JPH0134680B2 - - Google Patents

Info

Publication number
JPH0134680B2
JPH0134680B2 JP60281974A JP28197485A JPH0134680B2 JP H0134680 B2 JPH0134680 B2 JP H0134680B2 JP 60281974 A JP60281974 A JP 60281974A JP 28197485 A JP28197485 A JP 28197485A JP H0134680 B2 JPH0134680 B2 JP H0134680B2
Authority
JP
Japan
Prior art keywords
sludge
anaerobic
tank
activated sludge
returned
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP60281974A
Other languages
Japanese (ja)
Other versions
JPS62140699A (en
Inventor
Takayuki Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Ebara Research Co Ltd
Original Assignee
Ebara Research Co Ltd
Ebara Infilco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Research Co Ltd, Ebara Infilco Co Ltd filed Critical Ebara Research Co Ltd
Priority to JP28197485A priority Critical patent/JPS62140699A/en
Publication of JPS62140699A publication Critical patent/JPS62140699A/en
Publication of JPH0134680B2 publication Critical patent/JPH0134680B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、用水・廃水中のBODの原因となる
有機性炭素化合物を、微生物を利用して処理する
方法に関するものである。 〔従来の技術〕 用水或いは廃水の生物学的処理方法としては、
活性汚泥処理法等種々の方法が用いられている
が、いずれの方法においても原水中に還元態の窒
素化合物(以下NH3と略記する)が含有されて
いる場合には硝化菌が発生してNOx -(NO2 -およ
び/またはNO3 -)を生ずることがある。 〔発明が解決しようとする問題点〕 NOx -が生成すると、例えば活性汚泥処理法で
は沈殿槽で脱窒現象を生じて生成したN2ガスが
汚泥に付着し、処理水中のSS(Suspended
Solids)を増加して水質を悪化する。また硝化に
よつてNO2 -が生成すると、NO2 -に起因する
CODが増加し、またNO2 -自体有害なので水処理
技術者にとつて憂慮される問題であつた。 本発明は、前記従来の生物処理方法の欠点を解
消するためになされたものであり、混合微生物中
の硝化菌の活性を抑制して処理水中のNOxを低
減する方法を提供するものである。 〔問題点を解決するための手段〕 本発明は、有機性炭素化合物とNH3を含有す
る液を微生物を利用して処理する方法において、
返送汚泥のみを導入する嫌気工程を設け、返送汚
泥の全量あるいは一部を前記嫌気工程で20時間以
上嫌気条件下に存在せしめて窒素化合物を酸化し
てNOx -を生成する微生物の活性を、有機性炭素
化合物分解菌の活性に対して相対的に低下せしめ
た後好気工程に循環せしめることにより、好気工
程におけるNOx -の生成を抑制することを特徴と
する有機性炭素化合物と還元窒素化合物を含有す
る用水或いは廃水を活性汚泥法を利用して生物学
的に処理する方法である。 つぎに、図面を参照しながら本発明を詳しく説
明する。 図面において、符号1は原水導入管、2は汚泥
返送管、3は曝気槽、4は固液分離槽、5は分離
水排出管、6は余剰汚泥排出管、7は嫌気槽を示
す。 第1図において、有機性炭素化合物とNH3
を含有する原水は、原水導入管1から好気的条件
にある曝気槽3に導入され、含有する有機性炭素
化合物が酸化分解された後固液分離槽4で分離水
(処理水)と汚泥とに分離され、分離水排出管5
から排出される。一方固液分離槽4で分離された
汚泥は、固液分離槽4の下部から抜き出され、そ
の一部は余剰汚泥として余剰汚泥排出管6から排
出され、残部は返送汚泥として返送されるが、本
発明においては、汚泥返送管2を経て嫌気槽7に
おいて、20時間以上嫌気処理された後曝気槽3に
返送される。 嫌気槽7においては、汚泥返送管2から送られ
た汚泥を、大気開放下において撹拌してもよい
し、静置しておいてもよい。撹拌を行う場合には
回転パドル等を用いて緩速撹拌するのがよい。当
然のことながら空気の混入しない密閉槽を用いた
方が嫌気条件を保つうえで一層効果的であり、こ
の場合、回転パドルによる撹拌あるいは内部ガス
を循環使用するガス撹拌によつて強力な撹拌と行
うのが可能である。 返送汚泥中にNOxが存在する場合には、NOx
の消失時間を見込んで返送汚泥の嫌気処理時間が
決定される。例えばNOxの消失に5時間を要す
るとすれば嫌気処理時間は少なくとも25時間(20
+5時間)以上が必要となる。 本発明の他の実施例を第2図に示す。 第2図は返送汚泥の一部を嫌気処理するために
返送汚泥を分割し、一部を嫌気槽に残部を曝気槽
に返送し、かつ、原水は全量曝気槽に注入する例
を示す。 実施例 1 硝化が生じている有機性廃水の活性汚泥曝気槽
から活性汚泥混合液を採取し、混合液中のNOx -
を遠心分離洗浄して洗出した活性汚泥を空気を遮
断した密閉容器に保存し、経時的に活性汚泥の有
機物酸化活性とNH3の硝化活性を3回にわたつ
て測定した。供試有機物としては醋酸を用いた。 結果を第3図に示す。 第3図において点線は有機物分解活性を、実線
は硝化活性を示す。 第3図に示す結果から約20時間嫌気条件下にお
いた場合、硝化活性汚泥の硝化活性が有機物酸化
活性に比べて著しく低下していることがわかる。 また、嫌気条件下においた活性汚泥は、好気条
件に戻した場合、硝化活性を回復するが、本発明
の目的を達成するためには、少なくとも20時間嫌
気条件下におく必要のあることを別途確認した。 実施例 2 NH3、酢酸、酵母エキスの外種々の金属塩か
ら構成される通常の人工廃水を供試原水として、
第1図及び第2図に示すフロー用いて活性汚泥処
理を行つた。 人工廃水のBOD、NH3 -N及び嫌気槽、曝気槽
の容量、曝気槽におけるMLSS濃度、曝気槽にお
ける水温は次の通りであつた。 人工廃水のBOD 2000mg/ 人工廃水のNH3 -N 500mg/ 曝気槽容量 20 嫌気槽容量 30(密閉式) 曝気槽MLSS 4200〜5800ml/g 曝気槽水温 29〜32℃ 結果を両槽への原水流入量及び返送活性汚泥の
返送量と共に表1に示す。
[Industrial Application Field] The present invention relates to a method of treating organic carbon compounds that cause BOD in water and wastewater using microorganisms. [Prior art] Biological treatment methods for water or wastewater include:
Various methods are used, such as activated sludge treatment, but in any method, if reduced nitrogen compounds (hereinafter abbreviated as NH3 ) are contained in the raw water, nitrifying bacteria will occur. May produce NO x - (NO 2 - and/or NO 3 - ). [Problems to be solved by the invention] When NO x - is generated, for example, in activated sludge treatment, the N 2 gas generated by denitrification in the settling tank adheres to the sludge, causing SS (suspended) in the treated water.
solids) and worsen water quality. In addition, when NO 2 - is generated by nitrification, it is caused by NO 2 - .
This was a problem of concern to water treatment engineers because COD increased and NO 2 - itself was harmful. The present invention was made to eliminate the drawbacks of the conventional biological treatment methods, and provides a method for reducing NOx in treated water by suppressing the activity of nitrifying bacteria in mixed microorganisms. . [Means for Solving the Problems] The present invention provides a method for treating a liquid containing an organic carbon compound and NH 3 using microorganisms.
An anaerobic process is provided in which only the returned sludge is introduced, and all or part of the returned sludge is allowed to exist under anaerobic conditions for 20 hours or more in the anaerobic process to increase the activity of microorganisms that oxidize nitrogen compounds and produce NO x - . An organic carbon compound and reduction characterized in that it suppresses the production of NO x - in an aerobic process by reducing the activity of organic carbon compound-degrading bacteria and then circulating it in an aerobic process. This is a method of biologically treating water or wastewater containing nitrogen compounds using an activated sludge method. Next, the present invention will be explained in detail with reference to the drawings. In the drawings, reference numeral 1 indicates a raw water introduction pipe, 2 indicates a sludge return pipe, 3 indicates an aeration tank, 4 indicates a solid-liquid separation tank, 5 indicates a separated water discharge pipe, 6 indicates an excess sludge discharge pipe, and 7 indicates an anaerobic tank. In Figure 1, raw water containing organic carbon compounds and NH 3 is introduced from a raw water introduction pipe 1 into an aeration tank 3 under aerobic conditions, and after the contained organic carbon compounds are oxidized and decomposed, they solidify. Separated water (treated water) and sludge are separated in the liquid separation tank 4, and separated water discharge pipe 5
is discharged from. On the other hand, the sludge separated in the solid-liquid separation tank 4 is extracted from the lower part of the solid-liquid separation tank 4, a part of which is discharged from the surplus sludge discharge pipe 6 as surplus sludge, and the remainder is returned as return sludge. In the present invention, the sludge is returned to the aeration tank 3 after passing through the sludge return pipe 2 and undergoing anaerobic treatment in the anaerobic tank 7 for 20 hours or more. In the anaerobic tank 7, the sludge sent from the sludge return pipe 2 may be stirred in the atmosphere or left standing. When stirring, it is preferable to stir slowly using a rotating paddle or the like. Naturally, it is more effective to maintain anaerobic conditions by using a closed tank that does not allow air to enter.In this case, stirring with a rotating paddle or gas stirring that circulates the internal gas can provide powerful stirring. It is possible to do so. If NO x is present in the returned sludge, NO x
The anaerobic treatment time for returned sludge is determined by taking into account the disappearance time of sludge. For example, if it takes 5 hours for NO x to disappear, the anaerobic treatment time is at least 25 hours (20
+5 hours) or more is required. Another embodiment of the invention is shown in FIG. FIG. 2 shows an example in which a part of the returned sludge is divided into parts for anaerobic treatment, part of which is returned to the anaerobic tank and the remainder to the aeration tank, and the entire amount of raw water is injected into the aeration tank. Example 1 An activated sludge mixture was collected from an activated sludge aeration tank of organic wastewater undergoing nitrification, and NO x - in the mixture was collected.
The activated sludge washed out by centrifugal washing was stored in an airtight container, and the organic matter oxidation activity and NH 3 nitrification activity of the activated sludge were measured three times over time. Acetic acid was used as the sample organic substance. The results are shown in Figure 3. In FIG. 3, the dotted line indicates organic matter decomposition activity, and the solid line indicates nitrification activity. The results shown in Figure 3 show that when the nitrification activated sludge is left under anaerobic conditions for about 20 hours, the nitrification activity of the nitrification activated sludge is significantly lower than the organic matter oxidation activity. Additionally, activated sludge kept under anaerobic conditions recovers its nitrification activity when returned to aerobic conditions, but in order to achieve the purpose of the present invention, it is necessary to keep it under anaerobic conditions for at least 20 hours. This was confirmed separately. Example 2 Normal artificial wastewater consisting of NH 3 , acetic acid, yeast extract, and various metal salts was used as the test raw water.
Activated sludge treatment was performed using the flow shown in FIGS. 1 and 2. The BOD of artificial wastewater, NH 3 - N, capacity of the anaerobic tank, aeration tank, MLSS concentration in the aeration tank, and water temperature in the aeration tank were as follows. BOD of artificial wastewater 2000mg / NH 3 - N of artificial wastewater 500mg / Aeration tank capacity 20 Anaerobic tank capacity 30 (closed type) Aeration tank MLSS 4200-5800ml/g Aeration tank water temperature 29-32℃ Results are calculated based on raw water inflow to both tanks Table 1 shows the amount and the amount of returned activated sludge.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、NH3を含有する廃水の好気
的処理において、返送汚泥のみを導入する嫌気工
程を設け、該嫌気工程で、返送汚泥の全部又は一
部を嫌気条件下に20時間以上おいた後曝気槽に返
送することにより汚泥の硝化活性のみを選択的に
抑制できるので、NOx -の生成を抑制し、NOx -
の発生に付随して生ずる種々の問題を解決するこ
とができる。
According to the present invention, in the aerobic treatment of wastewater containing NH3 , an anaerobic step is provided in which only the returned sludge is introduced, and in the anaerobic step, all or part of the returned sludge is kept under anaerobic conditions for 20 hours or more. By returning the sludge to the aeration tank, it is possible to selectively suppress only the nitrification activity of the sludge, thereby suppressing the production of NO x - .
It is possible to solve various problems associated with the occurrence of

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を説明するためのフ
ロー図であり、第2図は他の実施例を説明するた
めのフロー図である。また、第3図は、活性汚泥
を嫌気処理した場合の硝化および有機物酸化の相
対活性を示す図であり、第4図は比較例を示す図
である。 1……原水導入管、2……活性汚泥返送管、3
……曝気槽、4……固液分離槽、7……嫌気槽。
FIG. 1 is a flowchart for explaining one embodiment of the present invention, and FIG. 2 is a flowchart for explaining another embodiment. Moreover, FIG. 3 is a diagram showing the relative activities of nitrification and organic matter oxidation when activated sludge is subjected to anaerobic treatment, and FIG. 4 is a diagram showing a comparative example. 1...Raw water introduction pipe, 2...Activated sludge return pipe, 3
...Aeration tank, 4...Solid-liquid separation tank, 7...Anaerobic tank.

Claims (1)

【特許請求の範囲】[Claims] 1 有機性炭素化合物と還元態窒素化合物とを含
有する廃水を活性汚泥処理工程で処理する方法に
おいて、返送汚泥のみを導入する嫌気工程を設
け、返送汚泥の全量あるいは一部を前記嫌気工程
で少なくとも20時間以上嫌気条件下に存在せしめ
た後、前記活性汚泥処理の好気工程に循環せしめ
ることを特徴とする有機性廃水の生物学的処理方
法。
1. In a method of treating wastewater containing organic carbon compounds and reduced nitrogen compounds in an activated sludge treatment step, an anaerobic step is provided in which only returned sludge is introduced, and at least a portion of the returned sludge is treated in the anaerobic step. 1. A biological treatment method for organic wastewater, which comprises allowing organic wastewater to exist under anaerobic conditions for 20 hours or more, and then circulating it to the aerobic step of the activated sludge treatment.
JP28197485A 1985-12-17 1985-12-17 Biological treatment of organic waste water Granted JPS62140699A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28197485A JPS62140699A (en) 1985-12-17 1985-12-17 Biological treatment of organic waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28197485A JPS62140699A (en) 1985-12-17 1985-12-17 Biological treatment of organic waste water

Publications (2)

Publication Number Publication Date
JPS62140699A JPS62140699A (en) 1987-06-24
JPH0134680B2 true JPH0134680B2 (en) 1989-07-20

Family

ID=17646489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28197485A Granted JPS62140699A (en) 1985-12-17 1985-12-17 Biological treatment of organic waste water

Country Status (1)

Country Link
JP (1) JPS62140699A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56147698A (en) * 1980-04-16 1981-11-16 Ebara Infilco Co Ltd Biological nitrifying and denitrifying method for night soil type sewage
JPS5851995A (en) * 1981-09-25 1983-03-26 Ebara Infilco Co Ltd Treatment of night soil
JPS58183995A (en) * 1982-04-20 1983-10-27 Nishihara Environ Sanit Res Corp Biological denitrification and dephosphorization of crude night soil

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56147698A (en) * 1980-04-16 1981-11-16 Ebara Infilco Co Ltd Biological nitrifying and denitrifying method for night soil type sewage
JPS5851995A (en) * 1981-09-25 1983-03-26 Ebara Infilco Co Ltd Treatment of night soil
JPS58183995A (en) * 1982-04-20 1983-10-27 Nishihara Environ Sanit Res Corp Biological denitrification and dephosphorization of crude night soil

Also Published As

Publication number Publication date
JPS62140699A (en) 1987-06-24

Similar Documents

Publication Publication Date Title
US6730226B2 (en) Water purifying method and apparatus
JPH07100486A (en) Method for treating drainage
JPS6254075B2 (en)
Núnez et al. Evaluation of an anaerobic/aerobic system for carbon and nitrogen removal in slaughterhouse wastewater
JP2678123B2 (en) Sewage treatment method
JPH0768294A (en) Wastewater treatment method
JPH0134680B2 (en)
JPS6055200B2 (en) Organic wastewater treatment method
JP3125628B2 (en) Wastewater treatment method
JP3303347B2 (en) Sewage treatment equipment
JPS6052880B2 (en) Biological denitrification and dephosphorization equipment for wastewater
JPH0437760B2 (en)
JPH05154495A (en) Method for nitrifying and denitrifying organic waste water
JP3837763B2 (en) Method for treating selenium-containing water
JPS61242697A (en) Biological treatment of organic waste water
JP3392295B2 (en) Method and apparatus for treating organic sewage
JPH0722756B2 (en) Biological denitrification and dephosphorization methods for wastewater
KR0178670B1 (en) Nitrogen removal method of organic wastewater in the water phase corrosion method
JPH08168796A (en) Aerobic nitrating denitrification process
JPH0679714B2 (en) Organic wastewater treatment method
JPH06236B2 (en) Organic wastewater treatment method
JPS5820298A (en) Purification of sewage
JPH0763711B2 (en) Wastewater treatment method
JPS5939199B2 (en) Biological denitrification method of wastewater
JPH06304593A (en) Biologically denitrifying method of organic waste liquid