4), and the copolymer was applied to the surface of the electrode. The composite was adhered and dried to obtain a hydrophobic polymer coated electrode with a film thickness of 6.4 μm. A large test tube with an inner diameter of 5 cm was filled with sodium acetate trihydrate, and a small amount of liquid paraffin was added as a water evaporation inhibitor. A pair of the copper amalgam electrodes were inserted from the top of the test tube so as to make contact with the filling. After heating to 80℃ to melt sodium acetate trihydrate, it was allowed to cool. When the internal temperature fell to 50℃, voltage (2.4V, 60Hz AC) was applied to the electrode, and after 7 seconds, sodium acetate was dissolved. Trihydrate crystals precipitated and solidification began, and the internal temperature rose to 58°C. Thereafter, heat cycles from 45°C to 80°C were repeated over 300 times, but no deterioration in the quality of sodium acetate trihydrate (coloration, decrease in calorific value) or deterioration of the amalgam electrode was observed. Note that when the same experiment as above was repeated using an electrode not coated with a hydrophobic polymer, the sodium acetate trihydrate began to be colored slightly brown. Examples 2 to 9 Experiments were conducted according to Example 1 using electrodes as shown in Table 1. The results are shown in Table 1.

【表】 実例 10 銅アマルガム電極(直径2mm、長さ10cmの棒状
体)をメタクリル酸メチル/メタクリル酸n―ブ
チル共重合体(組成比6/4)の10%トリエン溶
液に浸漬しその表面に該共重合体を付着せしめ乾
燥して膜厚10μの疎水性高分子被覆電極を得た。 内径5cmの大型試験管に塩化カルシウム6水塩
を充填し、更に水分蒸発防止剤として少量の流動
パラフインを添加した。この充填物に接触する様
に試験管の上部より一対の上記銅アマルガム電極
を挿入した。 加熱して塩化カルシウム6水塩を溶融したのち
放冷し、内温が23℃まで下降した時電極に電圧
(1.1V、100ヘルツの交流)を印加したところ、
21秒後に塩化カルシウム6水塩の結晶が析出して
凝固が始まり内温が29℃に上昇した。 その後20℃−50℃のヒートサイクルを300回以
上くり返したが塩化カルシウム6水塩の品質劣化
(着色、発熱量の低下)及びアマルガム電極の劣
化はいずれも認められなかつた。 尚、疎水性高分子で被覆しない電極を用いて上
記と同じ実験をくり返すと、塩化カルシウム6水
塩がやや青色に着色し始めた。 実例 11〜18 第2表に示す如き電極を用いて実例10に準じて
実験を行つた。その結果を第2表に示す。
[Table] Example 10 A copper amalgam electrode (rod-shaped body with a diameter of 2 mm and a length of 10 cm) is immersed in a 10% triene solution of methyl methacrylate/n-butyl methacrylate copolymer (composition ratio 6/4), and the surface is The copolymer was deposited and dried to obtain a hydrophobic polymer coated electrode with a film thickness of 10 μm. A large test tube with an inner diameter of 5 cm was filled with calcium chloride hexahydrate, and a small amount of liquid paraffin was added as a water evaporation inhibitor. A pair of the copper amalgam electrodes were inserted from the top of the test tube so as to make contact with the filling. After heating and melting calcium chloride hexahydrate, it was allowed to cool, and when the internal temperature fell to 23℃, a voltage (1.1V, 100 Hz alternating current) was applied to the electrode.
After 21 seconds, crystals of calcium chloride hexahydrate precipitated and solidification began, and the internal temperature rose to 29°C. Thereafter, heat cycles from 20°C to 50°C were repeated over 300 times, but no deterioration in the quality of the calcium chloride hexahydrate (coloring, decrease in calorific value) or deterioration of the amalgam electrode was observed. Note that when the same experiment as above was repeated using an electrode not coated with a hydrophobic polymer, calcium chloride hexahydrate began to be colored slightly blue. Examples 11 to 18 Experiments were conducted according to Example 10 using electrodes as shown in Table 2. The results are shown in Table 2.

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

第1〜6図は本発明の蓄熱装置の1例を示すも
のである。各容器の上下の突起は一対の電極であ
る。第7図は本発明の蓄熱装置を用いて冷暖房を
行なう場合の説明用略線図である。
1 to 6 show one example of the heat storage device of the present invention. The upper and lower protrusions of each container are a pair of electrodes. FIG. 7 is a schematic diagram for explaining heating and cooling using the heat storage device of the present invention.

Claims (1)

【特許請求の範囲】 1 任意の形状の容器に無機塩又は有機塩を収納
し、且つ表面が疎水性高分子で被覆された少くと
も一対の電極を具備してなる蓄熱装置。 2 有機塩が酢酸ナトリウム3水塩である特許請
求の範囲第1項記載の蓄熱装置。 3 疎水性高分子の膜厚が1000μ以下である特許
請求の範囲第1項記載の蓄熱装置。
[Scope of Claims] 1. A heat storage device comprising an arbitrarily shaped container containing an inorganic salt or an organic salt and comprising at least a pair of electrodes whose surfaces are coated with a hydrophobic polymer. 2. The heat storage device according to claim 1, wherein the organic salt is sodium acetate trihydrate. 3. The heat storage device according to claim 1, wherein the hydrophobic polymer has a film thickness of 1000 μm or less.
JP5303382A 1982-03-30 1982-03-30 Heat accumulator Granted JPS58168892A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5303382A JPS58168892A (en) 1982-03-30 1982-03-30 Heat accumulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5303382A JPS58168892A (en) 1982-03-30 1982-03-30 Heat accumulator

Publications (2)

Publication Number Publication Date
JPS58168892A JPS58168892A (en) 1983-10-05
JPH0135278B2 true JPH0135278B2 (en) 1989-07-24

Family

ID=12931572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5303382A Granted JPS58168892A (en) 1982-03-30 1982-03-30 Heat accumulator

Country Status (1)

Country Link
JP (1) JPS58168892A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2943609B2 (en) * 1994-06-21 1999-08-30 トヨタ自動車株式会社 Heat storage device

Also Published As

Publication number Publication date
JPS58168892A (en) 1983-10-05

Similar Documents

Publication Publication Date Title
EP0000099A1 (en) Thermal energy storage material
US5378337A (en) Electrical nucleation device for supercooled heat storage medium
US4529488A (en) Process for depositing salts
CN110564373A (en) Inorganic hydrated salt composite phase-change heat storage material and preparation and use method thereof
JPH0135278B2 (en)
JPS628715B2 (en)
JP3873229B2 (en) Thermal storage device
JPS645239B2 (en)
JPS59168085A (en) Heat regenerating material
JPS5945917B2 (en) heat storage device
JPS648260B2 (en)
JPS63230784A (en) Latent heat storing material
US4296801A (en) Reusable heat devices containing xylitol as the heat-storage material
JP2800039B2 (en) Latent heat storage material
JP3857781B2 (en) Heat storage device capable of controlling heat dissipation and heat dissipation control method for heat storage device
JP3390238B2 (en) Heat storage device
JPH05331457A (en) Composition for heat storage
JPH0134475B2 (en)
CN109237976B (en) PCM energy storage structure capable of improving crystallization speed of phase change energy storage material
JPS5823877A (en) Heat storage material composition
JPH0347889A (en) Latent heat-accumulating material
JP2800329B2 (en) Latent heat storage material
JPH0611145A (en) Heat storage board for floor heating
JPH0362882A (en) Method for releasing supercooling of thermal energy storing agent having supercooling property
JP2982409B2 (en) Latent heat storage material