JPS648260B2 - - Google Patents

Info

Publication number
JPS648260B2
JPS648260B2 JP56176023A JP17602381A JPS648260B2 JP S648260 B2 JPS648260 B2 JP S648260B2 JP 56176023 A JP56176023 A JP 56176023A JP 17602381 A JP17602381 A JP 17602381A JP S648260 B2 JPS648260 B2 JP S648260B2
Authority
JP
Japan
Prior art keywords
heat storage
heat
electrode
voltage
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56176023A
Other languages
Japanese (ja)
Other versions
JPS5878047A (en
Inventor
Tokio Hashimoto
Yasuo Kotani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Synthetic Chemical Industry Co Ltd
Original Assignee
Nippon Synthetic Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Synthetic Chemical Industry Co Ltd filed Critical Nippon Synthetic Chemical Industry Co Ltd
Priority to JP56176023A priority Critical patent/JPS5878047A/en
Publication of JPS5878047A publication Critical patent/JPS5878047A/en
Publication of JPS648260B2 publication Critical patent/JPS648260B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D11/00Central heating systems using heat accumulated in storage masses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Description

【発明の詳細な説明】 本発明は太陽熱を利用する冷暖房器に使用され
る蓄熱装置の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improvements in heat storage devices used in air conditioners that utilize solar heat.

従来、冷暖房等の比較的低い温度領域で蓄熱す
る場合、水等の顕熱を利用することが行われて来
たが、最近無機塩又は有機塩特にその水和塩の融
解熱を利用する方法が試みられている。
Conventionally, when storing heat in a relatively low temperature range such as in air conditioning or heating, the sensible heat of water, etc. has been used, but recently methods have been developed that utilize the heat of fusion of inorganic salts or organic salts, especially their hydrated salts. is being attempted.

しかし、無機塩又は有機塩を蓄熱材料とする場
合は蓄熱密度が大であると共に所定の温度で放熱
出来るという利点を有するものの、上記蓄熱材料
は一般に過冷却が著しく、融解蓄熱後、適当な温
度で凝固せず放熱が効率よく出来ない難点があ
る。
However, when an inorganic salt or an organic salt is used as a heat storage material, it has the advantage of having a high heat storage density and being able to dissipate heat at a predetermined temperature. The disadvantage is that it does not solidify and does not dissipate heat efficiently.

かかる過冷却防止の対策として核生成助剤を添
加したり、機械的シヨツクを与える付属装置を蓄
熱装置に備え付けることが行われているが、その
効果は必ずしも充分でない。
Measures to prevent such overcooling include adding nucleation aids and equipping the heat storage device with an accessory device that provides a mechanical shock, but the effects are not always sufficient.

そこで本発明者は無機塩又は有機塩を主剤とす
る蓄熱材料の過冷却を小さく抑え蓄熱―放熱サイ
クルを効率良く行ない得る手段を見出すべく鋭意
研究を行つたところ、任意の形状の容器に無機塩
又は有機塩を収納し、且つ少くとも一対の電極を
具備してなる蓄熱装置を用いる場合かかる目的を
容易に達成し得ることを見出し先に特許出願を行
つた。
Therefore, the present inventor conducted intensive research to find a means to minimize supercooling of heat storage materials based on inorganic salts or organic salts, and efficiently carry out the heat storage-heat release cycle. Alternatively, the inventors have found that this object can be easily achieved by using a heat storage device containing an organic salt and having at least one pair of electrodes, and have filed a patent application.

該装置においては電極間に電圧が印加出来る様
に設計されそれによつて、蓄熱材料の過冷却が防
止出来、望ましい温度で溶融液の結晶化即ち凝固
が始まり、効率の良い放熱を発現させ得るのであ
る。
This device is designed so that a voltage can be applied between the electrodes, thereby preventing overcooling of the heat storage material, and crystallization or solidification of the molten liquid begins at a desired temperature, allowing for efficient heat dissipation. be.

しかし本発明者が更に検討を重ねたところ、長
期にわたつて電圧の印加をくり返すと蓄熱材料の
性能劣化あるいは電極の消耗により発熱効率の低
下が起こりがちで更に改良の余地があることが判
明した。
However, upon further investigation by the present inventor, it was found that repeated application of voltage over a long period of time tends to cause a decrease in heat generation efficiency due to performance deterioration of the heat storage material or wear of the electrodes, and it was found that there is room for further improvement. did.

しかるに本発明者はかかる原因が電圧印加時に
電極表面で蓄熱材料の一部が電気分解等の副次的
な反応を受けるためではないかと考え、何等かの
方法で電極表面を保護して上記問題を解決しよう
と研究をつづけたところ、電極の表面を親水性高
分子で被覆しておく場合、過冷却の防止に何等の
支障をおこすことなく蓄熱材料の劣化、電極の消
耗を極力抑えることが出来るという顕著な効果を
見出し本発明を完成するに到つた。
However, the inventor of the present invention believes that the cause of this problem is that part of the heat storage material undergoes side reactions such as electrolysis on the electrode surface when voltage is applied, and the above problem can be solved by protecting the electrode surface in some way. As we continued our research to solve this problem, we discovered that if the surface of the electrode is coated with a hydrophilic polymer, it is possible to minimize the deterioration of the heat storage material and the wear and tear of the electrode without causing any problems in preventing supercooling. The present invention was completed after discovering the remarkable effect that it is possible.

即ち、本発明は任意の形状の容器に無機塩又は
有機塩を収納し、且つ表面が親水性高分子で被覆
された少くとも一対の電極を具備してなる蓄熱装
置であり、以下具体的に説明する。
That is, the present invention is a heat storage device comprising an arbitrarily shaped container containing an inorganic salt or an organic salt, and at least a pair of electrodes whose surfaces are coated with a hydrophilic polymer. explain.

まず本発明における容器はその材質あるいは形
状に限定はなく、任意のものであつて良く、要は
無機塩又は有機塩を収納出来さえすれば良い。材
質はプラスチツク、金属、炭素材、ガラス、コン
クリート、レンガ等が例示される。形状としては
第1〜6図に示される様に立方体型、長方体型、
球型、パイプ状型、ソーセージ型、パネル型等任
意の型が挙げられる。但し本発明はこれらの形状
のみに限定されない。
First, the container in the present invention is not limited to its material or shape, and may be of any type, as long as it can contain an inorganic salt or an organic salt. Examples of the material include plastic, metal, carbon material, glass, concrete, and brick. As shown in Figures 1 to 6, the shapes are cubic, rectangular,
Any type may be used, such as a spherical type, a pipe type, a sausage type, and a panel type. However, the present invention is not limited to only these shapes.

装置には少くとも一対の電極が付設され、その
間に電圧が印加出来る様に設計されることが不可
欠である。該装置を組み入れることによつて、蓄
熱材料の過冷却が防止出来、望ましい温度で溶融
液の結晶化即ち凝固が始まり、効率の良い放熱を
発現させ得るのである。
It is essential that the device be designed to have at least one pair of electrodes and to be able to apply a voltage between them. By incorporating this device, overcooling of the heat storage material can be prevented, crystallization or solidification of the molten liquid begins at a desired temperature, and efficient heat dissipation can be realized.

電極は少くとも一対付設されておれば良い。容
器のどの位置でも良く、容器自体が一方又は両方
の電極を形成していても差支えない。但し、いず
れの場合であつても蓄熱材料と該電極とは必らず
接触させておかなければならない。
It is sufficient that at least one pair of electrodes be provided. It may be located anywhere on the container, and the container itself may form one or both electrodes. However, in any case, the heat storage material and the electrode must be kept in contact.

電極の材質は特定されないが水素過電圧の大き
いものが好ましい。無定形炭素、人造黒鉛、珪化
銅、鉛、鉛アンチモン合金、鉛銀合金、鉄、鉄珪
素合金、熔融マグネタイト、白金、銀、アルミニ
ウム、銅、亜鉛、アンチモン、スズ、水銀、各種
アマルガム、クロム、カドミウム等が例示され
る。特に銅アマルガム、銅合金(例えば銅と鉄、
亜鉛、スズ、ニツケル、マンガン、クロム、アル
ミ、モリブデン、アンチモン、等の少くとも1種
の合金)アマルガムが有効に用いられる。
Although the material of the electrode is not specified, it is preferably one with a large hydrogen overvoltage. Amorphous carbon, artificial graphite, copper silicide, lead, lead-antimony alloy, lead-silver alloy, iron, iron-silicon alloy, fused magnetite, platinum, silver, aluminum, copper, zinc, antimony, tin, mercury, various amalgams, chromium, Examples include cadmium. Especially copper amalgam, copper alloys (e.g. copper and iron,
At least one alloy of zinc, tin, nickel, manganese, chromium, aluminum, molybdenum, antimony, etc.) amalgam is effectively used.

一対の電極においてその形状は同一であつても
異形であつても良い。又電極材料は異種電極の組
合せであつても差支えない。
The shape of the pair of electrodes may be the same or different. Further, the electrode materials may be a combination of different types of electrodes.

該電極の表面は親水性高分子で被覆されていな
ければならない。被覆の手段は特に限定されず親
水性高分子溶液中に電極を浸漬後、乾燥必要であ
れば適宜熱処理等を施して電極表面に被覆層を形
成させる方法、親水性高分子溶液を電極表面に噴
霧する方法、親水性高分子のフイルム状物、繊維
状物を電極表面に密着させる方法、等任意の方法
が実施出来る。又親水性高分子はゲル状あるいは
発泡状等の任意の状態で被覆層を形成していて差
支えない。
The surface of the electrode must be coated with a hydrophilic polymer. The coating method is not particularly limited, and may include a method in which the electrode is immersed in a hydrophilic polymer solution, dried, and if necessary, subjected to appropriate heat treatment to form a coating layer on the electrode surface. Any method can be used, such as a spraying method, a method of bringing a hydrophilic polymer film or fibrous material into close contact with the electrode surface, etc. Further, the hydrophilic polymer may form the coating layer in any desired state such as gel or foam.

本発明で使用する親水性高分子とは分子中に水
酸基、カルボキシル基、アミド基等の親水性基を
含有する高分子であり、具体的には次のものが例
示される。
The hydrophilic polymer used in the present invention is a polymer containing a hydrophilic group such as a hydroxyl group, a carboxyl group, or an amide group in its molecule, and specifically includes the following.

部分ケン化あるいは完全ケン化ポリビニルアル
コール、ポリビニルアルコールのホルマール化
物、アセタール化物、ブチラール化物、ウレタン
化物、アセト酢酸エステル化物、スルホン酸、カ
ルボン酸等とのエステル化物。更に、ビニルエス
テルとそれと共重合可能な単量体との共重合体ケ
ン化物が挙げられ、該単量体としてはエチレン、
プロピレン、イソブチレン、α―オクテン、α―
ドデセン、α―オクタデセン等のオレフイン類、
アクリル酸、メタクリル酸、クロトン酸、マレイ
ン酸、無水マレイン酸、イタコン酸等の不飽和酸
類あるいはその塩あるいはモノ又はジアルキルエ
ステル等、アクリロニトリル、メタクリロニトリ
ル等のニトリル類、アクリルアミド、メタクリル
アミド等のアミド類、エチレンスルホン酸、アリ
ルスルホン酸、メタアリルスルホン酸等のオレフ
インスルホン酸あるいはその塩類、アルキルビニ
ルエーテル類、ビニルケトン、N―ビニルピロリ
ドン、塩化ビニル、塩化ビニリデン等が挙げられ
る。しかし必ずしもこれに限定されるものではな
い。
Partially saponified or completely saponified polyvinyl alcohol, polyvinyl alcohol formalized products, acetalized products, butyralized products, urethanized products, acetoacetate esterified products, esterified products with sulfonic acids, carboxylic acids, etc. Furthermore, saponified copolymers of vinyl esters and monomers copolymerizable therewith may be mentioned, and the monomers include ethylene,
Propylene, isobutylene, α-octene, α-
Olefins such as dodecene and α-octadecene,
Unsaturated acids such as acrylic acid, methacrylic acid, crotonic acid, maleic acid, maleic anhydride, itaconic acid, their salts or mono- or dialkyl esters, nitriles such as acrylonitrile and methacrylonitrile, amides such as acrylamide and methacrylamide Examples include olefin sulfonic acids or their salts such as ethylene sulfonic acid, allyl sulfonic acid, and meta-allylsulfonic acid, alkyl vinyl ethers, vinyl ketones, N-vinyl pyrrolidone, vinyl chloride, and vinylidene chloride. However, it is not necessarily limited to this.

又ポリビニルアルコール類以外の親水性高分子
としてはメチルセルロース、エチルセルロース、
ヒドロキシメチルセルロース、ヒドロキシプロピ
ルメチルセルロース、ヒドロキシブチルメチルセ
ルロース、ヒドロキシエチルセルロース、カルボ
キシメチルセルロース、アミノメチルヒドロキシ
プロピルセルロース、アミノエチルヒドロキシプ
ロピルセルロース等のセルロース誘導体類、デン
プン、トラガント、ペクチン、グルー、アルギン
酸又はその塩、ゼラチン、ポリビニルピロリド
ン、ポリアクリル酸又はその塩、ポリメタアクリ
ル酸又はその塩、ポリアクリルアミド、ポリメタ
アクリルアミド、酢酸ビニルとマレイン酸、無水
マレイン酸、アクリル酸、メタクリル酸、イタコ
ン酸、フマル酸、クロトン酸等不飽和酸との共重
合体、スチレンと上記不飽和酸との共重合体、ビ
ニルエーテルと上記不飽和酸との共重合体及び前
記共重合体の塩類又はエステル類が挙げられる。
Hydrophilic polymers other than polyvinyl alcohols include methyl cellulose, ethyl cellulose,
Cellulose derivatives such as hydroxymethylcellulose, hydroxypropylmethylcellulose, hydroxybutylmethylcellulose, hydroxyethylcellulose, carboxymethylcellulose, aminomethylhydroxypropylcellulose, aminoethylhydroxypropylcellulose, starch, tragacanth, pectin, glue, alginic acid or its salts, gelatin, polyvinyl Pyrrolidone, polyacrylic acid or its salts, polymethacrylic acid or its salts, polyacrylamide, polymethacrylamide, vinyl acetate and maleic acid, maleic anhydride, acrylic acid, methacrylic acid, itaconic acid, fumaric acid, crotonic acid, etc. Examples include copolymers with saturated acids, copolymers of styrene and the above-mentioned unsaturated acids, copolymers of vinyl ether and the above-mentioned unsaturated acids, and salts or esters of the above-mentioned copolymers.

該親水性高分子は耐水化剤、架橋剤、ゲル化
剤、増粘剤、可塑剤、造膜助剤等の任意の化合物
で後処理したり、混合されたりしても何等差支え
ない。
The hydrophilic polymer may be post-treated or mixed with any compound such as a water-resistant agent, a crosslinking agent, a gelling agent, a thickener, a plasticizer, a film-forming aid, etc., without any problem.

過冷却の防止のために電圧をかけるが、その電
圧は1μV〜10V好ましくは0.2〜3Vが適当である。
電圧の印加時間は1n秒〜100秒程度である。電源
の種類は直流、交流(低周波、高周波)、パルス
のいずれであつても差支えない。電圧の印加時機
は過冷却状態が認められる時が最も有効である。
A voltage is applied to prevent overcooling, and the appropriate voltage is 1 μV to 10V, preferably 0.2 to 3V.
The voltage application time is about 1 ns to 100 seconds. The type of power source may be direct current, alternating current (low frequency, high frequency), or pulse. The timing of voltage application is most effective when a supercooled state is recognized.

次に蓄熱材料として容器に収納される無機塩又
は有機塩としては、その目的とする温度範囲によ
つて多少差はあるが、例えば30〜60℃用の蓄熱材
料としては塩化カルシウム6水塩、硫酸ナトリウ
ム10水塩、炭酸ナトリウム10水塩、リン酸水素2
ナトリウム12水塩、硝酸カルシウム4水塩、チオ
硫酸ナトリウム5水塩、酢酸ナトリウム3水塩等
が、80〜120℃用の蓄熱材料としは、硝酸マグネ
シウム6水塩、カリ明バン(12水塩)、アンモニ
ウム明バン(12水塩)、塩化マグネシウム6水塩、
硝酸カリウム/硝酸リチウム、硝酸カリウム/硝
酸リチウム/硝酸ナトリウム等がそれぞれ挙げら
れる。
Next, the inorganic salt or organic salt to be stored in the container as a heat storage material varies somewhat depending on the intended temperature range, but for example, as a heat storage material for 30 to 60°C, calcium chloride hexahydrate, Sodium sulfate decahydrate, sodium carbonate decahydrate, hydrogen phosphate 2
Sodium dodecahydrate, calcium nitrate tetrahydrate, sodium thiosulfate pentahydrate, sodium acetate trihydrate, etc. are used as heat storage materials for temperatures between 80 and 120°C, such as magnesium nitrate hexahydrate, potassium alum (decahydrate), etc. ), ammonium alum (12 hydrate), magnesium chloride hexahydrate,
Examples include potassium nitrate/lithium nitrate, potassium nitrate/lithium nitrate/sodium nitrate, and the like.

上記した蓄熱装置は1個あるいは普通は複数個
を直列および/又は並列に組み合せて蓄熱槽とし
て用いられる。
One or more of the above-mentioned heat storage devices are used as a heat storage tank by combining them in series and/or in parallel.

第7図は最も簡単なモデル蓄熱器の1例を示し
たもので、(勿論本発明がかかる例のみに限定さ
れるものではない)1は本発明の蓄熱装置で内部
に無機塩又は有機塩が充填収納されている。2は
電極、3は電源、4は電源開閉器、5は銅製のパ
イプをコイル状にした熱交換器、Pはポンプ、6
は水槽で水が充填されておりポンプにより熱交換
器と水槽及び放熱器7を循環するようになつてい
る、又、8は循環水切替えのコツクである。
FIG. 7 shows one example of the simplest model heat storage device (of course, the present invention is not limited to such an example), and 1 is a heat storage device of the present invention with an inorganic or organic salt inside. is filled and stored. 2 is an electrode, 3 is a power source, 4 is a power switch, 5 is a heat exchanger made of a coiled copper pipe, P is a pump, 6
numeral 8 is a water tank filled with water, which is circulated between the heat exchanger, the water tank, and the radiator 7 by means of a pump; and 8 is a switch for switching the circulating water.

まず昼間、太陽熱によつて加熱された6中の水
はパイプを通じて1中に送られる。熱交換器5に
より1中の蓄熱材料が溶融され蓄熱される。熱交
換した水は6に循環され、加熱後再び1中に導入
される。夜間、コツク8を切り替えて循環水が放
熱器に流れる様にする。1中の蓄熱材料が放熱を
始め、熱交換器5により循環水が加温され、これ
が放熱器に入り暖房用に使用される。放熱が進み
過冷却が認められ凝固熱の発生がない時点で4の
開閉器を閉じて電極2の間に電圧をかける。する
と数秒後には過冷却が破壊されて凝固が始まり、
凝固熱の発生により、引きつづき循環水の加温が
行われる。
First, during the day, the water heated by the sun's heat in 6 is sent into 1 through a pipe. The heat storage material in 1 is melted by the heat exchanger 5 and heat is stored. The heat-exchanged water is circulated to 6, and after heating is introduced into 1 again. At night, switch the Kotoku 8 so that the circulating water flows to the radiator. The heat storage material in 1 begins to radiate heat, and the circulating water is heated by the heat exchanger 5, which enters the radiator and is used for heating. When heat dissipation progresses and supercooling is recognized and no solidification heat is generated, switch 4 is closed and a voltage is applied between electrodes 2. Then, after a few seconds, the supercooling is destroyed and solidification begins.
The generation of heat of solidification continues to heat the circulating water.

上記の如き蓄熱装置には、蓄熱材料の温度を確
認するための温度検知装置、電圧を調節するため
の加電圧制御装置等、任意の付属装置を併設する
ことによつて、より実用的なものに出来る。
The heat storage device described above can be made more practical by being equipped with optional accessory devices such as a temperature detection device to check the temperature of the heat storage material and a voltage control device to adjust the voltage. I can do it.

以下、実例を挙げて本発明を更に詳しく説明す
る。
Hereinafter, the present invention will be explained in more detail by giving examples.

実例 1 重合度2000、平均ケン化度99モル%のポリビニ
ルアルコールの20重量%水溶液中に銅アマルガム
電極(直径2mm、長さ10cmの棒状体)を浸漬し、
その表面にポリビニルアルコールを付着せしめ
た。つづいて該電極を風乾してポリビニルアルコ
ールで被覆された電極を得た。
Example 1 A copper amalgam electrode (rod-shaped body with a diameter of 2 mm and a length of 10 cm) was immersed in a 20% by weight aqueous solution of polyvinyl alcohol with a degree of polymerization of 2000 and an average degree of saponification of 99 mol%.
Polyvinyl alcohol was attached to the surface. Subsequently, the electrode was air-dried to obtain an electrode coated with polyvinyl alcohol.

内径5cmの大型試験管に酢酸ナトリウム3水塩
を充填し、更に水分蒸発防止剤として少量の流動
パラフインを添加した。この充填物に接触する様
に試験管の上部より一対の上記銅アマルガム電極
を挿入した。
A large test tube with an inner diameter of 5 cm was filled with sodium acetate trihydrate, and a small amount of liquid paraffin was added as a water evaporation inhibitor. A pair of the copper amalgam electrodes were inserted from the top of the test tube so as to make contact with the filling.

80℃に加熱して酢酸ナトリウム3水塩を溶融し
たのち放冷し、内温が50℃まで下降した時電極に
電圧(2.4V,60ヘルツの交流)を印加したとこ
ろ、2〜3分後に酢酸ナトリウム3水塩の結晶が
析出して凝固が始まり内温が58℃に上昇した。
After heating to 80℃ and melting sodium acetate trihydrate, it was allowed to cool. When the internal temperature dropped to 50℃, voltage (2.4V, 60Hz AC) was applied to the electrode, and after 2 to 3 minutes. Crystals of sodium acetate trihydrate precipitated and solidification began, and the internal temperature rose to 58°C.

その後48℃―75℃のヒートサイクルを300回以
上くり返したが酢酸ナトリウム3水塩の品質劣化
(着色、発熱量の低下)及びアマルガム電極の劣
化はいずれも認められなかつた。
Thereafter, heat cycles between 48°C and 75°C were repeated over 300 times, but no deterioration in the quality of sodium acetate trihydrate (coloration, decrease in calorific value) or deterioration of the amalgam electrode was observed.

尚、ポリビニルアルコールで被覆しない電極を
用いて上記と同じ実験をくり返すと、酢酸ナトリ
ウム3水塩がやや茶色に着色し始めた。
Note that when the same experiment as above was repeated using an electrode not coated with polyvinyl alcohol, the sodium acetate trihydrate started to be colored slightly brown.

実例 2 電極を亜鉛―銅アマルガム対に代えた以外、実
例1と同一の実験を行つたところ同様の結果を得
た。
Example 2 The same experiment as in Example 1 was conducted, except that the electrodes were replaced with zinc-copper amalgam pairs, and the same results were obtained.

実例 3 実例1において、3V,0.1ヘルツの矩形波電圧
をかけたところ、3分後に結晶が析出し始めた。
Example 3 In Example 1, when a rectangular wave voltage of 3V and 0.1 Hz was applied, crystals began to precipitate after 3 minutes.

実例 4〜6 重合度1800、平均ケン化度88モル%のポリビニ
ルアルコールの14重量%水溶液(実例4)、マレ
イン酸モノメチル変性ポリビニルアルコール(変
性量2モル%、平均ケン化度99モル%)の16重量
%水溶液(実例5)、アリルスルホン酸ナトリウ
ム変性ポリビニルアルコール(変性量1.5モル%、
平均ケン化度90モル%)の20重量%水溶液(実例
6)で電極を被覆した以外は実例1に準じて実験
を行つた。1Vの交流を印加したところ1分後に
酢酸ナトリウム3水塩の結晶が析出し始めた。
Examples 4 to 6 A 14% aqueous solution of polyvinyl alcohol with a degree of polymerization of 1800 and an average saponification degree of 88 mol% (Example 4), a 14% aqueous solution of polyvinyl alcohol modified with monomethyl maleate (amount of modification 2 mol%, an average saponification degree of 99 mol%) 16% by weight aqueous solution (Example 5), sodium allylsulfonate modified polyvinyl alcohol (denaturation amount 1.5% by mole,
An experiment was carried out according to Example 1, except that the electrode was coated with a 20% by weight aqueous solution (Example 6) with an average degree of saponification of 90 mol%. When 1V alternating current was applied, crystals of sodium acetate trihydrate began to precipitate one minute later.

ヒートサイクルを300回以上くり返しても電極
及び酢酸ナトリウム3水塩の劣化は認められなか
つた。
No deterioration of the electrode or sodium acetate trihydrate was observed even after the heat cycle was repeated over 300 times.

実例 7 カルボキシメチルセルロースの3重量%水溶液
を用いて電極の被覆を行つた以外は実例1と同一
の方法を行つたところ、電圧を印加して3分後に
結晶の析出がおこり、又、劣化も認められなかつ
た。
Example 7 When the same method as Example 1 was carried out except that the electrode was coated with a 3% by weight aqueous solution of carboxymethylcellulose, crystal precipitation occurred 3 minutes after voltage was applied, and deterioration was also observed. I couldn't help it.

実例 8 アクリルアミド/アクリル酸共重合体の2重量
%水溶液を用いて電極の被覆を行つた以外は実例
1と同一の方法を行つたところ、電圧を印加して
7分後に結晶が析出し始めた。ヒートサイクルを
くり返しても劣化は認められなかつた。
Example 8 When the same method as Example 1 was carried out except that the electrode was coated with a 2% aqueous solution of acrylamide/acrylic acid copolymer, crystals began to precipitate 7 minutes after voltage was applied. . No deterioration was observed even after repeated heat cycles.

【図面の簡単な説明】[Brief explanation of drawings]

第1〜6図は本発明の蓄熱装置の1例を示すも
のである。各容器の上下の突起は一対の電極であ
る。第7図は本発明の蓄熱装置を用いて冷暖房を
行なう場合の説明用略線図である。
1 to 6 show one example of the heat storage device of the present invention. The upper and lower protrusions of each container are a pair of electrodes. FIG. 7 is a schematic diagram for explaining heating and cooling using the heat storage device of the present invention.

Claims (1)

【特許請求の範囲】 1 任意の形状の容器に無機塩又は有機塩を収納
し、且つ表面が親水性高分子で被覆された少くと
も一対の電極を具備してなる蓄熱装置。 2 有機塩が酢酸ナトリウム3水塩である特許請
求の範囲第1項記載の蓄熱装置。
[Scope of Claims] 1. A heat storage device comprising an arbitrarily shaped container containing an inorganic salt or an organic salt and comprising at least a pair of electrodes whose surfaces are coated with a hydrophilic polymer. 2. The heat storage device according to claim 1, wherein the organic salt is sodium acetate trihydrate.
JP56176023A 1981-11-02 1981-11-02 Heat accumulating device Granted JPS5878047A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56176023A JPS5878047A (en) 1981-11-02 1981-11-02 Heat accumulating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56176023A JPS5878047A (en) 1981-11-02 1981-11-02 Heat accumulating device

Publications (2)

Publication Number Publication Date
JPS5878047A JPS5878047A (en) 1983-05-11
JPS648260B2 true JPS648260B2 (en) 1989-02-13

Family

ID=16006366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56176023A Granted JPS5878047A (en) 1981-11-02 1981-11-02 Heat accumulating device

Country Status (1)

Country Link
JP (1) JPS5878047A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3000859A1 (en) 2014-09-29 2016-03-30 Panasonic Corporation Heat storage material composition, heat storage device, and heat storage method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3000859A1 (en) 2014-09-29 2016-03-30 Panasonic Corporation Heat storage material composition, heat storage device, and heat storage method

Also Published As

Publication number Publication date
JPS5878047A (en) 1983-05-11

Similar Documents

Publication Publication Date Title
EP0000099B1 (en) Thermal energy storage material
KR820002160B1 (en) Process for the preparation of thermal energy storage material
JP2014503973A (en) Battery temperature control with aggregated state change material
JP6423870B2 (en) Improved phase change composition
JP2018059676A (en) Heat storage device
US4529488A (en) Process for depositing salts
JPS648260B2 (en)
JPS5929998A (en) Heat accumulating material and heat exchange method with the material
JP2022502532A (en) Metal nitrate-based composition for use as a phase transition material
JPH0135278B2 (en)
JPS628715B2 (en)
JPS645239B2 (en)
JPH11349936A (en) Heat regenerating material
JPS5945917B2 (en) heat storage device
KR100291100B1 (en) Novel latent heat/heat storage composition
JP4195283B2 (en) Heat storage heat dissipation control method
JPS63230784A (en) Latent heat storing material
JP3444127B2 (en) Heat storage material composition
JP3857781B2 (en) Heat storage device capable of controlling heat dissipation and heat dissipation control method for heat storage device
JPH0362882A (en) Method for releasing supercooling of thermal energy storing agent having supercooling property
JPH05331457A (en) Composition for heat storage
JPH0156114B2 (en)
JPH0153713B2 (en)
JPH03128987A (en) Latent heat storage material
JP2002088351A (en) Latent heat storage material