JPH08168796A - Aerobic nitrating denitrification process - Google Patents

Aerobic nitrating denitrification process

Info

Publication number
JPH08168796A
JPH08168796A JP33355594A JP33355594A JPH08168796A JP H08168796 A JPH08168796 A JP H08168796A JP 33355594 A JP33355594 A JP 33355594A JP 33355594 A JP33355594 A JP 33355594A JP H08168796 A JPH08168796 A JP H08168796A
Authority
JP
Japan
Prior art keywords
aerobic
tank
hydrogen
denitrification
nitrification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33355594A
Other languages
Japanese (ja)
Inventor
Taisuke Toya
泰典 遠矢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Ebara Research Co Ltd
Original Assignee
Ebara Corp
Ebara Research Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp, Ebara Research Co Ltd filed Critical Ebara Corp
Priority to JP33355594A priority Critical patent/JPH08168796A/en
Publication of JPH08168796A publication Critical patent/JPH08168796A/en
Pending legal-status Critical Current

Links

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PURPOSE: To simplify a process constitution, the operation facilitate and also efficiently perform nitrating/denitrification of sewage by placing alternately an aerobic stage and an anaerobic stage in multistage at the time of aerobically nitrating/denitrifying biologically an org. sewage containing a reducing type sulfur. CONSTITUTION: At first, waste water 1 is introduced into a hydrogen fermentation tank 2, where org. matters are decomposed at the time of treating a sulfur and ammonia-containing waste water such as night soil. Then, a fermented nitrated liq. 21 is introduced into an aerobic tank 3, and also a hydrogen sulfide 11 obtained by washing and desulfuring 10 a generated gas 9 is introduced into a selection tank 4 to control a concn. of total reducing type sulfur in the fermented nitrated liq. At this time, a tank in which aerobic tank/selection tank are made to be one unit are arranged in multi-stages (3, 5)/(4, 6) at an aerobic nitrating denitrification process. In the last selection tank 6, is a mixed gas 13 of a gaseous hydrogen and a gaseous CO2 is introduced by using a blower 14. Then, an efluent from the last selection tank 6 is introduced into a solid-liq. separation process 7 and this denitrifed water is discharged to outside, and also a concentrated fungus body is returned to the aerobic tank 3 as a return sludge 19.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、汚水及び/又は汚泥の
好気性硝化脱窒素方法に係り、特に還元型硫黄や低級脂
肪酸などの有機物を多量に含む各種の汚水や汚泥を好気
性硝化脱窒素する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for aerobic nitrification and denitrification of wastewater and / or sludge, and particularly to aerobic nitrification denitrification of various kinds of wastewater and sludge containing a large amount of organic compounds such as reduced sulfur and lower fatty acids. Regarding how to nitrogen.

【0002】[0002]

【従来の技術】河川、海域などの水域の富栄養化を解決
するために、最近、水素生産菌と水素資化性細菌の共働
作用による窒素の除去、化学的方法によるリンの除去技
術が研究開発されつつあり、窒素(硝酸塩)の除去に関
しては評価に値する成果を上げている。然しながら、此
等の処理技術は、希釈された水中の窒素の除去に限定さ
れており、高度の富栄養化ポテンシアルを持っている底
泥の有効利用、処理・処分に関しては言及されていない
ため、単なる対症療法的な効果しか持たない。また、昭
和40年の初頭から発生源対策としての生物学的硝化脱
窒素法が研究開発、商品化され、昭和50年代になって
主として窒素、リン負荷が極めて大きいし尿処理場に適
用され、十分に評価に耐え得る具体的な成果を上げてい
る。
2. Description of the Related Art Recently, in order to solve the eutrophication of water bodies such as rivers and seas, the removal of nitrogen by the synergistic action of hydrogen-producing bacteria and hydrogen-utilizing bacteria and the removal of phosphorus by chemical methods have been recently carried out. It is being researched and developed, and has achieved results that deserve evaluation for the removal of nitrogen (nitrate). However, these treatment technologies are limited to the removal of nitrogen in diluted water, and there is no mention of effective utilization, treatment and disposal of bottom mud having a high eutrophication potential, It has only a symptomatic effect. In addition, since the beginning of 1965, the biological nitrification and denitrification method has been researched, developed and commercialized as a source countermeasure, and in the 1950s, it was mainly applied to human waste treatment plants where nitrogen and phosphorus loads were extremely large. Has achieved concrete results that can withstand the evaluation.

【0003】然し、従来の生物学的脱窒素法は、次に示
すような技術的問題があり、発生源対策技術として、よ
り一層の改善が要求されている。 エネルギー獲得源として重要な資源である有機性汚
水や汚泥、例えば、し尿等が、脱窒素菌の水素供与体と
して使用されるために、濃厚な有機物から貴重なエネル
ギーを回収することが出来ない。 生物学的脱窒素法はプロセス内に生理特性、機能が
全く異質の硝化菌、脱窒素菌を遅退なく増殖させ、機能
を発揮させる必要があるために、プロセスの構成が複雑
であり、運転条件設定の幅が狭い。
However, the conventional biological denitrification method has the following technical problems, and further improvement is required as a countermeasure against the source. Since organic sewage and sludge, which are important resources as an energy source, are used as hydrogen donors for denitrifying bacteria, valuable energy cannot be recovered from rich organic substances. In the biological denitrification method, it is necessary to grow nitrifying bacteria and denitrifying bacteria having completely different physiological characteristics and functions in the process without delay, and to exert their functions. The condition setting range is narrow.

【0004】[0004]

【発明が解決しようとする課題】本発明は、上記従来技
術に鑑み、プロセスの構成が簡単で、操作が容易で効率
よく汚水や汚泥から硝化脱窒素できる好気性硝化脱窒素
法を提供することを課題とする。
SUMMARY OF THE INVENTION In view of the above prior art, the present invention provides an aerobic nitrification and denitrification method which has a simple process structure, is easy to operate, and is capable of efficiently nitrifying and denitrifying sewage or sludge. Is an issue.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
に、本発明では、還元型硫黄を含む有機性汚水又は汚泥
を生物学的に好気性硝化脱窒素する方法において、好気
工程と嫌気工程を交互に多段配置し、硫黄酸化細菌に属
する従属栄養硝化脱窒素菌の優占下にある前記各工程
に、順次有機性汚水又は汚泥を通し硝化及び脱窒素を行
うこととしたものである。上記の多段配置した各工程に
おいて、後段に配置された好気工程からより前段に配置
された好気工程へ、及び/又は後段に配置された嫌気工
程からより前段に配置された嫌気工程へと各々の工程内
液を循環返送するのがよく、また、最終段階に好気工程
を配置し、該工程からの流出水を前段の全ての好気工程
に循環返送するのがよい。
In order to solve the above problems, the present invention provides a method for biologically aerobic nitrifying and denitrifying organic sewage or sludge containing reduced sulfur in an aerobic process and anaerobic process. By alternately arranging the steps in multiple stages, nitrification and denitrification are carried out by sequentially passing organic sewage or sludge to each of the steps under the control of heterotrophic nitrifying and denitrifying bacteria belonging to sulfur-oxidizing bacteria. . In each of the steps arranged in the above multistage, from the aerobic step arranged in the subsequent stage to the aerobic step arranged in the preceding stage, and / or from the anaerobic step arranged in the latter stage to the anaerobic step arranged in the preceding stage It is preferable to circulate and return the in-process liquid in each process, and to arrange an aerobic process in the final stage and circulate the effluent from the process to all the aerobic processes in the preceding stage.

【0006】また、本発明においては、還元型硫黄を含
まない有機性汚水又は汚泥を生物学的に好気性硝化脱窒
素する場合は、次の(a)及び(b)、又は(a)〜
(c)の工程を行う好気性硝化脱窒素法としたものであ
る。 (a)有機性汚水又は汚泥に水素生産菌及び硫酸塩還元
菌を接触させる水素発酵工程。 (b)好気工程と嫌気工程を交互に多段配置し、硫黄酸
化細菌に属する従属栄養硝化脱窒素菌の優占下にある前
記好気・嫌気工程に、順次(a)工程の還元型硫黄を含
む流出液を通し硝化及び脱窒素を行う硝化脱窒素工程。 (c)、(b)工程で少なくとも硝化の進行した処理液
に水素含有気体を供給して、該処理液中に残存する窒素
酸化物を完全に脱窒素する水素還元工程。 前記水素発酵工程(a)では、該工程から発生するガス
を水洗し、この還元型硫黄を含む水洗排液を硝化脱窒素
工程(b)に導入するのがよく、その際水洗排水は工程
の初段階であれば好気工程、嫌気工程のいずれでも、ま
た、両方に導入することができる。
In the present invention, when biologically aerobic nitrifying and denitrifying organic sewage or sludge containing no reduced sulfur, the following (a) and (b), or (a) to (a)-
This is an aerobic nitrification and denitrification method in which the step (c) is performed. (A) A hydrogen fermentation step of contacting hydrogen-producing bacteria and sulfate-reducing bacteria with organic wastewater or sludge. (B) The reduced sulfur of step (a) is sequentially added to the aerobic / anaerobic step in which heterotrophic nitrifying and denitrifying bacteria belonging to a sulfur-oxidizing bacterium are arranged in multiple stages by alternately arranging aerobic and anaerobic steps. Nitrification and denitrification step of performing nitrification and denitrification through the effluent containing A hydrogen reduction step of supplying a hydrogen-containing gas to at least the nitrification-processed treatment liquid in steps (c) and (b) to completely denitrify the nitrogen oxides remaining in the treatment liquid. In the hydrogen fermentation step (a), it is preferable to wash the gas generated from the step with water and to introduce the washing effluent containing reduced sulfur into the nitrification and denitrification step (b), in which case the effluent of the step is If it is the initial stage, it can be introduced into either the aerobic process or the anaerobic process, or both.

【0007】また、前記硝化脱窒素工程(b)におい
て、後段に配置された好気工程からより前段に配置され
た好気工程へ、及び/又は後段に配置された嫌気工程か
らより前段に配置された嫌気工程へと各々の工程内液を
循環返送するのがよく、前記水素還元工程(c)を硝化
脱窒素工程(b)の最終段階の嫌気工程で行うのがよ
い。更に、前記水素発酵工程(a)と硝化脱窒素工程
(b)との間で固液分離を行ってもよい。このように、
本発明は、硝化脱窒素を好気乃至微好気条件下で効率的
に行う従属栄養性硝化脱窒素菌であるチオスファエラ・
パントトロファに代表される菌群(以下Tsa菌とい
う)を優占的に増殖させる機構と、Tsa菌の優占的な
増殖を促進する条件形成に後段処理工程の生成物を巧妙
に循環利用することにある。
In the nitrification and denitrification step (b), the aerobic step arranged in the latter stage is changed to the aerobic step arranged in the former stage and / or the anaerobic step arranged in the latter stage is arranged in the former stage. It is preferable to circulate and return the in-process liquid to the anaerobic process described above, and it is preferable to perform the hydrogen reduction process (c) in the final anaerobic process of the nitrification denitrification process (b). Furthermore, solid-liquid separation may be performed between the hydrogen fermentation step (a) and the nitrification denitrification step (b). in this way,
The present invention is a heterotrophic nitrifying and denitrifying bacterium, thiosphaera
Mechanism of dominant growth of bacterial group represented by Pantotropha (hereinafter referred to as Tsa bacterium) and skillfully recycling products of the post-treatment process for condition formation to promote dominant growth of Tsa bacterium To do.

【0008】次に、本発明を各工程に従って詳細に説明
する。まず、本発明で用いる水素発酵工程について述べ
ると、この工程においては、有機物分解の過程で菌体内
に生じた余剰電子は、炭酸ガスと共に水素ガスとして菌
体外に放出される。また、自栄養性硫酸還元菌もこれら
の汚水や汚泥中にごく一般的に生息しており、汚水中に
溶存している硫酸塩を生物学的に還元して還元型硫黄
(S2-)とし、同時に炭酸ガスや水が生成される。本発
明においては、この還元型硫黄は、後段の硝化脱窒素工
程において従属栄養性硝化脱窒素菌のエネルギー源とし
て有効に利用される。また、し尿中、或いは下水汚泥中
には水素生産菌だけでなく、各種の嫌気性細菌主体の混
合培養系が構成されている。従属栄養性水素生産菌の培
養条件によっては、混合培養系でメタン菌が優占種とな
り、本発明が本来の目的とする水素生産が阻害される恐
れがある。
Next, the present invention will be described in detail according to each step. First, the hydrogen fermentation step used in the present invention will be described. In this step, surplus electrons generated in the microbial cells in the process of decomposing organic substances are released to the outside of the microbial cells as hydrogen gas together with carbon dioxide gas. In addition, autotrophic sulfate-reducing bacteria generally live in these wastewaters and sludges, and biologically reduce the sulfates dissolved in the wastewater to reduce sulfur (S 2- ). At the same time, carbon dioxide and water are generated. In the present invention, this reduced sulfur is effectively utilized as an energy source for heterotrophic nitrifying and denitrifying bacteria in the subsequent nitrifying and denitrifying step. In addition, not only hydrogen-producing bacteria but also various anaerobic bacteria-based mixed culture systems are constructed in human waste or sewage sludge. Depending on the culture conditions of the heterotrophic hydrogen-producing bacterium, the methane bacterium may become a dominant species in the mixed culture system, and the hydrogen production originally intended by the present invention may be inhibited.

【0009】然し、このメタン菌と水素生産菌とでは、
自然環境の中でそれぞれ生活し、かつ増殖するに必要な
条件に可成りの格差があり、この条件の格差を人為的に
制御することにより、本発明の目的とする水素生産菌を
混合培養系のなかで常に優占種として増殖せしめること
ができる。最も簡単な方法としては、水素生産菌の増殖
速度がメタン菌の増殖速度に対しては可成り大きいこと
を利用し、水素発酵槽の容積をメタン菌が洗流される範
囲、大凡、培養日数が5日以下程度の容積とすることに
より、水素生産菌を容易に優占種とすることが出来る
(メタン菌は至適pH7.8で、比増殖速度μ=0.3
〜0.5day-1、水素生産菌は至適pH5.5〜5.
8で、比増殖速度μ=5〜15day-1)。
However, in this methane bacterium and the hydrogen-producing bacterium,
There is a considerable disparity in the conditions necessary for each living and growing in the natural environment, and by artificially controlling the disparity in these conditions, the hydrogen-producing bacteria of the present invention are mixed and cultured. Among them, it can always be propagated as a dominant species. The simplest method is to utilize the fact that the growth rate of hydrogen-producing bacteria is considerably higher than that of methane bacteria, and the volume of the hydrogen fermentation tank is set so that By setting the volume to about 5 days or less, hydrogen-producing bacteria can be easily dominated (the optimum growth rate for methane bacteria is 7.8, specific growth rate μ = 0.3).
~ 0.5 day -1 , hydrogen-producing bacteria have an optimum pH of 5.5-5.
8, specific growth rate μ = 5 to 15 day −1 ).

【0010】さらに確実な方法としては、本発明者が先
に出願した特願平5−195329号に詳細に記述して
ある方法が適用できる。即ち、両菌種の間には増殖する
に適した酸化還元電位には下記するように相当の格差が
ある。 メタン菌 : −350〜−450mV、 水素生産菌 : −100〜−200mV、 従って、連続培養系で、この酸化還元電位の約−250
mVの格差を常時安定して維持するために、水素発酵槽
内の培養液を緩慢曝気して微嫌気の雰囲気に維持するこ
とにより、目的とする水素生産菌を常に優占種とするこ
とが出来る。また、酢酸塩等の低級脂肪酸、アンモニ
ア、及び還元型硫黄を多量に含むし尿の水素発酵消化液
中には、当然ながら本発明方法の従属栄養性硝化脱窒素
菌だけでなく、他の自栄養性硝化菌及び従属栄養性脱窒
素菌などが野性的に共存しており、単なる好気的環境を
与えるだけではチオスファエラ・パントトロファ(Thio
sphaera pantotropha)等の本発明において有用な従属栄
養性硝化脱窒素菌をこの生物反応系で優占種とすること
ができず、安定した、かつ高効率の硝化・脱窒素を遂行
することが困難となる。
As a more reliable method, the method described in detail in Japanese Patent Application No. 5-195329 previously filed by the present inventor can be applied. That is, there is a considerable difference between the two bacterial species in the redox potential suitable for growth as described below. Methane bacterium: −350 to −450 mV, hydrogen producing bacterium: −100 to −200 mV, therefore, in a continuous culture system, about −250 of this redox potential.
In order to maintain a stable mV disparity at all times, by slowly aerating the culture solution in the hydrogen fermenter to maintain a slightly anaerobic atmosphere, the target hydrogen-producing bacterium can always be the dominant species. I can. In addition, not only the heterotrophic nitrifying and denitrifying bacteria of the method of the present invention but also other autotrophs are naturally contained in the hydrogen-fermented digestive juice of human sewage containing a large amount of lower fatty acids such as acetate, ammonia, and reduced sulfur. Since nitrifying nitrifying bacteria and heterotrophic denitrifying bacteria coexist in the wild, thiosphaera pantotropha (Thio
Heterotrophic nitrifying and denitrifying bacteria useful in the present invention, such as sphaera pantotropha), cannot be the dominant species in this biological reaction system, and it is difficult to perform stable and highly efficient nitrifying and denitrifying. Becomes

【0011】本発明における中枢部分である硝化脱窒素
工程は、図1に示してあるように、好気工程を行う好気
槽と嫌気工程を行う選択槽とを一単元として、これを複
数段、直列に連結したプロセス構成が特徴であり、さら
に、後段の好気槽、選択槽から前段の好気槽、選択槽に
それぞれの槽の混合培養液を循環・返送する手段を講じ
ている。好気槽にはブロワーによる緩慢曝気により、混
合培養液の溶存酸素濃度が、動的状態において好ましく
は1mg/l以下となるように調整してあり、一方、選
択槽は空気を供給することなく、所謂、単純な嫌気槽で
あり、基質と汚泥(細菌)を十分に混合出来るように攪
拌手段を講じている。このような槽の配列と手段によ
り、前記した従属栄養性硝化・好気性脱窒素菌(以下、
従属栄養性硝化脱窒素菌と略記する)であるチオスファ
エラ・パントトロファが好気性硝化脱窒素工程で常に優
占種となり、好気的環境下で単一種による順調な硝化・
脱窒素が行なわれる。
As shown in FIG. 1, the nitrifying and denitrifying step, which is the central part of the present invention, has an aerobic tank for performing an aerobic step and a selective tank for performing an anaerobic step as one unit. The process configuration is connected in series, and further, means for circulating and returning the mixed culture solution of each tank to the aerobic tank in the latter stage, the aerobic tank in the former stage, and the aerobic tank in the former stage is sent. The aerobic tank was adjusted by a slow aeration with a blower so that the dissolved oxygen concentration of the mixed culture was preferably 1 mg / l or less in the dynamic state, while the selective tank did not supply air. This is a so-called simple anaerobic tank, and a stirring means is provided so that the substrate and sludge (bacteria) can be sufficiently mixed. By the arrangement and means of such a tank, the above-mentioned heterotrophic nitrifying and aerobic denitrifying bacteria (hereinafter,
Heterotrophic nitrifying and denitrifying bacterium), Thiosphaera pantotropha, has always become the dominant species in the aerobic nitrifying and denitrifying process, and a single species is successfully performing nitrification in an aerobic environment.
Denitrification is performed.

【0012】本発明は、この従属栄養性硝化脱窒素菌で
あるチオスファエラ・パントトロファ(Thiosphaera pa
ntotropha)に代表される細菌群(以下、Tsa菌と略記
する)、自栄養性硝化菌(主としてニトロソモナス(Ni
trosomonas属) )と従属栄養性脱窒素菌(主として、シ
ュードモナス(Pseudomonas 属)、パラコッカス(Para
coccus属)の生理学的特性及び機能特性の差異を十分に
考慮した結果として本発明に想達するに至ったものであ
る。本発明の重要な特徴は、第一工程の水素発酵槽から
発生したガス、即ち硫化水素、水素及び炭酸ガスの混合
ガスのうち、硫化水素は前述のように第二工程(好気性
硝化脱窒素工程)である前段の好気槽及び/又は選択槽
での水素供与体或いは増殖阻害剤(従属栄養性硝化菌及
び自栄養性硝化菌に対して)として使用し、クリーン・
エネルギーとして水洗・精製された水素及び炭酸ガスの
一部を第三の工程である最終選択槽(嫌気的水素還元
槽)に導入し、従属栄養性硝化脱窒素菌(Tsa菌)の
水素供与体及び炭素源として供給することにより残留し
た酸化態窒素、主として亜硝酸塩を完全に脱窒素し、大
気中に放散せしめることである。
The present invention relates to the heterotrophic nitrifying and denitrifying bacterium, Thiosphaera pa.
Bacterial group represented by ntotropha (hereinafter abbreviated as Tsa bacterium), autotrophic nitrifying bacterium (mainly Nitrosomonas (Ni
trosomonas) and heterotrophic denitrifying bacteria (mainly Pseudomonas) and Paracoccus (Para).
The present invention has been accomplished as a result of fully considering the difference in physiological and functional properties of the genus Coccus. An important feature of the present invention is that, in the gas generated from the hydrogen fermenter in the first step, that is, hydrogen sulfide, a mixed gas of hydrogen and carbon dioxide, hydrogen sulfide is generated in the second step (aerobic nitrification denitrification as described above). Process)) as a hydrogen donor or growth inhibitor (for heterotrophic nitrifying bacteria and autotrophic nitrifying bacteria) in the aerobic tank and / or selective tank in the first stage,
A part of hydrogen and carbon dioxide gas washed and purified as energy is introduced into the final selection tank (anaerobic hydrogen reduction tank) which is the third step, and a hydrogen donor of heterotrophic nitrifying and denitrifying bacteria (Tsa bacteria). In addition, it is to completely denitrify the residual oxidized nitrogen, mainly nitrite, by supplying it as a carbon source, and dissipate it into the atmosphere.

【0013】次に、本発明の硝化脱窒素工程の構成の特
徴とその役割について述べる。 混合培養液のpHを8.0〜8.5とする。 これは至適pH域の違いを利用して、自栄養性硝化菌の
増殖抑制とTsa菌の増殖強化を図るものである。な
お、処理対象がし尿の場合には、チオスファエラ・パン
トトロファが優占種となればpH調整の必要はない。 混合培養液の溶存酸素濃度を1mg/l以下とす
る。 これは酸素要求性の違いを利用して自栄養性硝化菌の増
殖抑制とTsa菌の硝化能力、脱窒素能力の強化を図る
ものである。
Next, the features of the constitution and the role of the nitrifying and denitrifying step of the present invention will be described. The pH of the mixed culture solution is set to 8.0 to 8.5. This aims to suppress the growth of autotrophic nitrifying bacteria and enhance the growth of Tsa bacteria by utilizing the difference in the optimum pH range. In addition, when the target of treatment is human waste, it is not necessary to adjust the pH as long as Thiosphaera pantotropha is the dominant species. The dissolved oxygen concentration of the mixed culture is 1 mg / l or less. This aims to suppress the growth of autotrophic nitrifying bacteria and enhance the nitrifying and denitrifying abilities of Tsa bacteria by utilizing the difference in oxygen requirement.

【0014】更に、以上の構成に加えTsa菌の増殖す
る環境を好適にするため、以下の操作を行うことが望ま
しい。 前頭部の好気槽及び/又は選択槽への発生ガス中の
還元型硫黄の注入。 これは自栄養性硝化菌、従属栄養性脱窒素菌の増殖阻
害、及びTsa菌の増殖増大を図るものである。 後段好気槽から前段好気槽への混合培養液の循環・
返送。 これはTsa菌の増殖促進及び従属栄養性脱窒素菌の増
殖阻害を図るものである。 通常基質として酢酸塩とアンモニアが存在し、かつ溶存
酸素濃度が高い場合には、Tsa菌と他の従属栄養性脱
窒素菌の混合培養系において好気槽流入水の基質濃度が
高ければ、Tsa菌の増殖速度は従属栄養性脱窒素菌よ
りも大きくなり、Tsa菌が混合培養系で優占種とな
る。
Further, in addition to the above-mentioned constitution, it is desirable to carry out the following operations in order to optimize the environment in which the Tsa bacteria grow. Injection of reduced sulfur in the evolved gas into the aerobic tank and / or selective tank in the frontal region. This is intended to inhibit the growth of autotrophic nitrifying bacteria, heterotrophic denitrifying bacteria, and increase the growth of Tsa bacteria. Circulation of mixed culture solution from the rear aerobic tank to the front aerobic tank
Return. This is intended to promote the growth of Tsa bacteria and inhibit the growth of heterotrophic denitrifying bacteria. Usually, when acetate and ammonia are present as substrates and the dissolved oxygen concentration is high, if the substrate concentration of the aerobic tank inflow water is high in the mixed culture system of Tsa bacteria and other heterotrophic denitrifying bacteria, Tsa The growth rate of the bacterium becomes larger than that of the heterotrophic denitrifying bacterium, and the Tsa bacterium becomes the dominant species in the mixed culture system.

【0015】しかしながら、本発明のように基質条件が
同じで溶存酸素濃度を意識的に低く調整している場合に
は、前述のような両者の競合関係は存在せず、如何なる
基質濃度でもTsa菌の増殖速度が従属栄養性脱窒素菌
よりも大きく、常に優占種となる。従って、本発明の好
気混合培養液の前段への循環は、人為的に溶存酸素濃度
を制御することの不安定性を考慮して好気槽流入水を後
段の処理水で希釈することによりTsa菌が多少の条件
変動があっても常に優占種となるように配慮したもので
ある。さらに、このTsa菌が優占種となった好気混合
培養液を循環することにより、選択槽でのTsa菌と従
属栄養性脱窒素菌との競合関係と相互の菌数関係がTs
a菌にとって極めて有利となり、確実に従属栄養性脱窒
素菌の増殖を抑制することができる。従属栄養性脱窒素
菌は酸素が存在する環境では酸素呼吸による増殖が可能
であるが、Tsa菌が優占種となっている好気槽では酸
素摂取の競合で勝者には成り得ず、そのために増殖阻害
がさらに増大される。
However, when the substrate conditions are the same and the dissolved oxygen concentration is intentionally adjusted to be low as in the present invention, there is no competitive relationship between the two as described above, and the Tsa bacteria can be used at any substrate concentration. It grows faster than heterotrophic denitrifying bacteria and is always the dominant species. Therefore, the circulation of the aerobic mixed culture solution of the present invention to the former stage is performed by diluting the aerobic tank inflow water with the treated water of the latter stage in consideration of the instability of artificially controlling the dissolved oxygen concentration. It is designed so that the bacteria will always be the dominant species even if there are some changes in conditions. Furthermore, by circulating the aerobic mixed culture solution in which the Tsa bacteria have become the dominant species, the competitive relationship between the Tsa bacteria and the heterotrophic denitrifying bacteria in the selection tank and the mutual bacterial count relationship are Ts.
It is extremely advantageous for the bacterium a and can reliably suppress the growth of the heterotrophic denitrifying bacterium. Heterotrophic denitrifying bacteria can grow by oxygen respiration in an environment where oxygen is present, but in an aerobic tank where Tsa bacteria are the dominant species, competition for oxygen uptake cannot be a winner. Growth inhibition is further increased.

【0016】 多段の好気槽/選択槽のプロセス構
成。 これは、自栄養性硝化菌、従属栄養性脱窒素菌の増殖抑
制、及びTsa菌の増殖増大を図るものである。有機性
基質が主として低級脂肪酸の場合、Tsa菌の酸素に対
する飽和定数は自栄養性細菌のアンモニアを基質とした
場合の酸素に対する飽和定数よりも可成り小さい。この
ことは、両者の競合関係において、本発明のように好気
槽を低溶存酸素濃度で運転する条件下では自栄養性硝化
菌は好気槽における酸素摂取の競合でTsa菌に勝て
ず、酸素呼吸が制約されるために増殖が著しく抑制され
る。この環境条件を多段で繰り返すことにより自栄養性
硝化菌の増殖阻害は強化され、本発明のプロセス内で優
占種とは成り得ない。
Multi-stage aerobic / selective tank process configuration. This is intended to suppress the growth of autotrophic nitrifying bacteria and heterotrophic denitrifying bacteria and to increase the growth of Tsa bacteria. When the organic substrate is mainly a lower fatty acid, the saturation constant for oxygen of Tsa bacteria is considerably smaller than the saturation constant for oxygen when ammonia of autotrophic bacteria is used as a substrate. This means that in a competitive relationship between the two, under the condition that the aerobic tank is operated at a low dissolved oxygen concentration as in the present invention, the autotrophic nitrifying bacteria cannot compete with Tsa bacteria in the competition of oxygen uptake in the aerobic tank, Oxygen respiration is restricted and proliferation is significantly suppressed. By repeating this environmental condition in multiple stages, the growth inhibition of autotrophic nitrifying bacteria is strengthened and cannot be the dominant species in the process of the present invention.

【0017】また、Tsa菌は電子受容体として、自栄
養性硝化菌がアンモニアの酸化によって生成する亜硝
酸、硝酸を利用することが出来るので、本来的に両者の
間にはアンモニアに対する競合関係は存在しないが、こ
の環境条件を多段で反復することにより、Tsa菌と自
栄養性硝化菌の競合関係が完全に成立しないように考慮
したものである。Tsa菌と従属栄養性脱窒素菌の混合
培養系においては、好気性環境4〜5時間、嫌気性環境
2〜4時間の生活環境を反復すると、Tsa菌はこの環
境変動に対して対応性に優れているが、従属栄養性脱窒
素菌は増殖が著しく抑制され、両者の競合関係において
は、常にTsa菌が優占種となる。
Since Tsa bacteria can utilize nitrous acid and nitric acid produced by autotrophic nitrifying bacteria by the oxidation of ammonia as electron acceptors, there is essentially no competitive relationship between the two for ammonia. Although it does not exist, it is considered that the competitive relationship between Tsa bacteria and autotrophic nitrifying bacteria is not completely established by repeating this environmental condition in multiple stages. In a mixed culture system of Tsa bacteria and heterotrophic denitrifying bacteria, when the living environment of aerobic environment of 4 to 5 hours and anaerobic environment of 2 to 4 hours is repeated, Tsa bacteria become responsive to this environmental change. Although excellent, the growth of the heterotrophic denitrifying bacterium is remarkably suppressed, and the Tsa bacterium is always the dominant species in the competitive relationship between the two.

【0018】その理由は次の通りである。 ・従属栄養性脱窒素菌は酸素による汚染(好気槽での滞
留)があると硝酸塩還元酵素、及び/又は亜硝酸塩還元
酵素の生合成及び/又は誘導が確実に阻害される。 ・有機性基質が主として低級脂肪酸の場合は、Tsa菌
の酢酸塩に対する飽和定数は従属栄養性脱窒素菌の飽和
定数に対して可成り低いので、両者の混合培養系におい
て、従属栄養性脱窒素菌は基質競合においてTsa菌に
勝てず、従って、優占種とは成り得ない。 さらに、Tsa菌と従属栄養性脱窒素菌との混合培養系
において好気/嫌気の環境が反復されると混合培養液に
高濃度に亜硝酸が蓄積され、従属栄養性脱窒素菌の酸素
摂取が阻害され、電子伝達系に電子がたまり、還元状態
となる。従って、電子は硝酸により多く伝達されるよう
になり、結果としてより多くの亜硝酸塩が生成され、従
属栄養性脱窒素菌の電子伝達系が正常に作動しなくな
り、極端な増殖阻害が起こる(Tsa菌の硝化の終点は
亜硝酸であるために好都合である)。
The reason is as follows. -Oxygen contamination (retention in aerobic tanks) of heterotrophic denitrifying bacteria reliably inhibits nitrate reductase and / or nitrite reductase biosynthesis and / or induction. -When the organic substrate is mainly lower fatty acid, the saturation constant of Tsa bacteria for acetate is considerably lower than that of the heterotrophic denitrifying bacteria. Bacteria do not compete with Tsa in substrate competition and therefore cannot be the dominant species. Furthermore, when an aerobic / anaerobic environment is repeated in a mixed culture system of Tsa bacteria and heterotrophic denitrifying bacteria, high concentration of nitrite is accumulated in the mixed culture solution, resulting in oxygen uptake of heterotrophic denitrifying bacteria. Are blocked, and electrons are accumulated in the electron transfer system, resulting in a reduced state. Therefore, more electrons are transferred to nitric acid, and as a result, more nitrite is produced, the electron transfer system of the heterotrophic denitrifying bacterium does not operate normally, and extreme growth inhibition occurs (Tsa). It is convenient because the end point of fungal nitrification is nitrite).

【0019】 後段選択槽から前段選択槽への混合培
養液の循環・返送。 これは、自栄養性硝化菌、従属栄養性脱窒素菌の増殖抑
制を図るものである。前記に記載した多段の好気槽/
選択槽(嫌気槽)の効果をさらに確実に助長するための
手段であり、好気/嫌気の雰囲気を複数回反復すること
により自栄養性硝化菌と従属栄養性脱窒素菌の増殖を強
力に抑制する効果を狙ったものである。その結果として
Tsa菌の増殖が促進される。このようにして、最終選
択槽における水素ガスによる亜硝酸塩還元(脱窒素)が
順調に行なわれ、完全な脱窒素を達成するものである。
また、本発明では、水素発酵工程を設けず、そのまま汚
濁物質濃度の高い無希釈し尿を直接硝化脱窒素すること
もできる。
Circulation / return of the mixed culture solution from the latter-stage selection tank to the former-stage selection tank. This is intended to suppress the growth of autotrophic nitrifying bacteria and heterotrophic denitrifying bacteria. Multi-stage aerobic tank described above /
This is a means to further promote the effect of the selective tank (anaerobic tank), and by repeating the aerobic / anaerobic atmosphere several times, the growth of autotrophic nitrifying bacteria and heterotrophic denitrifying bacteria is strengthened. This is aimed at suppressing the effect. As a result, the growth of Tsa bacteria is promoted. In this way, nitrite reduction (denitrification) with hydrogen gas in the final selection tank is smoothly performed, and complete denitrification is achieved.
In the present invention, it is also possible to directly nitrify and denitrify undiluted urine having a high pollutant concentration as it is without providing a hydrogen fermentation step.

【0020】衆知のように、無希釈し尿は汚濁物質とし
ての低級脂肪酸濃度が3,500〜4,500mg/
l、アンモニアの濃度が3,000〜4,000mg/
lと可成り濃厚であっても、本発明プロセスで混合培養
液の溶存酸素濃度が高い場合、及び/又は1mg/l程
度に低い場合ともTsa菌の増殖速度が従属栄養性脱窒
素菌の増殖速度よりも大きく、基本的には前記の条件で
両者の競合関係においてTsa菌が優占種となるが、初
段の好気槽に流入する低級脂肪酸及びアンモニアの濃度
は希薄なほうが、Tsa菌が確実に優占種とするには完
全である。この目的のために、本発明では、特に最終段
階で追加的に好気槽を設け、好気混合培養液を前部の各
段の好気槽に適量循環・返送する手段を講じている。
As is well known, undiluted urine has a lower fatty acid concentration of 3,500 to 4,500 mg / min as a pollutant.
1, the concentration of ammonia is 3,000 to 4,000 mg /
Even if the concentration is fairly high as 1, the growth rate of Tsa bacteria is high even when the dissolved oxygen concentration of the mixed culture is high in the process of the present invention and / or when it is as low as about 1 mg / l. It is higher than the rate, and basically, the Tsa bacterium becomes the dominant species in the competitive relationship between the two under the above conditions, but when the concentration of lower fatty acid and ammonia flowing into the first stage aerobic tank is dilute, the Tsa bacterium is It is perfect to make sure it is the dominant species. To this end, in the present invention, a means for additionally providing an aerobic tank, particularly at the final stage, and circulating and returning an appropriate amount of the aerobic mixed culture solution to the aerobic tank at each stage in the front part is provided.

【0021】この最終好気槽の設置は上記以外にも下記
の効果が期待できる。 多段の好気槽/選択槽を経由してTsa菌の濃度が
最も濃厚となっている最終段階の混合培養液を前段の好
気槽、特に最前部の好気槽に循環・返送することによ
り、Tsa菌に対する濃厚な基質による過重な負荷を緩
和できる。 Tsa菌に対しては、増殖するに好適な環境を通過
する頻度を高めることになり、これに対して従属栄養性
脱窒素菌には好ましくない環境を通過する頻度が増加す
ることになり、両菌種の競合はTsa菌にとって著しく
有利となり、本発明プロセスの混合培養系で確実にTs
a菌が優占種となり得る。 本発明のプロセスの最終放流水に溶存酸素が与えら
れ、外部水系に対する負荷が軽減される。
In addition to the above, the following effects can be expected from the installation of this final aerobic tank. By circulating and returning the mixed culture solution of the final stage, which has the highest concentration of Tsa bacteria, to the aerobic tank of the previous stage, especially the aerobic tank of the forefront, via the multi-stage aerobic tank / selection tank , Tsa bacteria can be relieved from excessive load due to a rich substrate. For Tsa bacteria, the frequency of passing through an environment suitable for growth is increased, whereas the frequency of passing through an environment unfavorable for heterotrophic denitrifying bacteria is increased. The competition of the bacterial species becomes a significant advantage for the Tsa bacteria, and it is possible to ensure that the mixed culture system of the process of the present invention can produce Ts
Fungus a can be the dominant species. Dissolved oxygen is provided to the final effluent of the process of the invention, reducing the load on the external water system.

【0022】次に、本発明の水素還元工程について述べ
る。従属栄養性脱窒素菌のある種のものは水素ガスを直
接水素供与体として利用できるが、その能力は著しく弱
い。これに対してTsa菌は気体状の水素をエネルギー
源として強力に脱窒素(硝酸塩、亜硝酸塩とも)するこ
とが可能である。Tsa菌による従属栄養性硝化はNH
4 + →NH2 OH→NO2 - の酸化経路が終点となり、
通常の自栄養性硝化菌のようにNO3 - を経由しない。
従って、脱窒素はNO2 - が起点となるので、水素供与
体の必要量が少なくてすむことになり、経済的である
が、廃水自身に当初から硝酸塩が含まれている場合には
好気性脱窒素する機能を持っている。
Next, the hydrogen reduction step of the present invention will be described. Some heterotrophic denitrifying bacteria can use hydrogen gas directly as a hydrogen donor, but its capacity is significantly weaker. On the other hand, Tsa bacteria can strongly denitrify (both nitrate and nitrite) by using gaseous hydrogen as an energy source. Heterotrophic nitrification by Tsa is NH
4 + → NH 2 OH → NO 2 - oxidation pathway is the end point of,
Unlike normal autotrophic nitrifying bacteria, it does not pass through NO 3 .
Therefore, since denitrification starts from NO 2 , the amount of hydrogen donor required is small, which is economical, but when the wastewater itself contains nitrates from the beginning, it is aerobic. It has the function of denitrifying.

【0023】そこで、純粋の水素を水素供与体とした場
合の生物学的脱窒素反応を硝酸塩、亜硝酸塩について示
すと次の通りとなる。 ・硝酸塩(呼吸) 2NO3 - +5(H2 )=N2 +2OH- +4H2 O ・亜硝酸塩(呼吸) 2NO2 - +3(H2 )=N2 +2OH- +2H2 O 好気性硝化脱窒素工程で、水素発酵消化液に必ずしも亜
硝酸塩量に対応した還元型硫黄、低級脂肪酸及び硫化水
素を化学量論的に過不足なく供給することは操作上困難
が伴うことも考えられ、また、廃水の種類によってはN
x 量に対して前記の水素供与体量が過剰に存在してい
るとは限らない。
The biological denitrification reaction in the case of using pure hydrogen as the hydrogen donor is as follows for nitrate and nitrite. - nitrate (breathing) 2NO 3 - +5 (H 2 ) = N 2 + 2OH - + 4H 2 O · nitrite (breathing) 2NO 2 - + +3 (H 2) = N 2 2OH - + in 2H 2 O aerobic nitrification denitrification step It may be difficult to supply stoichiometrically the reduced sulfur, lower fatty acid and hydrogen sulfide corresponding to the amount of nitrite to the hydrogen-fermented digestive fluid, and it may be difficult to operate. Depending on N
Not necessarily hydrogen donor amount of the is present in excess with respect to O x amount.

【0024】この技術上の問題点を、本発明方法では水
素発酵槽で発生した多量の水素ガスの一部を分割使用す
ることにより安全側で解決していると同時に、当然、な
お過剰の水素はクリーン・エネルギーとして有効に利用
することができる。また、発生した水素を、好気性硝化
脱窒素工程の好気槽に空気と同伴して水素供与体として
供給すると、酸素と水素が混在することになり、混合ガ
スの水素の含有率が空気に対して4%以上になると爆発
を誘起する危険性がある。本発明方法は、この問題点
を、最終段階におけるNOx 除去の仕上げを目的とする
最終選択槽に供給することにより完全に解決している。
以上が、本発明方法の課題、目的を解決するための手
段、方法であり、これらにより本発明の目的である硫化
物、アンモニアを含む有機性廃水から水素エネルギーの
生産とNOx の除去が完全に達成される。
In the method of the present invention, this technical problem is solved on the safety side by using a part of a large amount of hydrogen gas generated in the hydrogen fermenter in a divided manner. Can be effectively used as clean energy. Also, when the generated hydrogen is supplied to the aerobic tank of the aerobic nitrification and denitrification process together with air as a hydrogen donor, oxygen and hydrogen will be mixed, and the hydrogen content of the mixed gas will change to air. On the other hand, if it exceeds 4%, there is a risk of inducing an explosion. The method of the present invention completely solves this problem by feeding it to the final selection tank, which is aimed at finishing the NO x removal in the final stage.
The above is the means and method for solving the problems and objects of the method of the present invention, whereby the production of hydrogen energy and the removal of NO x from the organic wastewater containing sulfide and ammonia, which is the object of the present invention, are completed. Will be achieved.

【0025】本発明方法の好気性硝化脱窒素工程で優占
種となるチオスファエラ・パントトロファ(Thiosphaer
a pantotropha)は有機物分解の過程で解糖系及びTCA
サイクルから放出される電子をチトクロームによって構
成される電子伝達系を通じて酸素まで運搬しているが、
他の細菌とは異なり、電子伝達系の特定部位に存在する
チトクロームaa3 とチトクロームOを自己制御するこ
とにより細胞内部での代謝経路に酸化的雰囲気と還元的
雰囲気を同時並行的に作り出し、好気的条件下で従属栄
養性硝化と好気性脱窒素を同時に行なう機能を持った特
殊な細菌である。また、Tsa菌は、外部の条件に対応
して的確に各種の酵素を生合成、誘導することができ、
また、自栄養的、従属栄養的、或いは混合栄養的に増殖
し、さらに急激な電子受容体の質・量の変化に耐えて増
殖することができる多機能的な細菌である。本発明者
は、この特殊な生理的特性・機能を持った細菌が通常の
土壌、或いは現行の生物学的脱窒素プロセスの混合培養
系にも一般的に生息していることを知り、該菌を優占種
とするための条件について種々研究を重ねた結果、本発
明方法の好気性硝化脱窒素法を確立するに至った。もち
ろん、本発明の実施に際しては、Tsa菌に属する菌株
の保存されている細菌を用いてもよい。
Thiosphaer pantotroph, which is the dominant species in the aerobic nitrification and denitrification step of the method of the present invention
a pantotropha) is a glycolytic system and TCA in the process of organic matter decomposition.
The electrons emitted from the cycle are transported to oxygen through an electron transport system composed of cytochromes.
Unlike other bacteria, self-regulation of cytochrome aa 3 and cytochrome O existing at specific sites in the electron transfer system creates an oxidative atmosphere and a reducing atmosphere in the metabolic pathway inside the cell simultaneously, which is favorable. It is a special bacterium that has the function of simultaneously performing heterotrophic nitrification and aerobic denitrification under aerobic conditions. In addition, Tsa bacteria can biosynthesize and induce various enzymes accurately in response to external conditions,
In addition, it is a multifunctional bacterium that can grow autotrophically, heterotrophically, or mixedly, and can withstand rapid changes in the quality and quantity of electron acceptors and grow. The present inventor has learned that bacteria having this special physiological property / function generally inhabit ordinary soil or a mixed culture system of the current biological denitrification process. As a result of various studies on the conditions for making P. dominant a dominant species, the aerobic nitrification and denitrification method of the present invention has been established. Of course, in the practice of the present invention, preserved bacteria of strains belonging to Tsa may be used.

【0026】[0026]

【作用】次に、本発明の優れた機能を本発明の一例を示
す図1を用いて説明する。また、本発明の機能、作用効
果を説明するにあたり、現在、通常の生物学的硝化脱窒
素法が最も多用されているし尿処理場を想定し、し尿を
基質として選定したが、本発明はこれに限定されるもの
ではなく、硫化物及びアンモニアを濃厚に含む有機性廃
水や有機性汚水にも適用される。従来法としての生物学
的硝化脱窒素法は、硝酸塩、亜硝酸塩の還元に必要とさ
れる水素供与体をし尿自身の有機物(BOD)に依存し
ているために、エネルギー生産の高度なポテンシアルを
内在している有価な資源であるし尿は脱窒素の目的のた
めに浪費される。本発明は、この有価な資源を浪費する
ことなく、まず、水素生産菌によりクリーン・エネルギ
ーである水素を取出し、脱窒素の水素供与体としてし尿
及び/又はその発酵消化液に含まれている還元型硫黄、
各種の低級脂肪酸、さらに発生ガス中の硫化水素を水素
供与体として、NOx を還元除去する機能を持った従属
栄養性硝化脱窒素菌を特定の培養条件で優占種として増
殖せしめることにより、し尿からエネルギー生産と脱窒
素の目的を同時に達成することが可能である。但し、本
発明では、水素発酵工程を設けず、し尿の有機物の全量
を従属栄養性硝化と好気性脱窒素の水素供与体として有
効に利用する好気性硝化脱窒素工程のみで行うことがで
きる。
Next, the excellent function of the present invention will be described with reference to FIG. 1 showing an example of the present invention. In addition, in explaining the functions and effects of the present invention, assuming a human waste treatment plant where the usual biological nitrification and denitrification method is most frequently used at present, human waste was selected as a substrate. The present invention is not limited to the above, but is also applied to organic wastewater and organic wastewater containing sulfide and ammonia in a concentrated manner. The biological nitrification denitrification method as a conventional method depends on the hydrogen donor required for the reduction of nitrate and nitrite and relies on the organic matter (BOD) of the urine itself, so that it has a high potential for energy production. Human waste, an inherent valuable resource, is wasted for the purpose of denitrification. In the present invention, without wasting this valuable resource, first, hydrogen, which is clean energy, is taken out by a hydrogen-producing bacterium, and is used as a hydrogen donor for denitrification, and the reduction contained in human sewage and / or its fermentation digested liquid Type sulfur,
By using various lower fatty acids and hydrogen sulfide in the generated gas as a hydrogen donor to grow heterotrophic nitrifying and denitrifying bacteria having a function of reducing and removing NO x as a dominant species under specific culture conditions, It is possible to simultaneously achieve the objectives of energy production and denitrification from human waste. However, in the present invention, the hydrogen fermentation step is not provided, and only the aerobic nitrification and denitrification step in which the total amount of the organic matter in human waste is effectively utilized as a hydrogen donor for heterotrophic nitrification and aerobic denitrification can be performed.

【0027】図1において、まず、含硫、含アンモニア
廃水1としてし尿を用いた場合を説明する。し尿を無希
釈のまま連続的又は間歇的に水素発酵槽2に移送する。
この水素発酵槽2でし尿の有機物を分解するが、水素生
産の主役を演じるのは、し尿又は土壌中にごく一般的に
棲息している下記の細菌類であり、これらを土壌から分
離した単一菌、或いは混合培養系を増量培養して水素発
酵槽2に適量接種してもよいし、或いはまた、公的な微
生物保存機関から分与を受けて使用してもよいが、通
常、し尿中に野性的に棲息している水素生産菌を、特定
の培養条件で優占種として増殖せしめ、これを使用する
のがよい。 クロストリジウム(Clostridium)属 エンテロバクター(Enterobacter) 属 ルミノコッカス(Ruminococcus) 属 ビフィドバクテリウム(Bifidobacterium)属
Referring to FIG. 1, first, a case where human waste is used as the sulfur-containing and ammonia-containing wastewater 1 will be described. The human sewage is transferred to the hydrogen fermentation tank 2 continuously or intermittently without being diluted.
The hydrogen fermenter 2 decomposes the organic matter of human waste, but the main players of hydrogen production play the following bacteria that are commonly inhabited in human waste or soil. One bacterium or a mixed culture system may be cultivated in an increased amount to inoculate the hydrogen fermenter 2 in an appropriate amount, or alternatively, it may be used by being dispensed from a public microbial preservation institution. It is recommended to grow a hydrogen-producing bacterium that is wildly inhabited as a dominant species under specific culture conditions and use it. Clostridium genus Enterobacter genus Ruminococcus genus Bifidobacterium genus

【0028】これらの水素生産菌はし尿(有機物)を、
下記の条件で低級脂肪酸と水素ガス、及び炭酸ガスに分
解する。 至適pH : 5.5〜5.8、 至適温度 : 25〜30℃、 発酵日数 : 5〜7日、 比増殖速度 : 5〜15日-1、 有機物分解 (C6 105 )n → 4C6 126 =3CH3 (CH2 2 COOH+2CH3 COOH+8H2 +8CO2 (1) 3CH3 (CH2 2 COO- +6H2 O =6CH3 COO- +3H+ +6H2 (2) 2CH3 COO- +4H2 O=10H+ +2H2 +4CO2 (3)
These hydrogen-producing bacteria, human waste (organic matter),
It decomposes into lower fatty acid, hydrogen gas and carbon dioxide gas under the following conditions. Optimum pH: 5.5 to 5.8, Optimum temperature: 25 to 30 ° C., Fermentation days: 5 to 7 days, Specific growth rate: 5 to 15 days −1 , Organic matter decomposition (C 6 H 10 O 5 ). n → 4C 6 H 12 O 6 = 3CH 3 (CH 2 ) 2 COOH + 2CH 3 COOH + 8H 2 + 8CO 2 (1) 3CH 3 (CH 2 ) 2 COO + 6H 2 O = 6CH 3 COO + 3H + + 6H 2 (2) 2CH 3 COO + 4H 2 O = 10H + + 2H 2 + 4CO 2 (3)

【0029】一応、基本的には式(1)の生物反応が主
反応であり、し尿の微生物分解により多量の低級脂肪酸
(主として酪酸、酢酸、及び乳酸など)と、等モルの水
素ガスと炭酸ガスが生成される。前記したように、水素
生産菌による水素生成反応は吸エルゴン反応であり、A
TP起源のエネルギーが不足するため低級脂肪酸が可成
り蓄積した段階で動的平衡に達し、それ以上は容易に水
素生成反応が進行しない。従って、従来法での水素発酵
では有機物中の水素原子の水素ガスへの転換効率が低
く、経済性に問題がある。従って、本発明では、可能な
範囲で有機物中の水素転換率を向上するために、下記の
微嫌気水素発酵法(特願平5−195329号参照)を
採用するのがよい。即ち、生物反応系から水素を強制的
に系外に除去(減圧発酵)すると同時に水素発酵槽2の
内溶液の酸化還元電位を人為的に−100〜−200m
Vに設定することにより水素ガスの発生を70〜80%
程度にまで高めることができる。
On the other hand, the biological reaction of the formula (1) is basically the main reaction, and a large amount of lower fatty acids (mainly butyric acid, acetic acid, lactic acid, etc.) and equimolar hydrogen gas and carbonic acid are produced by microbial decomposition of human waste. Gas is produced. As described above, the hydrogen production reaction by the hydrogen-producing bacterium is the sucking ergon reaction.
Since the energy derived from TP is insufficient, a dynamic equilibrium is reached when the lower fatty acid is considerably accumulated, and the hydrogen generation reaction does not easily proceed further. Therefore, in the hydrogen fermentation by the conventional method, the conversion efficiency of hydrogen atoms in organic matter to hydrogen gas is low, and there is a problem in economic efficiency. Therefore, in the present invention, in order to improve the hydrogen conversion rate in the organic matter to the extent possible, the following slightly anaerobic hydrogen fermentation method (see Japanese Patent Application No. 5-195329) is preferably adopted. That is, hydrogen is forcibly removed from the biological reaction system to outside the system (vacuum fermentation), and at the same time, the redox potential of the solution in the hydrogen fermentation tank 2 is artificially changed from -100 to -200 m.
70% to 80% of hydrogen gas generation by setting V
Can be increased to the extent.

【0030】し尿1は可成り地域特性があり、その理化
学的性状には可成りの幅があるが、硫酸イオンは通常5
00〜600mg/l、含硫蛋白質由来の硫黄イオンが
100〜200mg/l含まれている。この内、硫酸イ
オンは水素発酵槽2で従属栄養性水素生産菌による水素
発酵の過程で、混合培養液に共存している硫酸塩還元細
菌によりほとんど100%硫黄イオンに還元され、発酵
消化液21及び/又は発生ガス9中に硫化水素として存
在している。また、含硫蛋白質中の硫黄分もほぼ同様の
挙動をとり発酵消化液か、或いは発生ガス9中に分配さ
れる。水素発酵を終えた発酵消化液21は次の好気性硝
化脱窒素工程の第一段目の好気槽3に導入される。この
槽3には発酵消化液21に含まれている還元型硫黄が当
然流入し、また、発生ガス9を水洗脱硫10した硫化水
素11が、選択槽4と共に導入され、発酵消化液21中
の総還元型硫黄の濃度は概略250〜350mg/l程
度となる。
Human waste 1 has a considerable regional characteristic, and its physicochemical properties have a considerable range, but sulfate ion is usually 5
The amount of sulfur ions derived from sulfur-containing protein is 100 to 200 mg / l. Of these, sulfate ions are reduced to almost 100% sulfur ions by the sulfate-reducing bacteria coexisting in the mixed culture solution during the hydrogen fermentation process by the heterotrophic hydrogen-producing bacterium in the hydrogen fermentation tank 2, and the fermentation digestion solution 21 And / or present as hydrogen sulfide in the evolved gas 9. Further, the sulfur content in the sulfur-containing protein behaves in a substantially similar manner and is distributed to the fermentation digestion liquid or the generated gas 9. The fermented digested liquid 21 after the hydrogen fermentation is introduced into the aerobic tank 3 in the first stage of the next aerobic nitrification and denitrification process. The reduced sulfur contained in the fermented digested liquid 21 naturally flows into this tank 3, and hydrogen sulfide 11 obtained by washing and desulfurizing the generated gas 9 with water 10 is introduced together with the selective tank 4, and The concentration of total reduced sulfur is approximately 250 to 350 mg / l.

【0031】また、発酵消化液21には有機物を基質と
した水素発酵により、各種の低級脂肪酸が約1,500
〜2,000mg/l(最高3,000mg/l程度)
の範囲で含まれており、この両者が好気性の従属栄養性
硝化脱窒素菌であるチオスファエラ・パントトロファを
優占種とする混合培養系に、主として亜硝酸塩還元の水
素供与体として利用される。し尿1の水素発酵の結果と
して発酵消化液21に含まれるアンモニア性窒素は、通
常1,500〜2,000の範囲で変動する。このNH
4 −Nが従属栄養性硝化脱窒素菌により100%硝化さ
れると仮定して発酵消化液中21の還元型硫黄で脱窒素
されるNO2 −Nは、次の化学量論的関係から約270
mg/lであり、また、発酵消化液21に含まれる低級
脂肪酸を酢酸で代表させると、低級脂肪酸によるNO2
−Nの除去濃度は約1,100mg/lであり、発酵消
化液21に含まれている全NO2 −Nを完全に還元する
ためには水素供与体の絶対量が不足することになる。 *△H1 =kg・S2-/kg・NO2 −N=1.42 △H1-1 =0.7 *△H2 =kg・CH3 COOH/kg・NO2 −N=
2.00 △H2 -1=0.5
The fermented digestion liquid 21 contains about 1,500 of various lower fatty acids by hydrogen fermentation using organic matter as a substrate.
~ 2,000 mg / l (up to about 3,000 mg / l)
, Both of which are mainly used as hydrogen donors for nitrite reduction in a mixed culture system in which Thiosfaera pantotropha, an aerobic heterotrophic nitrifying and denitrifying bacterium, is the dominant species. It The ammoniacal nitrogen contained in the fermentation digestion liquid 21 as a result of the hydrogen fermentation of the human waste 1 normally fluctuates in the range of 1,500 to 2,000. This NH
Assuming that 4- N is 100% nitrified by the heterotrophic nitrifying and denitrifying bacterium, NO 2 -N denitrified by 21 reduced sulfur in the fermentation digestive liquor is about 2 % from the following stoichiometric relationship. 270
When the lower fatty acid contained in the fermentation digestive juice 21 is represented by acetic acid, NO 2 due to the lower fatty acid
The removal concentration of -N is about 1,100 mg / l, and the absolute amount of the hydrogen donor is insufficient for completely reducing all NO 2 -N contained in the fermentation digestion liquid 21. * △ H 1 = kg · S 2- / kg · NO 2 -N = 1.42 △ H 1-1 = 0.7 * △ H 2 = kg · CH 3 COOH / kg · NO 2 -N =
2.00 ΔH 2 -1 = 0.5

【0032】厚生省によるし尿処理施設の構造指針によ
ると、し尿の窒素汚濁負荷として、総窒素濃度4,20
0mg/l、NH4 −N濃度3,200mg/lと規定
されているので、この窒素濃度に対して、水素供与体が
還元型硫黄と低級脂肪酸だけでは可成り不足することに
なる。本発明方法では、前述のTsa菌を優占的に増殖
させる必須条件を満足させるために、好気性硝化脱窒素
工程に好気槽/選択槽を一単元とする槽を多段に設けて
いるが、通常、処理対象がし尿の場合に精々二単元を設
置するだけで十分(好気槽3、5、選択槽4、6)であ
り、好気性硝化脱窒素工程の総容積は5.5〜6.5Q
3 (・・・Q;一日当りの処理水量)程度が好適であ
る。この槽内における菌体濃度は概略10,000〜1
6,000mg/lで十分であり、好気槽/選択槽の容
積比は1:1が標準であるが、この容積比は処理対象と
なる廃水の種類(水質)によって決定すべきであり、本
発明で処理対象としているし尿では通常1.0:0.5
が適当である。
According to the structure guideline of the human waste treatment facility by the Ministry of Health and Welfare, the total nitrogen concentration of 4,20 is calculated as the nitrogen pollution load of human waste.
Since 0 mg / l and NH 4 —N concentration of 3,200 mg / l are specified, the hydrogen donor is considerably insufficient with respect to this nitrogen concentration only with the reduced sulfur and the lower fatty acid. In the method of the present invention, in order to satisfy the above-mentioned essential conditions for predominantly growing Tsa bacteria, the aerobic nitrifying and denitrifying step is provided with a multi-stage aerobic / selective tank. Normally, it is enough to install two units at best when the target is human waste (aerobic tanks 3, 5 and selective tanks 4, 6), and the total volume of the aerobic nitrification and denitrification step is 5.5. 6.5Q
m 3 (... Q; treated water amount per day) is suitable. The bacterial cell concentration in this tank is approximately 10,000 to 1
6,000 mg / l is sufficient, and the volume ratio of the aerobic tank / selective tank is 1: 1 as a standard, but this volume ratio should be determined by the type (water quality) of the wastewater to be treated, Normally 1.0: 0.5 for human waste, which is the subject of the present invention.
Is appropriate.

【0033】また、好気槽から好気槽への循環返送量、
選択槽から選択槽への循環返送量は15〜20Qm3
日程度であれば、循環返送の効果が確実に発現する。好
気槽3、5には、槽内の混合培養系が微生物学的に定常
状態に達した時点において、混合培養液の溶存酸素濃度
が、好ましくは1mg/lを越えない範囲となるように
送気ブロワー18を適当に制御しながら緩慢曝気を行な
う。また、選択槽4、6には基質とチオスファエラ・パ
ントトロファが優占種となった培養菌体が十分に接触す
るように緩慢な攪拌を行なえる攪拌機構を設け、好まし
くは大気からの酸素の導入を防止するために覆蓋を設け
るとよい。前記の構成要素及び/又は手段により、約2
0〜30日間選択培養すると従属栄養性硝化脱窒素菌が
優占種となり、この段階でのチオスファエラ・パントト
ロファ(Thiosphaera pantotropha)のし尿を基質とした
実験での従属栄養性硝化速度、及び好気性脱窒素速度は
下記の通りであり、現行の硝化菌と脱窒素菌の機能を組
み合わせた生物学的脱窒素法のそれぞれの速度に比肩で
きる反応速度が得られた。 *従属栄養性硝化速度=0.04〜0.07kg・NH
4 −N/kg・MLSS/日 *好気性硝化速度=0.07〜0.1kg・NO2 −N
/kg・MLSS/日
Further, the amount of circulation and return from the aerobic tank to the aerobic tank,
Circulation return amount from selected tank to selected tank is 15-20 Qm 3 /
If it is about a day, the effect of circulation and return will surely be exhibited. In the aerobic tanks 3 and 5, when the mixed culture system in the tanks reaches a microbiologically steady state, the dissolved oxygen concentration of the mixed culture solution is preferably in a range not exceeding 1 mg / l. Slow aeration is performed while controlling the air blower 18 appropriately. In addition, the selective tanks 4 and 6 are provided with a stirring mechanism capable of performing slow stirring so that the substrate and the cultured bacterial cells in which Thiosphaera pantotropha is the dominant species come into sufficient contact with each other, and oxygen from the atmosphere is preferable. A cover may be provided to prevent the introduction of Approximately 2 by the above-mentioned components and / or means
Heterotrophic nitrifying and denitrifying bacteria became the dominant species after selective culture for 0 to 30 days. At this stage, the heterotrophic nitrification rate in the experiment using Thiosphaera pantotropha human waste as a substrate and The aerial denitrification rates were as follows, and the reaction rates comparable to those of the current biological denitrification methods combining the functions of the existing nitrifying bacteria and denitrifying bacteria were obtained. * Heterotrophic nitrification rate = 0.04 to 0.07 kg NH
4- N / kg ・ MLSS / day * Aerobic nitrification rate = 0.07 to 0.1 kg ・ NO 2 -N
/ Kg / MLSS / day

【0034】このような工程を経たのちに、なお残留す
るNOx −Nを含む好気槽5での処理水を最終工程の選
択槽6に導入する。この最終選択槽5(水素還元槽)に
より従属栄養性硝化脱窒素菌は圧倒的に該菌が優占種と
なる。この槽6には、水素発酵槽2により従属栄養性水
素生産菌により生産された水素ガスと炭酸ガスの混合ガ
ス13をブロワー14によって導入し、繰り返し循環利
用することにより水素供与体としての水素の利用率を高
めると同時に、有機炭素源としての炭酸ガスを供給す
る。水素発酵槽2におけるし尿の有機物分解量当りの水
素生産量は、概略次の値が得られた。 水素生産量=0.25m3 ・H2 /kg−VSR ここに、VSR ;分解された有機物量 また、亜硝酸塩還元、硝酸塩還元に必要な水素量は、水
素還元の生物反応式から化学量論的に次の数値が計算上
得られる。 *硝酸塩還元に必要な水素量 0.9m3 ・H2
kg−NO3 −N *亜硝酸塩還元に必要な水素量 0.67m3 ・H2
/kg−NO2 −N
After passing through such steps, the treated water in the aerobic tank 5 containing the remaining NO x -N is introduced into the selective tank 6 in the final step. By this final selection tank 5 (hydrogen reduction tank), heterotrophic nitrifying and denitrifying bacteria are overwhelmingly predominant. Into this tank 6, a mixed gas 13 of hydrogen gas and carbon dioxide gas produced by a heterotrophic hydrogen-producing bacterium in the hydrogen fermentation tank 2 is introduced by a blower 14 and is repeatedly circulated for reuse of hydrogen as a hydrogen donor. At the same time as increasing the utilization rate, it supplies carbon dioxide as an organic carbon source. The hydrogen production amount in the hydrogen fermenter 2 per organic matter decomposition amount of human waste was approximately as follows. Hydrogen production amount = 0.25 m 3 · H 2 / kg-VS R, where VS R is the amount of decomposed organic substances. The amount of hydrogen required for nitrite reduction and nitrate reduction is calculated from the biological reaction formula of hydrogen reduction. Quantitatively, the following numerical values are calculated. * Amount of hydrogen required for nitrate reduction 0.9m 3 · H 2 /
kg-NO 3 -N * Amount of hydrogen required for nitrite reduction 0.67 m 3 · H 2
/ Kg-NO 2 -N

【0035】以上の基礎数値を計算根拠として、し尿の
水素発酵における有機物分解率80%を仮定すると、好
気性硝化脱窒素工程の好気槽5に残留するNOx −N約
1,000mg/lを完全に脱窒素するに必要な水素量
の約8〜10倍の水素が発生することになる(利用効率
100%と仮定した場合)。この大過剰の水素15はク
リーン・エネルギーとして多目的に利用することができ
る。最終選択槽6でNOx −Nと有機物を完全に除去さ
れた流出水は、固液分離工程7に導入され、脱窒素処理
水8は外部の水系に放流され、濃縮された菌体は返送汚
泥19として好気性硝化脱窒素工程の前頭部の好気槽3
に返送され、繰り返し利用される。固液分離工程で適用
する装置は特定されるものではなく、例えば、通常の重
力式沈殿池、遠心分離器、或いは各種の分離膜などを使
用することができる。また、脱窒素処理の中枢部分であ
る好気性硝化脱窒素工程の生物処理方式は、特に浮遊式
の生物処理に限定されるものではなく、各種の付着媒
体、固定化媒体に菌体を付着及び/又は固定する方式も
本発明に包含される。この種の生物処理方式を適用する
場合には、特に菌体の返送19を必要としない。一方、
水素発酵槽2及び好気性硝化脱窒素工程で増殖した菌体
は、余剰汚泥20として外部に取り出され、適当な方法
で処理・処分される。
Assuming an organic matter decomposition rate of 80% in the hydrogen fermentation of night sewage based on the above basic numerical values, NO x -N remaining in the aerobic tank 5 of the aerobic nitrification and denitrification step is about 1,000 mg / l. Hydrogen is generated in an amount of about 8 to 10 times the amount of hydrogen required for completely denitrifying hydrogen (assuming a utilization efficiency of 100%). This large excess of hydrogen 15 can be used as clean energy for multiple purposes. Effluent water was completely removed NO x -N and organics final selection vessel 6 is introduced to solid-liquid separation step 7, denitrification treatment water 8 is discharged outside the water system, return the concentrated cells Sludge 19 as aerobic tank 3 in front of aerobic nitrification and denitrification process
It is sent back to and used repeatedly. The device applied in the solid-liquid separation step is not specified, and, for example, an ordinary gravity type sedimentation tank, a centrifugal separator, or various separation membranes can be used. Further, the biological treatment method of the aerobic nitrification denitrification step, which is the central part of the denitrification treatment, is not particularly limited to the floating type biological treatment, and various attachment media and bacterial cells are attached to the immobilization medium. The method of fixing / or fixing is also included in the present invention. When this type of biological treatment system is applied, it is not necessary to return cells 19 in particular. on the other hand,
The bacterial cells grown in the hydrogen fermentation tank 2 and the aerobic nitrification and denitrification step are taken out as excess sludge 20 and treated / disposed by an appropriate method.

【0036】[0036]

【実施例】以下に、本発明を実施例により具体的に説明
するが、本発明はこれらの実施例に限定されるものでは
ない。 実施例1 (a)汲取し尿のクロストリジウム(Clostridium)属に
よる水素発酵 厚生省のし尿処理施設に関する構造基準のし尿汚濁負荷
に近似した比較的濃厚なし尿が得られる処理場を選定
し、これを供試試料としてし尿の水素発酵の実験を行な
った。供試し尿の主要な理化学的性状は表1の通りであ
る(5℃以下の冷蔵庫に保管)。
EXAMPLES The present invention will now be described in detail with reference to examples, but the present invention is not limited to these examples. Example 1 (a) Hydrogen Fermentation of Collected Urine by the Genus Clostridium A treatment plant was selected from which a relatively concentrated undiluted urine similar to the human waste pollutant load of the structural standard concerning the human waste treatment facility of the Ministry of Health and Welfare was selected and tested. An experiment of hydrogen fermentation of human waste was performed as a sample. The main physicochemical properties of the test urine are as shown in Table 1 (stored in a refrigerator at 5 ° C or lower).

【0037】[0037]

【表1】 (注)単位は、pH以外は全てg/lで表示してある。 *総固形物に対する強熱減量の比率は75.1%である。 *供試し尿は1mm目開きのスクリーンでろ過した試料。[Table 1] (Note) All units are shown in g / l except pH. * The ratio of loss on ignition to total solids is 75.1%. * Test urine is a sample that has been filtered through a 1 mm open screen.

【0038】水素発酵槽の容積は、実際の水張り容積
(有効容積)が5リットルの円筒型発酵槽であり、これ
を30℃の恒温水槽に設置し、発酵日数が5日の中温発
酵試験を行なった。水素発酵槽には、当初、適当な種菌
の接種を考えたが、供試し尿の嫌気的条件における一般
細菌数が約108-9 個/g・し尿、クロストリジウム
(Clostridium)属の菌数が106-7 個/g・し尿にも達
するほど多数棲息していたので、水素発酵の開始に当
り、特に種菌の接種は行なわれなかった。水素発酵の実
験条件は要約すると次の通りである。 水素発酵の運転条件 *発酵温度 ; 30±1℃、 *運転時の動的状態におけるpH ; 5.5〜6.
0、 *発酵日数 ; 約5日、 *有機物負荷 ; 5.26kg・VS/m3 ・日、 *し尿の供給方法 ; 午前と午後に、それぞれ1日分
の半量を投入、
The hydrogen fermenter is a cylindrical fermenter having an actual water-filled volume (effective volume) of 5 liters, which is placed in a constant temperature water bath of 30 ° C. and subjected to a medium temperature fermentation test for 5 days. I did. Initially, it was considered to inoculate a hydrogen fermenter with an appropriate inoculum, but the number of general bacteria under the anaerobic condition of test urine was about 10 8-9 / g · human waste, and the number of bacteria of the genus Clostridium. Since many inhabited so as to reach 10 6 -7 pieces / g · human waste, no inoculation of inoculum was carried out at the start of hydrogen fermentation. The experimental conditions for hydrogen fermentation are summarized as follows. Operating conditions for hydrogen fermentation * Fermentation temperature: 30 ± 1 ° C, * pH in dynamic state during operation: 5.5-6.
0, * Fermentation days: Approximately 5 days, * Organic load: 5.26 kg · VS / m 3 · day, * Manure supply method;

【0039】使用した水素発酵槽は有効容積が5リット
ルで規模が小さいために、本発明における減圧発酵の機
構をそのまま実験装置に適用することは技術的に困難で
ある。従って、簡略化した方法を用いた。即ち、水素発
酵槽の気相部分と連通した塩化ビニール製のパイプに真
空ポンプを連結し、真空ポンプを作動せしめて、全槽が
実質的に−1,000〜−2,000mmAqとなるよ
うに自動的に減圧制御し、減圧発酵を行なった。供試し
尿は水素発酵槽に投入する前に緩慢曝気を行い、供試し
尿の酸化還元電位(以下、ORPと略記する)が所定の
ORPよりも高めとなるように、具体的には−50〜−
100mVとなるように調整してから水素発酵槽に投入
した。水素発酵槽にはORP感知センサーを設置し、O
RP値を監視しながら従属栄養性水素生産菌が増殖する
のに好適な−150mVを設定値として運転した。
Since the hydrogen fermentation tank used has a small effective volume of 5 liters and is small in scale, it is technically difficult to directly apply the mechanism of the vacuum fermentation in the present invention to the experimental apparatus. Therefore, a simplified method was used. That is, a vacuum pump is connected to a pipe made of vinyl chloride that communicates with the gas phase portion of the hydrogen fermentation tank, and the vacuum pump is operated so that the total tank becomes substantially -1,000 to -2,000 mmAq. The reduced pressure was automatically controlled, and the reduced pressure fermentation was performed. The test urine is slowly aerated before being put into the hydrogen fermenter, so that the oxidation-reduction potential (hereinafter, abbreviated as ORP) of the test urine is higher than a predetermined ORP, specifically, -50. ~-
It was adjusted to 100 mV and then charged into a hydrogen fermentation tank. ORP sensor is installed in the hydrogen fermenter,
While monitoring the RP value, the operation was carried out with a set value of -150 mV suitable for the growth of heterotrophic hydrogen-producing bacteria.

【0040】水素発酵槽に対する有機物負荷は、運転当
初は最終負荷の約1/3の負荷をかけ、徐々に負荷を上
げていく方法により水素生産菌を増殖せしめたが、運転
を開始してから約1ヵ月後に、設定した有機物負荷条件
での定常状態に達した。種菌の接種は前記した通り特に
行なわなかった。実験終了後、本実験の増殖汚泥につい
て水素生産菌を同定した結果、次の複数種の従属栄養性
水素生産菌の混合培養系であることが確認された。 検出された従属栄養性水素生産菌 *クロストリジウム ブチリカム(Clostridium butyric
um (ATCC 25779)) *クロストリジウム バルケリ(Clostridium barkeri
(ATCC 25849)) *クロストリジウム セルロリチカム(Clostridium cel
lulolyticum (ATCC 35319)) *クロストリジウム ジスポリカム(Clostridium dispo
ricum (ATCC 43838)) *クロストリジウム プロピオニカム(Clostridium pro
pionicum (ATCC 25522))
Regarding the load of organic matter on the hydrogen fermenter, about 1/3 of the final load was applied at the beginning of operation, and hydrogen-producing bacteria were grown by a method of gradually increasing the load, but after the operation was started, After about one month, the steady state was reached under the set organic load condition. The inoculation with the inoculum was not particularly performed as described above. After the experiment was completed, the hydrogen-producing bacteria in the grown sludge of this experiment were identified, and as a result, it was confirmed to be a mixed culture system of the following multiple types of heterotrophic hydrogen-producing bacteria. Detected heterotrophic hydrogen-producing bacteria * Clostridium butyric
um (ATCC 25779)) * Clostridium barkeri
(ATCC 25849)) * Clostridium cel
lulolyticum (ATCC 35319)) * Clostridium dyspolicum (Clostridium dispo
ricum (ATCC 43838)) * Clostridium pro
pionicum (ATCC 25522))

【0041】この同定の結果から、一般汲取し尿を水素
発酵の基質とした場合、特にATCCなどの微生物保存
機関から純粋菌株を購入して水素発酵槽に接種しなくて
も、し尿自身に有用な水素生産菌、主としてクロストリ
ジウム (Clostridium)属が野性的に棲息しており、これ
らの共働作用により抵抗なく水素発酵が行なわれた。水
素発酵に必要な条件を設定すれば、メタン菌の増殖は抑
制され、投入された基質に最も適合した水素生産菌群が
構築され、人為的に種菌を接種するよりも安定した水素
発酵が行なわれることが実証された。以上の実験装置、
実験条件における検証実験は、運転が定常状態に達して
から3ヵ月間継続し、実験終期の約1ヵ月間に得られた
処理成績の平均値を表2に示した。なお、水質分析に供
した試料は、発酵消化液を遠心力1,500Gの遠心分
離器に10分間かけ、強制的に菌体を含む浮遊物を分離
除去し、分析用試料とした。
From the results of this identification, it is useful for human waste itself when general pumped urine is used as a substrate for hydrogen fermentation without purchasing a pure strain from a microorganism preservation institution such as ATCC and inoculating it into a hydrogen fermenter. Hydrogen-producing bacteria, mainly the genus Clostridium, inhabit wildly, and hydrogen fermentation was carried out without resistance due to the synergistic action of these bacteria. If the conditions necessary for hydrogen fermentation are set, the growth of methane bacteria will be suppressed, the hydrogen-producing bacteria group that is most suitable for the input substrate will be constructed, and stable hydrogen fermentation will be performed rather than artificially inoculating inoculum. It was proved that The above experimental equipment,
The verification experiment under the experimental conditions was continued for 3 months after the operation reached a steady state, and Table 2 shows the average values of the treatment results obtained during about 1 month at the end of the experiment. The sample used for the water quality analysis was used as a sample for analysis by subjecting the fermented digested liquid to a centrifugal separator having a centrifugal force of 1,500 G for 10 minutes to forcibly separate and remove suspended matter containing bacterial cells.

【0042】[0042]

【表2】 (注)*;単位はmg/l。[Table 2] (Note) *; Unit is mg / l.

【0043】し尿の水素発酵検証実験によって得られた
結果を要約すると、次の通りである。 (1)し尿の水素発酵は、特に公的な微生物保存機関か
らの水素生産菌の純菌株に依存しなくても、本来的にし
尿に棲息している水素生産菌により、水素発酵は遅退く
進行する。 (2)特に、本発明者による微嫌気・減圧発酵を適用す
ることにより、本来、発酵消化液中に蓄積されるべき低
級脂肪酸も可成りの量が水素(エネルギー)に変換され
る。その結果、生物化学量論的にはほぼ等量の発生が予
測される炭酸ガスと水素ガスの発生比率はおおよそ3
5:65となった。これは、微嫌気・減圧発酵による水
素発酵により、本来的に吸エルゴン反応である水素発酵
が実質的に発エルゴン反応に変換されるためであると考
えられる。 (3)供試し尿中に含まれる硫酸イオン(720mg/
l)は硫酸塩還元細菌により、実質的に100%還元型
硫黄にまで還元される。発酵消化液の硫黄イオン
(S2-)は平均値として310mg/lが得られ、化学
的換算値よりも高い数値が得られたが、これはし尿中の
含硫蛋白質の硫黄に基因するものと考えられる。
The results obtained by the hydrogen fermentation verification experiment of human waste are summarized as follows. (1) Hydrogen fermentation of human waste is slowed down by hydrogen-producing bacteria that originally live in human waste, even if they do not rely on pure strains of hydrogen-producing bacteria from public microbial preservation institutions. proceed. (2) In particular, by applying the slightly anaerobic / vacuum fermentation by the present inventor, a substantial amount of the lower fatty acid originally to be accumulated in the fermentation digestive liquid is also converted into hydrogen (energy). As a result, the generation ratio of carbon dioxide gas and hydrogen gas, which are predicted to be biostoichiometrically approximately equal, is approximately 3
It became 5:65. It is considered that this is because the hydrogen fermentation by slightly anaerobic / vacuum fermentation substantially converts the hydrogen fermentation, which is originally an absorption ergon reaction, into a generative ergon reaction. (3) Sulfate ion (720 mg /
1) is reduced to substantially 100% reduced sulfur by sulfate-reducing bacteria. The sulfur ion (S 2− ) of the fermented digestive juice was 310 mg / l as an average value, which was higher than the chemical conversion value, but this was due to the sulfur of sulfur-containing protein in human waste. it is conceivable that.

【0044】(b)従属栄養性硝化脱窒素菌チオスファ
エラ・パントトロファ(Thiosphaerapantotropha)によ
る多段式好気槽/選択槽プロセスでの好気性硝化脱窒
素、及び水素還元による脱窒素。 ここでは図1に示した連続処理が可能な2段の好気性硝
化脱窒素槽(2段×好気槽/選択槽)を製作し、最終選
択槽を水素発酵により発生した水素による還元槽として
使用した。これに菌体の濃縮・分離を目的とした重力式
沈殿槽(固液分離槽)、さらに濃縮菌体返送経路と水素
還元のためのガス循環経路を製作し、連続処理による好
気性硝化脱窒素実験を行なった。選択槽は緩慢な攪拌を
行なうために攪拌機を設け、さらに覆蓋を設けて混合培
養液が直接大気と接触するのを防止した。また、硝化脱
窒素実験に使用する水素発酵消化液は、別個に10リッ
トルの水素発酵槽を製作し、前記(a)と同じ条件で並
行してし尿の水素発酵を行い、(b)の供試試料とし
た。
(B) Aerobic nitrification and denitrification in a multistage aerobic / selective tank process by the heterotrophic nitrifying and denitrifying bacterium Thiosphaera pantotropha, and denitrification by hydrogen reduction. Here, the two-stage aerobic nitrification and denitrification tank (two-stage x aerobic tank / selection tank) shown in Fig. 1 that can be continuously processed was manufactured, and the final selection tank was used as a reduction tank with hydrogen generated by hydrogen fermentation. used. A gravity type sedimentation tank (solid-liquid separation tank) for the purpose of concentrating / separating bacterial cells, a concentrated bacterial cell return path and a gas circulation path for hydrogen reduction were manufactured, and aerobic nitrification denitrification by continuous treatment was performed. An experiment was conducted. The selection tank was provided with a stirrer for performing slow stirring, and was further provided with a cover to prevent the mixed culture solution from directly contacting the atmosphere. As for the hydrogen fermentation digestion liquid used for the nitrification and denitrification experiment, a 10-liter hydrogen fermentation tank was separately prepared, and hydrogen fermentation of urine was performed in parallel under the same conditions as the above (a), and then the (b) supply was performed. A test sample was used.

【0045】実験のフローシートは図1の通りである
が、この処理工程に対応する下記の実験装置を組みあ
げ、発酵消化液の一段目の好気槽への注入、及び固液分
離槽からの濃縮菌体の返送に関しては半連続式、硫化水
素水の最初の単元である好気槽/選択槽への注入、混合
ガス(水素+炭酸ガス)の水素還元槽(最終選択槽)へ
の循環は連続的に運転した。初段と二段目の好気槽に対
しては連続的に空気を吹き込んだが、発酵消化液の注入
が中断されている時には、空気吹き込み率を極端に絞
り、槽内液の溶存酸素濃度が1mg/lを越えないよう
に配慮した。 実験装置及び実験条件 *全体の処理工程に共通の条件 ・処理水温 : 30±1℃、 実験装置を全て大型の恒温水槽に設置し、上記の温度で
運転した。 ・発酵消化液の注入量 : Q=1リットル/日、
The flow sheet of the experiment is as shown in FIG. 1. The following experimental apparatus corresponding to this treatment process was assembled, and the fermentation digestion liquid was injected into the first-stage aerobic tank and the solid-liquid separation tank was used. Regarding the return of concentrated bacterial cells of, the semi-continuous type, injection into the aerobic tank / selection tank which is the first unit of hydrogen sulfide water, the mixed gas (hydrogen + carbon dioxide) to the hydrogen reduction tank (final selection tank) The circulation operated continuously. Air was continuously blown into the aerobic tanks in the first and second stages, but when the fermentation digestion liquid injection was interrupted, the air blowing rate was extremely narrowed and the dissolved oxygen concentration in the tank liquid was 1 mg. Care was taken not to exceed / l. Experimental equipment and experimental conditions * Conditions common to all treatment processes-Treatment water temperature: 30 ± 1 ° C, all experimental equipment was installed in a large constant temperature water tank and operated at the above temperature.・ Fermented digestive fluid injection volume: Q = 1 liter / day,

【0046】 *個々の実験装置及び実験条件 ★角型好気性硝化脱窒素工程: (好気槽2リットル/選択槽1リットル)× 2段、 ・槽容積=6Q=6リットル、 ・全槽容積に対するBOD容積負荷:0.45kg/m3 ・日、 ・全槽汚泥(菌体)に対するBOD汚泥負荷:0.045kg/kg・日、 ・全槽汚泥(菌体)に対するNH4 −N汚泥負荷(硝化速度): 0.028kg/kg・日、 ただし、槽内の汚泥濃度:10,000mg/l ★循環汚泥量 ・後段好気槽/前段好気槽への循環量:10Q=10リットル/日、 ・後段選択槽/前段選択槽への循環量:10Q=10リットル/日、* Individual experimental equipment and experimental conditions * Square type aerobic nitrification and denitrification process: (aerobic tank 2 liters / selective tank 1 liter) x 2 stages, tank volume = 6Q = 6 liters, total tank volume BOD volume load for: 0.45 kg / m 3 · day, BOD sludge load for all tank sludge (bacteria): 0.045 kg / kg · day, NH 4 -N sludge load for all tank sludge (bacteria) (Nitrification rate): 0.028 kg / kg-day, However, sludge concentration in the tank: 10,000 mg / l ★ Circulating sludge amount-Circulation amount to the second-stage aerobic tank / the first-stage aerobic tank: 10Q = 10 liters / Day: ・ Circulation amount to the latter-stage selection tank / the first-stage selection tank: 10Q = 10 liters / day,

【0047】 ★各槽での滞留時間 ・発酵消化液の好気性硝化脱窒素工程での滞留時間:6日、 ・各好気槽での滞留時間(循環量10リットルを含めて):4.36時間、 ・各選択槽での滞留時間(循環量10リットルを含めて):2.18時間、 ・全槽での滞留時間 (循環量10リットルを含めて):13時間、 ただし、返送汚泥量は無視した。 ★好気槽での曝気 ・小型ブロワーによる散気式攪拌連続曝気 ・溶存酸素濃度は溶存酸素計と連動して1mg/l以 下に自動制御 ★選択槽での攪拌 ・密閉型選択槽に通常のパドル型攪拌機を設置し、緩 慢に攪拌Retention time in each tank ・ Retention time of fermentation digestion liquid in aerobic nitrification and denitrification process: 6 days ・ Retention time in each aerobic tank (including circulation volume of 10 liters): 4. 36 hours, -Retention time in each selected tank (including circulation volume of 10 liters): 2.18 hours-Retention time in all tanks (including circulation volume of 10 liters): 13 hours, but returned sludge Ignored the amount. ★ Aeration in aerobic tank ・ Continuous aeration with diffuser stirring by a small blower ・ Dissolved oxygen concentration is automatically controlled to 1 mg / l or less in conjunction with dissolved oxygen meter ★ Agitation in selection tank ・ Normal for closed selection tank A paddle type stirrer is installed to gently stir

【0048】 ★水素還元槽(最終選択槽) ・角型密閉槽: 容積 1リットル、 ・混合ガス(H2 +CO2 )循環: ブロワーによる連続循環、 ★固液分離槽 重力式円形沈殿槽: 容積 1リットル、 濃縮汚泥濃度: 15,000〜18,000mg/l、 以上の関係を簡単に図示すると、図2の通りとなる。以
上の実験装置及び実験条件によって得られた水素発酵消
化液の好気性硝化脱窒素の検証実験の結果を表3に示す
(運転が定常状態に達してからの1ヵ月の平均値)。
★ Hydrogen reduction tank (final selection tank) ・ Square type closed tank: volume 1 liter ・ Mixed gas (H 2 + CO 2 ) circulation: continuous circulation by blower ★ Solid-liquid separation tank Gravity circular precipitation tank: volume 1 liter, concentrated sludge concentration: 15,000 to 18,000 mg / l, The above relationship is shown in a simplified manner in FIG. Table 3 shows the results of the verification experiment of aerobic nitrification and denitrification of the hydrogen fermentation digestion solution obtained by the above-described experimental apparatus and experimental conditions (average value for one month after the operation reached a steady state).

【0049】[0049]

【表3】 (注)*;単位はpH以外は全てmg/lで表示。 *;分析試料は全て遠心分離器の分離液。NO3 −Nの存在は無視で きる程度。[Table 3] (Note) *: All units are shown in mg / l except pH. *: All analytical samples are the separation liquid of the centrifuge. The extent the presence of NO 3 -N is that you can ignore.

【0050】水素発酵消化液の従属栄養性硝化脱窒素菌
による好気性脱窒素検証実験の結果を要約すると次の通
りである。 (1)多段の好気槽/選択槽プロセスにより、それぞれ
の混合培養液を前段の好気槽/嫌気槽に循環返送し、さ
らに最終段の選択槽で水素ガスによるNOx −Nの直接
還元を行い、(b)の運転条件により処理実験を行なっ
た結果、当初、自栄養性硝化菌と従属栄養性脱窒素菌に
よる不完全な硝化・脱窒素が進行するが、運転開始から
約1ヵ月を経過した時点で前記の自栄養性硝化菌と従属
栄養性脱窒素菌の増殖が顕著に抑制され、これに代わっ
て従属栄養性硝化脱窒素菌であるTsa菌が混合培養系
で次第に増殖し、最終的にTsa菌が完全な優占種とな
り、表2に示すように良好な硝化・脱窒素が行なわれ
た。
The results of the aerobic denitrification verification experiment by the heterotrophic nitrifying and denitrifying bacterium of the hydrogen fermentation digested liquid are summarized as follows. (1) by a multistage aerobic tank / selection bath process, circulates back to each of the mixed culture aerobic tank / anaerobic tank in front, yet the direct reduction of NO x -N with hydrogen gas at a selected vessel in the last stage As a result of carrying out the treatment experiment under the operating condition of (b), initially, incomplete nitrification and denitrification due to autotrophic nitrifying bacteria and heterotrophic denitrifying bacteria progressed, but about 1 month after the start of operation After the passage of time, the growth of the above-mentioned autotrophic nitrifying bacteria and heterotrophic denitrifying bacteria was remarkably suppressed, and instead, Tsa bacteria, which are heterotrophic nitrifying and denitrifying bacteria, gradually grew in a mixed culture system. Finally, the Tsa bacteria became a complete dominant species, and as shown in Table 2, good nitrification and denitrification were performed.

【0051】(2)この従属栄養性硝化脱窒素菌はチオ
スファエラ・パントトロファと推定された。この種の細
菌はアンモニアの酸化の最終形態が亜硝酸であり、水素
供与体の供給という観点から有利である。また、本発明
は、従来の硝化菌と脱窒素菌の共働作用による硝化脱窒
素法に対して、従属栄養性硝化脱窒素菌という一種の細
菌による従属栄養性硝化と好気性脱窒素を完結させるプ
ロセスであり、プロセスの単純化、運転管理の容易さ、
及び経済効果の観点から極めて優れた生物学的硝化脱窒
素法であると評価できる。 (3)最終選択槽での水素還元を含めて、好気性硝化脱
窒素工程における硝化、及び脱窒素機能は殆ど完全であ
り、最終放流水にはわずかに10mg/l以下のNH4
−Nが検出されたに過ぎなかった。
(2) This heterotrophic nitrifying and denitrifying bacterium was presumed to be Thiosphaera pantotropha. Bacteria of this type have the nitrite as the final form of ammonia oxidation, which is advantageous from the viewpoint of supplying a hydrogen donor. Further, the present invention completes heterotrophic nitrification and aerobic denitrification by a kind of bacteria called heterotrophic nitrifying and denitrifying bacteria, in contrast to the conventional nitrifying and denitrifying method by the synergistic action of nitrifying and denitrifying bacteria. Process, which simplifies the process, facilitates operation management,
In addition, it can be evaluated as an extremely excellent biological nitrification and denitrification method from the viewpoint of economic effect. (3) Nitrification and denitrification functions in the aerobic nitrification and denitrification process, including hydrogen reduction in the final selection tank, are almost complete, and the final discharged water contains only 10 mg / l or less NH 4
-N was only detected.

【0052】(4)表3に示されているように、本発明
プロセスでは予想以上にPO4 −Pが除去されるという
結果が得られた。その理由について解明していないが、
好気槽/選択槽(嫌気糖)の組合せによる環境変化が脱
りん菌の増殖を誘引したか、或いは、従属栄養性硝化脱
窒素菌が脱りん機能を獲得したのかも知れない。今後の
重要な検討課題である。 (5)最終工程の水素還元槽による混合ガス(H2 +C
2 )の循環により2段目の好気槽流出水中に残留して
いた亜硝酸性窒素は、水素を水素供与体としてほぼ完全
に脱窒素された。この水素ガスによる脱窒素工程は従属
栄養性硝化脱窒素菌と従属栄養性脱窒素菌との競合関係
において、従属栄養性硝化脱窒素菌に有利に作用したも
のと考えられる。 (6)水素還元工程で、し尿の水素発酵で生産された水
素が、従属栄養性硝化脱窒素菌の水素供与体として消費
されてもなお多量の水素が余剰エネルギー源として残
り、クリーン・エネルギーとして有利に利用することが
できる。
(4) As shown in Table 3, the process of the present invention resulted in unexpected removal of PO 4 -P. Although I have not clarified the reason,
It is possible that the environmental change caused by the combination of aerobic tank / selective tank (anaerobic sugar) induced the growth of dephosphorization bacteria, or that the heterotrophic nitrifying and denitrifying bacteria acquired the dephosphorization function. This is an important subject for future study. (5) Mixed gas (H 2 + C in the hydrogen reduction tank in the final step)
The nitrite nitrogen remaining in the second-stage aerobic tank effluent due to the circulation of O 2 ) was almost completely denitrified using hydrogen as a hydrogen donor. It is considered that this denitrification process using hydrogen gas favorably acted on the heterotrophic nitrifying and denitrifying bacteria in the competitive relationship between the heterotrophic nitrifying and denitrifying bacteria. (6) In the hydrogen reduction step, even if hydrogen produced by hydrogen fermentation of human waste is consumed as a hydrogen donor of heterotrophic nitrifying and denitrifying bacteria, a large amount of hydrogen remains as an excess energy source, and as clean energy. It can be used to advantage.

【0053】(c)好気混合液循環、及び選択混合液循
環の効果 図1に示した本発明の好気性硝化脱窒素工程で、上記の
好気槽混合液循環及び選択槽混合液循環が、本発明の主
役を演じている従属栄養性硝化脱窒素菌を各種の細菌類
が共生している混合培養系において、競合関係に打ち勝
って優占種となるための必須条件であるかを確認するた
めの実験を行なった。実験装置、及び実験条件は、両実
験は比較を厳密にし、客観性を持たせるために混合液循
環を除外した以外は全て前記(b)と同一とした。本実
験の結果を表4に要約した。
(C) Effects of aerobic mixed solution circulation and selective mixed solution circulation In the aerobic nitrification and denitrification process of the present invention shown in FIG. 1, the aerobic tank mixed solution circulation and selective tank mixed solution circulation described above are performed. , In a mixed culture system in which various bacteria coexist with the heterotrophic nitrifying and denitrifying bacterium that plays the main role of the present invention, it was confirmed whether it is an essential condition to overcome the competitive relationship and become the dominant species. The experiment for doing was done. The experimental apparatus and the experimental conditions were the same as those in (b) above except that the two experiments were rigorous in comparison and the circulation of the mixed solution was excluded in order to provide objectivity. The results of this experiment are summarized in Table 4.

【0054】[0054]

【表4】 (注)*;単位は、pH以外は全てmg/lで表示してある。[Table 4] (Note) *; All units are shown in mg / l except pH.

【0055】(c)の混合液循環の効果を確認するため
の実験結果を要約すると次の通りである。 (1)表4の実験結果から容易に理解できるように、本
発明から好気槽混合液循環、及び選択槽混合液循環を省
略すると、従属栄養性硝化脱窒素菌増殖する条件が具備
されず、混合培養系では自栄養性硝化菌と従属栄養性脱
窒素菌を主体とした混合培養系が構成され、これらの細
菌による硝化、脱窒素が行なわれる。 (2)然し、自栄養性硝化菌と従属栄養性脱窒素菌の増
殖も、主として自栄養性硝化菌のアンモニアの酸化によ
り混合培養液のpHが生物反応系の流れ方向にしたがっ
て低下し、そのために自栄養性硝化菌だけでなく、従属
栄養性脱窒素菌の増殖も著しく阻害され、硝化、脱窒素
とも不完全なものとなる。
The experimental results for confirming the effect of the mixed solution circulation of (c) are summarized as follows. (1) As can be easily understood from the experimental results in Table 4, if the aerobic tank mixed solution circulation and the selective tank mixed solution circulation are omitted from the present invention, the conditions for heterotrophic nitrifying and denitrifying bacteria to grow are not provided. In the mixed culture system, a mixed culture system mainly composed of autotrophic nitrifying bacteria and heterotrophic denitrifying bacteria is constructed, and nitrification and denitrification are performed by these bacteria. (2) However, as for the growth of autotrophic nitrifying bacteria and heterotrophic denitrifying bacteria, the pH of the mixed culture solution decreases along the flow direction of the biological reaction system, mainly due to the oxidation of ammonia of autotrophic nitrifying bacteria. Moreover, not only autotrophic nitrifying bacteria but also heterotrophic denitrifying bacteria are markedly inhibited in growth, resulting in incomplete nitrification and denitrification.

【0056】(3)不完全ながら自栄養性硝化菌が増殖
した証拠として、この方式での硝化形式は明らかに硝酸
型となっており、たとえ本方式が成立したとしても、従
属栄養性脱窒素菌が酸化窒素を還元するのに、より多量
の水素供与体を必要とするので、極めて不経済である。 (4)本方式による最終工程での水素還元は実質的に行
なわれず、データとして示していないが、水素還元工程
での水素の利用は無視できる程度であった。このこと
は、本方式では脱窒素菌として、不完全ではあるが従属
栄養性脱窒素菌が増殖している証拠である。従って、本
発明のし尿を潜在的エネルギー物質として水素を回収
し、かつ硝化・脱窒素をも同時的に完全に行なえる機能
を持ったプロセスに対して極めて不完全な処理方式であ
る。 (5)以上の実験結果より、本発明の好気槽、及び選択
槽からの混合培養液の循環は、従属栄養性硝化脱窒素菌
を優占種とするための必須条件であることが証明され
た。
(3) As evidence that the autotrophic nitrifying bacteria have grown incompletely, the nitrification form in this system is obviously the nitrate form. Even if this system is established, heterotrophic denitrification is performed. It is extremely uneconomical because the bacterium requires a larger amount of hydrogen donor to reduce nitric oxide. (4) Hydrogen reduction in the final step by this method was not substantially performed, and although not shown as data, the use of hydrogen in the hydrogen reduction step was negligible. This is evidence that incomplete but heterotrophic denitrifying bacteria are growing as denitrifying bacteria in this method. Therefore, this is an extremely incomplete treatment method for the process of the present invention, which has a function of recovering hydrogen by using human waste as a potential energy substance and capable of completely nitrifying and denitrifying simultaneously. (5) From the above experimental results, it was proved that the circulation of the mixed culture solution from the aerobic tank and the selective tank of the present invention is an essential condition for making the heterotrophic nitrifying and denitrifying bacteria dominant. Was done.

【0057】比較例1 低溶存酸素濃度における硝化
脱窒素実験 図1に示した本発明プロセスで選択槽を好気槽に転換
し、さらに最終選択槽で水素還元を行なわないプロセス
により、全槽を緩慢曝気して溶存酸素濃度が1mg/l
以下とし、かつ還元型硫黄を注入しての硝化脱窒素実験
を行なった。実験結果は特に記載しないが、混合培養液
のpHは流れ方向の末端部で4.8〜5.3となり、硝
化率は僅かに55〜60%程度、脱窒素率は20%以下
であり、自栄養性硝化菌、及び従属栄養性脱窒素菌とも
に増殖阻害を受けていることが観察された。当然、従属
栄養性硝化脱窒素菌の顕著な増殖も観察されなかった。
従属栄養性硝化脱窒素菌をこのような環境で増殖させる
には、少なくとも水素ガスによる酸化窒素の直接還元工
程を設けることが必須条件となると推測された。
Comparative Example 1 Nitrification and Denitrification Experiment at Low Dissolved Oxygen Concentration In the process of the present invention shown in FIG. 1, the selective tank was converted into an aerobic tank, and the final selective tank was not subjected to hydrogen reduction. Slowly aerated and dissolved oxygen concentration is 1 mg / l
A nitrification and denitrification experiment was carried out as described below and by injecting reduced sulfur. Although the experimental results are not particularly described, the pH of the mixed culture solution is 4.8 to 5.3 at the end portion in the flow direction, the nitrification rate is only about 55 to 60%, and the denitrification rate is 20% or less. It was observed that both autotrophic nitrifying bacteria and heterotrophic denitrifying bacteria suffered growth inhibition. Naturally, no significant growth of heterotrophic nitrifying and denitrifying bacteria was also observed.
It was speculated that it is essential to provide at least a direct reduction step of nitric oxide with hydrogen gas in order to grow heterotrophic nitrifying and denitrifying bacteria in such an environment.

【0058】実施例2 (a)従属栄養性硝化脱窒素菌チオスファエラ・パント
トロファ(Thiosphaera pantotropha) による多段式好気
槽/選択槽プロセスによるし尿の好気性硝化脱窒素実験 厚生省のし尿処理施設に関する構造指針のし尿汚濁負荷
に近似した比較的濃厚なし尿が得られる処理場を選定
し、これを供与試料としてし尿の好気性硝化脱窒素の実
験を行なった。供試し尿の理化学的性状は表5の通りで
ある。なお、本試料は変質を防止するために、実験期間
中5℃以下の冷蔵庫に保管した。
Example 2 (a) Aerobic nitrification and denitrification experiment of human excreta by multistage aerobic tank / selection tank process by heterotrophic nitrifying and denitrifying bacterium Thiosphaera pantotropha We selected a treatment plant that can obtain a relatively thick undiluted urine similar to the structure guideline, and conducted an aerobic nitrification and denitrification experiment of the human urine as a donor sample. Table 5 shows the physicochemical properties of the test urine. In addition, this sample was stored in a refrigerator at 5 ° C. or lower during the experimental period in order to prevent deterioration.

【0059】[0059]

【表5】 (注)*単位は、pH以外は全てmg/lで表示してある。 *供試し尿は、1mm目開きスクリーンでろ過した試料である。[Table 5] (Note) * All units are shown in mg / l except pH. * Test urine is a sample filtered through a 1 mm open screen.

【0060】本実施例では、図3に示した連続処理が可
能な2段の好気性硝化脱窒素槽と最終好気槽5′を連結
した5槽(2段×好気槽/選択槽+好気槽)より構成さ
れた装置を製作し、最終好気槽は広義の仕上槽として使
用した。これに菌体の濃縮・分離を目的とした重力式沈
殿槽(固液分離槽)、さらに濃縮菌体返送経路を設け、
連続処理による好気性硝化脱窒素実験を行なった。ま
た、好気槽、選択槽、最終好気槽の混合培養液を循環返
送するために、塩化ビニール製の配管をそれぞれに取り
付けた。選択槽は緩慢な攪拌を行なうために攪拌機を設
け、さらに覆蓋を設けて混合培養液が直接大気と接触す
るのを防止した。実験のフローシートは図3の通りであ
るが、この処理工程に対応する下記の実験装置を組み上
げ、無希釈し尿の一段目の好気槽への注入、及び固液分
離槽からの濃縮菌体の返送に関しては間歇注入方式と
し、その他の液体、及び気体は全て連続注入、送気方式
とした(選択槽の攪拌は連続方式)。各好気槽への送気
は、前述の通り連続的に空気を吹き込んだが、無希釈し
尿の注入が中断されているときには、空気吹き込み率を
極端に絞り、槽内液の溶存酸素濃度が1mg/l以上と
ならないように配慮した。
In the present embodiment, 5 tanks (2 steps x aerobic tank / selection tank + which are connected to a continuous aerobic nitrification denitrification tank and a final aerobic tank 5'shown in FIG. 3 are connected. An aerobic tank was constructed, and the final aerobic tank was used as a finishing tank in a broad sense. A gravity type sedimentation tank (solid-liquid separation tank) for the purpose of concentrating / separating bacterial cells, and a concentrated bacterial cell return route are provided.
An aerobic nitrification and denitrification experiment was conducted by continuous treatment. Further, in order to circulate and return the mixed culture solution in the aerobic tank, the selective tank, and the final aerobic tank, a pipe made of vinyl chloride was attached to each. The selection tank was provided with a stirrer for performing slow stirring, and was further provided with a cover to prevent the mixed culture solution from directly contacting the atmosphere. The flow sheet of the experiment is as shown in Fig. 3, but the following experimental equipment corresponding to this treatment process was assembled, undiluted urine was injected into the first-stage aerobic tank, and concentrated bacterial cells from the solid-liquid separation tank were assembled. Regarding the return of the above, an intermittent injection method was used, and all other liquids and gases were continuously injected and an air supply method (stirring in the selective tank was a continuous method). Air was continuously blown into each aerobic tank as described above. However, when undiluted and urine infusion was interrupted, the air blowing rate was extremely narrowed and the dissolved oxygen concentration in the tank liquid was 1 mg. Care was taken not to exceed 1 / l.

【0061】実験装置、及び実験条件 *全体の処理工程に共通の条件 ・処理水温: 30±1℃、 実験装置を全て大型の恒温水槽に設置し、上記の温度で
運転した。 ・無希釈し尿注入量(処理量): Q=1リットル/
日、 *個々の実験装置及び実験条件 ★角型好気性硝化脱窒素工程: (好気槽2リットル/選択槽1リットル)×2段)+最終好気槽2リットル ・総容積: 7.5Q=7.5リットル、 ・総容積に対するBOD負荷: 約1.3kg/m3 ・日、 ・全槽汚泥に対するBOD汚泥負荷: 約0.1kg/kg・日、 ・全槽汚泥に対するNH4 −N汚泥負荷: 約0.038kg/kg・日、 ただし、槽内の汚泥濃度: 13,000mg/l、
Experimental apparatus and experimental conditions * Conditions common to all treatment steps: Treated water temperature: 30 ± 1 ° C. All experimental apparatuses were installed in a large-sized constant temperature water tank and operated at the above temperature.・ Undiluted urine injection volume (processing volume): Q = 1 liter /
Day, * Individual experimental equipment and experimental conditions * Square aerobic nitrification and denitrification process: (aerobic tank 2 liters / selective tank 1 liter) x 2 stages) + final aerobic tank 2 liters ・ Total volume: 7.5Q = 7.5 liters, -BOD load for the total volume: about 1.3 kg / m 3 · day, -BOD sludge load for all tank sludge: about 0.1 kg / kg-day, NH 4 -N for all tank sludge Sludge load: Approximately 0.038 kg / kg-day, but sludge concentration in the tank: 13,000 mg / l,

【0062】 ★循環汚泥量 ・後段好気槽/前段好気槽への循環量: 15Q=15リットル/日、 ・最終好気槽/前段好気槽への循環量: 5Q=5リットル/日、 ・後段選択槽/前段選択槽への循環量: 15Q=15リットル/日、 ★各槽での滞留時間(各好気槽、選択槽の一槽単位での滞留時間・・計算値) ・無希釈し尿の好気性硝化脱窒素工程での滞留時間: 7.5日、 ・好気槽3での滞留時間: 2.28時間、 ・好気槽5での滞留時間: 2.28時間、 ・最終好気槽5での滞留時間: 1.85時間、 ・各選択槽での滞留時間: 1.5時間、 ただし、返送汚泥量は無視した。* Circulation sludge amount-Circulation amount to the rear aerobic tank / pre-stage aerobic tank: 15Q = 15 liters / day-Circulation amount to the final aerobic tank / pre-stage aerobic tank: 5Q = 5 liters / day , ・ Circulation amount to the latter-stage selection tank / the first-stage selection tank: 15Q = 15 liters / day, ★ Dwell time in each tank (retention time in each aerobic tank, one tank in the selected tank ・ ・ Calculated value) ・Retention time of undiluted urine in aerobic nitrification and denitrification step: 7.5 days, Retention time in aerobic tank 3: 2.28 hours, Retention time in aerobic tank 5: 2.28 hours, -Retention time in the final aerobic tank 5: 1.85 hours-Retention time in each selection tank: 1.5 hours However, the amount of returned sludge was ignored.

【0063】 ★好気槽での曝気 ・小型ブロワーによる散気攪拌式曝気、 ・溶存酸素濃度は溶存酸素濃度計と運転して1mg/l 以下に自動制御、 ★固液分離槽 ・重力式円形沈殿槽、 ・容積: 2リットル、 ・濃縮汚泥濃度:15,000〜18,000mg/l、 以上の関係を簡単に図示すると、図4の通りとなる。図
4において、各槽の滞留時間は、それぞれの混合培養液
の循環量に対する見掛けの滞留時間である。以上の実験
装置、及び実験条件によって得られた無希釈し尿の好気
性硝化脱窒素の検証実験の結果を表6に示す(運転が定
常状態に達してからの1ヵ月の平均値)。
★ Aeration in aerobic tank ・ Aeration and stirring type aeration with a small blower ・ Dissolved oxygen concentration is automatically controlled to 1 mg / l or less by operating with dissolved oxygen concentration meter ★ Solid-liquid separation tank ・ Gravity type circular Settling tank ・ Volume: 2 liters ・ Concentrated sludge concentration: 15,000 to 18,000 mg / l The above relationship is simply illustrated in Fig. 4. In FIG. 4, the residence time in each tank is an apparent residence time with respect to the circulation amount of each mixed culture solution. The results of the verification experiment of aerobic nitrification and denitrification of undiluted urine obtained by the above experimental apparatus and experimental conditions are shown in Table 6 (average value for one month after the operation reached a steady state).

【0064】[0064]

【表6】 (注)*;単位はpH以外は全てmg/lで表示した。 *;分析試料は、全て遠心分離器の分離液(1,500G,10分間)。 *;NO3 −Nの存在は、全ての試料で無視できる程度の濃度。[Table 6] (Note) *: All units other than pH are shown in mg / l. *: All analytical samples are the separation liquid of the centrifuge (1,500 G, 10 minutes). *; Presence of NO 3 -N, the concentration negligible in all samples.

【0065】無希釈し尿の従属栄養性硝化脱窒素菌によ
る好気性硝化脱窒素検証実験の結果を要約すると次の通
りである。 (1)2段の好気槽/選択槽及び最終好気槽を付加した
プロセスにより、それぞれの混合培養液を前段の好気槽
/選択槽に返送し、(a)の実験条件により硝化脱窒素
の処理検証実験を行なった結果、当初は、自栄養性硝化
菌、及び従属栄養性脱窒素菌による不完全な硝化脱窒素
が進行するが、運転開始から約1ヵ月強を経過した時点
で混合培養液中の自栄養性硝化菌及び従属栄養性脱窒素
菌は本発明プロセスにより次第に淘汰され、これに代わ
って従属栄養性硝化脱窒素菌であるTsa菌が混合培養
系で次第に増殖し、菌数が増加して最終的にはTsa菌
が完全な優占種となり、表6に示すような良好な好気性
硝化・脱窒素が行なわれた。
The results of the aerobic nitrification and denitrification verification experiment using undiluted urine heterotrophic nitrification and denitrification bacteria are summarized as follows. (1) By a process in which a two-stage aerobic tank / selection tank and a final aerobic tank are added, each mixed culture solution is returned to the preceding aerobic tank / selection tank, and nitrification and denitrification are performed according to the experimental conditions of (a). As a result of conducting a nitrogen treatment verification experiment, initially, incomplete nitrification and denitrification due to autotrophic nitrifying bacteria and heterotrophic denitrifying bacteria progressed, but at the time when more than one month had passed since the start of operation. The autotrophic nitrifying bacterium and the heterotrophic denitrifying bacterium in the mixed culture solution are gradually culled by the process of the present invention, and instead, the heterotrophic nitrifying and denitrifying bacterium Tsa is gradually grown in the mixed culture system, Eventually, the number of bacteria increased and Tsa bacteria became a complete dominant species, and good aerobic nitrification and denitrification as shown in Table 6 were performed.

【0066】(2)この従属栄養性硝化脱窒素菌は、そ
の生物学的性状からチオスファエラ・パントトロファと
推定された。この種の細菌はアンモニア酸化の最終形態
が亜硝酸であり、水素供与体の供給という観点から有利
である。また、本発明は、従来の硝化菌と脱窒素菌の共
働作用による硝化脱窒素法に対して、従属栄養性硝化脱
窒素菌という一属の細菌により従属栄養性硝化と好気性
脱窒素を完結させるプロセスであり、処理プロセスの単
純化、運転管理の容易さ、及び経済効果の観点から極め
てすぐれた生物学的硝化脱窒素法である。 (3)最終酸化槽の追加により、従属栄養性硝化脱窒素
菌は、より確実に優占種となり、硝化・脱窒素機能はほ
とんど完璧であり、最終放流水には平均値として僅かに
3mg/l程度のNH4 −Nが検出されたに過ぎず、ま
たNOx −Nも同程度の濃度であった。
(2) This heterotrophic nitrifying and denitrifying bacterium was presumed to be Thiosphaera pantotropha based on its biological properties. This type of bacterium has the final form of ammonia oxidation as nitrite, which is advantageous from the viewpoint of supplying a hydrogen donor. Further, the present invention, in contrast to the conventional nitrifying and denitrifying method by the synergistic action of nitrifying bacteria and denitrifying bacteria, heterotrophic nitrifying and aerobic denitrifying by a group of bacteria called heterotrophic nitrifying and denitrifying bacteria. This is a biological nitrification denitrification method that is a process that is completed and is extremely excellent in terms of simplification of the treatment process, ease of operation management, and economic effects. (3) With the addition of the final oxidization tank, the heterotrophic nitrifying and denitrifying bacteria are more surely the dominant species, the nitrifying and denitrifying functions are almost perfect, and the final discharged water has an average value of only 3 mg / Only about 1 NH 4 -N was detected, and NO x -N was at a similar concentration.

【0067】(4)表6に示されているように、本発明
プロセスでは予想以上にPO4 −Pが除去された。その
理由については解明していないが、好気槽/選択槽(嫌
気槽)の組合せによる環境変化が脱りん菌の増殖を誘発
したか、或いは従属栄養性硝化脱窒素菌が脱りん機能を
獲得したかの何れかであろうと考えられる。今後の重要
な研究課題である。 (5)前記したように、し尿のように濃厚な有機性排水
の硝化脱窒素処理でも、好気性硝化脱窒素工程に最終好
気槽を設けることにより、硝化脱窒素機能だけでなく、
この槽の設置と好気性培養液の循環・返送により従属栄
養性硝化脱窒素菌の混合培養系における他の細菌との競
合関係は一段と有利になり、該菌が確実に優占種となる
ことが確認された。
(4) As shown in Table 6, PO 4 -P was removed more than expected in the process of the present invention. Although the reason for this has not been elucidated, whether the environment change due to the combination of the aerobic tank / selective tank (anaerobic tank) induced the growth of the dephosphorization bacteria, or the heterotrophic nitrifying and denitrifying bacteria acquired the dephosphorization function. It is thought that either of them did. This is an important future research topic. (5) As described above, even in the nitrifying and denitrifying treatment of a rich organic wastewater such as human waste, by providing the final aerobic tank in the aerobic nitrifying and denitrifying step, not only the nitrifying and denitrifying function,
By installing this tank and circulating / returning the aerobic culture solution, the competitive relationship with other bacteria in the mixed culture system of heterotrophic nitrifying and denitrifying bacteria becomes more advantageous, and the bacteria will surely become the dominant species. Was confirmed.

【0068】(b)後段選択槽から前段選択槽への混合
培養液循環返送の効果の確認実験。 図3に示した本発明の好気性硝化脱窒素工程で、選択槽
混合培養液の前段選択槽への循環が、本発明の主役を演
じている従属栄養性硝化脱窒素菌を、各種の自栄養性硝
化菌、及び従属栄養性脱窒素菌が共存している混合培養
系で、競合関係に打ち勝って優占種となるための必須条
件であるかを確認するための実験を行なった。実験装置
及び実験条件は、実施例2の(a)の実験との比較を厳
密にし、客観性を持たせるために、選択槽培養混合液の
循環を省略した以外は全て実施例2の(a)と同一とし
た。本実験の結果と実施例2の(a)との結果の比較を
表7に示した。
(B) Experiment for confirming the effect of circulating and returning the mixed culture solution from the latter-stage selection tank to the former-stage selection tank. In the aerobic nitrification and denitrification process of the present invention shown in FIG. 3, the circulation of the mixed culture solution in the selection tank to the pre-selection tank is used to produce heterotrophic nitrifying and denitrifying bacteria which play the main role of the present invention. An experiment was conducted to confirm whether or not it is an essential condition for overcoming a competitive relationship and becoming a dominant species in a mixed culture system in which eutrophic nitrifying bacteria and heterotrophic denitrifying bacteria coexist. Regarding the experimental apparatus and the experimental conditions, in order to make the comparison with the experiment of (a) of Example 2 strict and to have objectivity, the circulation of the selective tank culture mixed solution was omitted, and ). Table 7 shows a comparison between the results of this experiment and the results of Example 2 (a).

【0069】[0069]

【表7】 (注)注記は表6と同じ。[Table 7] (Note) Notes are the same as in Table 6.

【0070】実施例2の(b)の選択槽混合培養液循環
の効果を確認するための実験結果を要約すると次の通り
である。 (1)表7の実験結果から容易に理解できるように、本
発明プロセスの操作から好気槽混合培養液の循環は従来
通りとし、選択槽混合培養液の循環返送を省略しても、
硝化脱窒素機能は実施例2の(a)よりも若干は低下す
るが実質的に無視できる程度であり、本実験の対象とし
た無希釈し尿の従属栄養性硝化脱窒素菌による硝化脱窒
素はほぼ完全に達成された。 (2)このことは、実施例2の(b)のプロセスを適用
しても、混合培養系における従属栄養性硝化脱窒素菌、
自栄養性硝化菌、及び従属栄養性脱窒素菌の競合関係に
おいて、選択槽混合培養液の前段への循環が省略されて
も、なお従属栄養性硝化脱窒素菌が優占種となる環境が
残留保持されていることを示している。
The experimental results for confirming the effect of the circulation of the mixed culture solution in the selective tank of Example 2 (b) are summarized as follows. (1) As can be easily understood from the experimental results of Table 7, from the operation of the process of the present invention, the circulation of the aerobic tank mixed culture solution is the same as the conventional one, and even if the circulation and return of the selective tank mixed culture solution is omitted,
Although the nitrifying and denitrifying function is slightly lower than that in (a) of Example 2, it is practically negligible, and the nitrifying and denitrifying bacterium by the non-diluted urine heterotrophic nitrifying and denitrifying bacterium used in this experiment is Almost completely achieved. (2) This means that even if the process of (b) of Example 2 is applied, heterotrophic nitrifying and denitrifying bacteria in a mixed culture system,
In the competitive relationship between autotrophic nitrifying bacteria and heterotrophic denitrifying bacteria, even if the circulation of the selective tank mixed culture solution to the previous stage is omitted, there is still an environment where heterotrophic nitrifying and denitrifying bacteria dominate. It indicates that the residue is retained.

【0071】その理由については解明していないが、後
段の好気槽及び選択槽になお残留している自栄養性硝化
菌及び従属栄養性脱窒素菌は後段好気槽から前段好気槽
に循環される混合培養液によって最前部の好気槽に移送
され、多段の好気槽/選択槽によって構成されている好
気性硝化脱窒素工程を流下する過程で、繰り返し好気槽
/選択槽の循環に曝され、円滑な増殖が阻害されるため
であると考えられる。この実験結果から、有機性廃水の
種類(BOD,NH4 −N,硫化物,低級脂肪酸などの
濃度)によっては、好気槽からの混合培養液の循環は選
択槽からの混合培養液の効果をある程度具備していると
判断される。ただし、好気槽の混合培養液の前段への循
環返送は、好気性硝化脱窒素工程への流入水濃度の希
釈、及び好気槽/選択槽の異質の環境条件に繰り返しに
よる細菌の淘汰という観点から必須条件であり、省略す
ることはできない。
Although the reason for this has not been clarified, the autotrophic nitrifying bacteria and heterotrophic denitrifying bacteria still remaining in the aerobic tank and the selective tank in the latter stage are transferred from the latter aerobic tank to the former aerobic tank. It is transferred to the aerobic tank at the forefront by the mixed culture circulated, and is repeatedly fed to the aerobic tank / selective tank in the process of flowing down the aerobic nitrification and denitrification process composed of a multi-stage aerobic tank / selective tank. It is considered that this is because it is exposed to the circulation and hinders smooth growth. From the results of this experiment, depending on the type of organic wastewater (concentration of BOD, NH 4 —N, sulfide, lower fatty acid, etc.), circulation of the mixed culture solution from the aerobic tank is an effect of the mixed culture solution from the selection tank. It is judged that it possesses to some extent. However, the circulation and return of the mixed culture solution from the aerobic tank to the previous stage is called the selection of bacteria due to the dilution of the concentration of influent water into the aerobic nitrification and denitrification process and the repeated environmental conditions of the aerobic tank / selective tank. It is an essential condition from the viewpoint and cannot be omitted.

【0072】(c)好気槽混合液循環、選択槽混合液循
環の必要性の確認。 図3に示した本発明の好気性硝化脱窒素工程で、それぞ
れの混合培養液の循環が、本発明の主役を演じている従
属栄養性硝化脱窒素菌を、他の多くの細菌類が共存して
いる混合培養液で優占種とするための必須条件であるか
を確認するための実験を行なった。実験装置及び実験条
件は、実施例2の(a)と本実験の比較を厳密に行い、
実験結果に客観性を持たせるために、混合培養液の循環
を省略した以外は実施例2の(a)と全て同一とした。
本実験の結果を表8に要約した。
(C) Confirmation of necessity of circulation of aerobic tank mixed liquid and selection tank mixed liquid. In the aerobic nitrifying and denitrifying step of the present invention shown in FIG. 3, the circulation of each mixed culture solution causes the heterotrophic nitrifying and denitrifying bacteria that play the main role of the present invention to coexist with many other bacteria. Experiments were carried out to confirm whether it is an essential condition for making the dominant species in the mixed culture solution. Regarding the experimental apparatus and experimental conditions, the comparison between (a) of Example 2 and this experiment was carried out strictly,
In order to make the experimental results objective, the procedure was the same as in Example 2 (a) except that the circulation of the mixed culture solution was omitted.
The results of this experiment are summarized in Table 8.

【0073】[0073]

【表8】 (注)注記は表6と同じ。[Table 8] (Note) Notes are the same as in Table 6.

【0074】実施例2の(c)の混合培養液循環の効果
確認のための実験結果を要約すると次の通りである。 (1)表8の実験結果から容易に理解できるように、本
発明から混合槽混合液循環、及び選択槽混合液循環操作
を省略すると、従属栄養性硝化脱窒素菌が優占的に増殖
する条件が消失し、混合培養系では自栄養性硝化菌と従
属栄養性脱窒素菌を主体とした混合培養系が構成され、
これらの細菌による硝化・脱窒素が行なわれる。 (2)然し、自栄養性硝化菌と従属栄養性脱窒素菌の増
殖も、主として自栄養性硝化菌のアンモニア酸化により
混合培養液のpHが生物反応系の流れの方向に従って低
下し、かつ、混合培養液の溶存酸素濃度が極端に低く制
御されているので自栄養性硝化菌だけでなく、従属栄養
性脱窒素菌の増殖も同時に阻害され、硝化及び脱窒素と
も不完全なものとなる。 (3)不完全ながら自栄養性硝化菌が増殖した証拠とし
て、混合培養液循環を省略した方式での硝化形式は硝酸
型となっており、たとえ本方式が成立したにしても、従
属栄養性脱窒素菌が硝酸塩を還元するのに、より多量の
水素供与体が必要となり、極めて不経済である。 (4)以上の実験結果より、本発明の好気槽、選択槽か
らの混合培養液の循環は、従属栄養性硝化脱窒素菌を優
占種とするための必須条件であることが証明された。
The experimental results for confirming the effect of the mixed culture solution circulation of (c) of Example 2 are summarized as follows. (1) As can be easily understood from the experimental results in Table 8, if the mixing tank mixed solution circulation operation and the selective tank mixed solution circulation operation are omitted from the present invention, heterotrophic nitrifying denitrifying bacteria proliferate predominantly. The conditions disappeared, and a mixed culture system composed mainly of autotrophic nitrifying bacteria and heterotrophic denitrifying bacteria was constructed.
Nitrification and denitrification are performed by these bacteria. (2) However, in the growth of autotrophic nitrifying bacteria and heterotrophic denitrifying bacteria, the pH of the mixed culture solution decreases mainly in accordance with the ammonia oxidation of the autotrophic nitrifying bacteria, and Since the dissolved oxygen concentration of the mixed culture is controlled to be extremely low, the growth of not only autotrophic nitrifying bacteria but also heterotrophic denitrifying bacteria is simultaneously inhibited, resulting in incomplete nitrification and denitrification. (3) As evidence that incomplete but autotrophic nitrifying bacteria proliferated, the nitrification form in the system omitting the mixed culture circulation was nitric acid type, and even if this system was established, heterotrophic It is extremely uneconomical because a larger amount of hydrogen donor is required for the denitrifying bacteria to reduce nitrate. (4) From the above experimental results, it was proved that the circulation of the mixed culture solution from the aerobic tank and the selective tank of the present invention is an essential condition for making heterotrophic nitrifying and denitrifying bacteria the dominant species. It was

【0075】[0075]

【発明の効果】本発明は、詳述したように、従来技術と
は全く異なる視点、思想からの発想による革新的な技術
であり、次のような作用効果を有する。 (1)し尿等の汚水や汚泥は、富栄養化原因物質である
窒素、リンだけでなく、通常、硫酸塩、或いは還元型硫
黄をも含むことに着目し、従属栄養性水素生産菌と従属
栄養性の好気性硝化脱窒素菌の共働作用により、クリー
ン・エネルギーである水素を生産するだけでなく、還元
型硫黄及び水素ガスそのものを水素供与体として窒素を
も同時に除去できる極めて優れた処理技術であり、閉鎖
系水域、或いは停滞水域の富栄養化防止に貢献できる。 (2)高濃度の汚濁源、例えばし尿そのものを汚濁物質
としてのみ評価せず、高度の潜在的ポテンシアルを有す
る資源として評価し、し尿を基質として生物学的に水素
を生産し、さらに窒素をも除去できる、生産と分解の両
機能を具備した革新的な微生物利用技術である。
As described in detail above, the present invention is an innovative technology based on an idea from a viewpoint and an idea which are completely different from those of the prior art, and has the following operational effects. (1) Focusing on the fact that sewage and sludge such as human waste contain not only nitrogen and phosphorus that are eutrophication-causing substances, but also usually sulfates or reduced sulfur. An extremely excellent treatment that not only produces hydrogen, which is clean energy, but also removes nitrogen by using reduced sulfur and hydrogen gas itself as hydrogen donors at the same time by the synergistic action of nutritional aerobic nitrifying and denitrifying bacteria. It is a technology and can contribute to the prevention of eutrophication in closed water areas or stagnant water areas. (2) A high-concentration pollution source, such as human waste itself, is not evaluated only as a pollutant, but is evaluated as a resource with a high potential potential, and human waste is used as a substrate to biologically produce hydrogen and also nitrogen. It is an innovative microbial utilization technology that has both production and decomposition functions that can be removed.

【0076】(3)従来の生物学的硝化脱窒素法が、プ
ロセス内で機能的に全く異質の硝化菌・脱窒素菌を増殖
させる必要性から複雑な処理工程を有するのに対して、
本発明の技術は、好気性硝化脱窒素工程において両機能
を有する従属栄養性硝化脱窒素菌を混合培養系で優占種
として増殖せしめ、一種属の細菌だけで硝化脱窒素を行
なうので、プロセス構成が極めて単純であり、高度の運
転技術を必要としない。 (4)本発明では、脱窒素の水素供与体を補完するため
に、水素発酵槽で生産された水素の一部を分岐、使用す
るが、その必要量は水素生産量の僅かに1/10前後で
あり、エネルギー源として十分に利用に耐える水素生産
量を有する。 (5)本発明技術による最終処理水は、リン以外の汚濁
物質に関しては、そのまま系外に放流しても、公共水
域、水系に対して打撃を与えることはない。通常、し尿
処理では、物理化学的手段・方法により、リン、及び色
度成分を除去しているので、本発明の処理水も常法にし
たがってリンを除去すればよい。
(3) In contrast to the conventional biological nitrification / denitrification method, which has a complicated treatment step because it is necessary to grow nitrifying and denitrifying bacteria which are functionally completely different in the process.
The technique of the present invention is a heterotrophic nitrifying and denitrifying bacterium having both functions in the aerobic nitrifying and denitrifying step, which is proliferated as a dominant species in a mixed culture system, and nitrifying and denitrifying is performed only by a genus of bacteria. The configuration is extremely simple and does not require high driving skill. (4) In the present invention, in order to supplement the hydrogen donor for denitrification, a part of the hydrogen produced in the hydrogen fermentation tank is branched and used, but the required amount is only 1/10 of the hydrogen production amount. Before and after, it has enough hydrogen production capacity to be used as an energy source. (5) With regard to pollutants other than phosphorus, the final treated water according to the technique of the present invention does not damage public water bodies and water systems even if it is directly discharged to the outside of the system. Usually, in the human waste treatment, phosphorus and chromaticity components are removed by physicochemical means / method, so that the treated water of the present invention may also be removed in accordance with a conventional method.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の好気性硝化脱窒素法の一例を示す処理
系統図。
FIG. 1 is a processing system diagram showing an example of an aerobic nitrification denitrification method of the present invention.

【図2】実施例1の運転条件を示す説明図。FIG. 2 is an explanatory diagram showing operating conditions of the first embodiment.

【図3】本発明の好気性硝化脱窒素法の他の例を示す処
理系統図。
FIG. 3 is a processing system diagram showing another example of the aerobic nitrification denitrification method of the present invention.

【図4】実施例2の運転条件を示す説明図。FIG. 4 is an explanatory diagram showing operating conditions of the second embodiment.

【符号の説明】[Explanation of symbols]

1:含硫・含アンモニア廃水、2:水素発酵槽、3、
5、5′:好気槽、4、6:選択槽、7:固液分離、
8:処理水、9:発生ガス、10:水洗脱硫器、11:
硫化水素水、12:H2 +CO2 、13:ガス供給管、
14、18:ブロワー、15:余剰水素、16:好気混
合液循環、17:選択混合液循環、19:返送汚泥、2
0:余剰汚泥、
1: Sulfur-containing / ammonia-containing wastewater, 2: Hydrogen fermentation tank, 3,
5, 5 ': Aerobic tank, 4, 6: Selection tank, 7: Solid-liquid separation,
8: Treated water, 9: Generated gas, 10: Washing desulfurizer, 11:
Hydrogen sulfide water, 12: H 2 + CO 2 , 13: gas supply pipe,
14, 18: Blower, 15: Excess hydrogen, 16: Aerobic mixture circulation, 17: Selective mixture circulation, 19: Return sludge, 2
0: excess sludge,

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 還元型硫黄を含む有機性汚水又は汚泥を
生物学的に好気性硝化脱窒素する方法において、好気工
程と嫌気工程を交互に多段配置し、硫黄酸化細菌に属す
る従属栄養硝化脱窒素菌の優占下にある前記各工程に、
順次有機性汚水又は汚泥を通し硝化及び脱窒素を行うこ
とを特徴とする好気性硝化脱窒素法。
1. A method for biologically aerobic nitrifying and denitrifying organic sewage or sludge containing reduced sulfur, wherein an aerobic process and an anaerobic process are alternately arranged in multiple stages, and heterotrophic nitrification belonging to a sulfur-oxidizing bacterium is carried out. In each of the above steps under the control of denitrifying bacteria,
An aerobic nitrification and denitrification method characterized by performing nitrification and denitrification through organic sewage or sludge sequentially.
【請求項2】 前記多段配置した各工程において、後段
に配置された好気工程からより前段に配置された好気工
程へ、及び/又は後段に配置された嫌気工程からより前
段に配置された嫌気工程へと各々の工程内液を循環返送
することを特徴とする請求項1記載の好気性硝化脱窒素
法。
2. In each of the processes arranged in multiple stages, the aerobic process arranged in the latter stage to the aerobic process arranged in the former stage and / or the anaerobic process arranged in the latter stage is arranged in the former stage. The aerobic nitrification denitrification method according to claim 1, wherein the liquid in each process is circulated back to the anaerobic process.
【請求項3】 前記多段配置した各工程において、最終
段階に好気工程を配置し、該工程からの流出水を前段の
全ての好気工程に循環返送することを特徴とする請求項
1又は2記載の好気性硝化脱窒素法。
3. The aerobic process is arranged at the final stage in each of the multi-stage processes, and the effluent water from the process is circulated back to all the aerobic processes at the preceding stage. 2. The aerobic nitrification denitrification method described in 2.
【請求項4】 有機性汚水又は汚泥を生物学的に好気性
硝化脱窒素する方法において、次の(a)及び(b)の
工程を行うことを特徴とする好気性硝化脱窒素法。 (a)有機性汚水又は汚泥に水素生産菌及び硫酸塩還元
菌を接触させる水素発酵工程。 (b)好気工程と嫌気工程を交互に多段配置し、硫黄酸
化細菌に属する従属栄養硝化脱窒素菌の優占下にある前
記好気・嫌気工程に、順次(a)工程の還元型硫黄を含
む流出液を通し硝化及び脱窒素を行う硝化脱窒素工程。
4. A method for biologically aerobic nitrifying and denitrifying organic sewage or sludge, which comprises performing the following steps (a) and (b). (A) A hydrogen fermentation step of contacting hydrogen-producing bacteria and sulfate-reducing bacteria with organic wastewater or sludge. (B) The reduced sulfur of step (a) is sequentially added to the aerobic / anaerobic step in which heterotrophic nitrifying and denitrifying bacteria belonging to a sulfur-oxidizing bacterium are arranged in multiple stages by alternately arranging aerobic and anaerobic steps. Nitrification and denitrification step of performing nitrification and denitrification through the effluent containing
【請求項5】 前記硝化脱窒素工程(b)の後に、次の
(c)の工程を行うことを特徴とする請求項4記載の好
気性硝化脱窒素法。 (c)、(b)工程で少なくとも硝化の進行した処理液
に水素含有気体を供給して、該処理液中に残存する窒素
酸化物を完全に脱窒素する水素還元工程。
5. The aerobic nitrification and denitrification method according to claim 4, wherein the following step (c) is performed after the nitrification and denitrification step (b). A hydrogen reduction step of supplying a hydrogen-containing gas to at least the nitrification-processed treatment liquid in steps (c) and (b) to completely denitrify the nitrogen oxides remaining in the treatment liquid.
【請求項6】 前記水素発酵工程(a)では、該工程か
ら発生するガスを水洗し、この還元型硫黄を含む水洗排
液を硝化脱窒素工程(b)に導入することを特徴とする
請求項4又は5記載の好気性硝化脱窒素法。
6. The hydrogen fermentation step (a) is characterized in that the gas generated from the step is washed with water, and this washing effluent containing reduced sulfur is introduced into the nitrification denitrification step (b). Item 4. The aerobic nitrification denitrification method according to Item 4 or 5.
【請求項7】 前記硝化脱窒素工程(b)において、後
段に配置された好気工程からより前段に配置された好気
工程へ、及び/又は後段に配置された嫌気工程からより
前段に配置された嫌気工程へと各々の工程内液を循環返
送することを特徴とする請求項4、5又は6記載の好気
性硝化脱窒素法。
7. In the nitrification and denitrification step (b), an aerobic step arranged in a subsequent stage is changed to an aerobic step arranged in a preceding stage and / or an anaerobic step arranged in a succeeding stage is arranged earlier. The aerobic nitrification denitrification method according to claim 4, 5 or 6, wherein the liquid in each step is circulated and returned to the anaerobic step performed.
【請求項8】 前記水素発酵工程(a)と硝化脱窒素工
程(b)との間で固液分離を行うことを特徴とする請求
項4〜7のいずれか1項記載の好気性硝化脱窒素法。
8. The aerobic nitrification denitrification according to claim 4, wherein solid-liquid separation is performed between the hydrogen fermentation step (a) and the nitrification denitrification step (b). Nitrogen method.
JP33355594A 1994-12-16 1994-12-16 Aerobic nitrating denitrification process Pending JPH08168796A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33355594A JPH08168796A (en) 1994-12-16 1994-12-16 Aerobic nitrating denitrification process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33355594A JPH08168796A (en) 1994-12-16 1994-12-16 Aerobic nitrating denitrification process

Publications (1)

Publication Number Publication Date
JPH08168796A true JPH08168796A (en) 1996-07-02

Family

ID=18267356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33355594A Pending JPH08168796A (en) 1994-12-16 1994-12-16 Aerobic nitrating denitrification process

Country Status (1)

Country Link
JP (1) JPH08168796A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010533572A (en) * 2007-08-08 2010-10-28 彭光浩 Method for removing carbon and nitrogen contaminants in contaminated water using heterotrophic ammonia oxidizing bacteria
CN102515427A (en) * 2011-12-07 2012-06-27 浙江省环境保护科学设计研究院 Printing and dyeing waste water treatment system and process with low yield of sludge
RU2780614C2 (en) * 2021-03-24 2022-09-28 Федеральное государственное казённое военное образовательное учреждение высшего образования "Военная академия материально-технического обеспечения имени генерала армии А.В. Хрулева" Министерства обороны Российской Федерации System for controlling a biological waste water treatment unit
CN115254865A (en) * 2022-08-25 2022-11-01 中原环保股份有限公司 Method for treating denitrogenated gas in denitrification filter

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010533572A (en) * 2007-08-08 2010-10-28 彭光浩 Method for removing carbon and nitrogen contaminants in contaminated water using heterotrophic ammonia oxidizing bacteria
CN102515427A (en) * 2011-12-07 2012-06-27 浙江省环境保护科学设计研究院 Printing and dyeing waste water treatment system and process with low yield of sludge
RU2780614C2 (en) * 2021-03-24 2022-09-28 Федеральное государственное казённое военное образовательное учреждение высшего образования "Военная академия материально-технического обеспечения имени генерала армии А.В. Хрулева" Министерства обороны Российской Федерации System for controlling a biological waste water treatment unit
CN115254865A (en) * 2022-08-25 2022-11-01 中原环保股份有限公司 Method for treating denitrogenated gas in denitrification filter

Similar Documents

Publication Publication Date Title
AU656814B2 (en) Method and system for biologically removing nitrogen from wastewater
US7147778B1 (en) Method and system for nitrifying and denitrifying wastewater
US3994802A (en) Removal of BOD and nitrogenous pollutants from wastewaters
JP3737410B2 (en) High concentration organic wastewater treatment method and apparatus using biomaker
Qin et al. Aerobic granulation for organic carbon and nitrogen removal in alternating aerobic–anaerobic sequencing batch reactor
JP3821011B2 (en) Wastewater treatment method and treatment apparatus
JP3460745B2 (en) Biological nitrification denitrification method and apparatus
AU2008244181A1 (en) Method and equipment for processing waste water containing sulphides and ammonium
JP4302341B2 (en) Biological nitrogen removal method and apparatus
JP4426105B2 (en) Treatment process of wastewater containing specific components such as ammonia
CN113716689B (en) Mixed nutrition type denitrification method based on sulfur reduction and sulfur autotrophic denitrification
CN113226996A (en) Water treatment process for simultaneous carbon, nitrogen and phosphorus reduction in a sequencing batch moving bed biofilm reactor
JP3656426B2 (en) Biological treatment of ammoniacal nitrogen
Thiem et al. In situ adaptation of activated sludge by shock loading to enhance treatment of high ammonia content petrochemical wastewater
KR19990015325A (en) Biological denitrification and dephosphorization apparatus for sewage using denitrifying bacteria
JPH08168796A (en) Aerobic nitrating denitrification process
CN210457854U (en) Mainstream autotrophic nitrogen removal system based on MBBR
JP2002361292A (en) Anaerobic digesting apparatus
JPH05228493A (en) Method for treating waste water using sulfur bacterium and apparatus therefor
JPS585118B2 (en) Yuukiseihaisuino
JP2003024982A (en) Biological denitrification method and biological denitrification apparatus
KR200345451Y1 (en) Apparatus for sewage treatment by self-granulated activated sludge
KR20110045812A (en) Apparatus and method for removing nitrogen from anaerobic digested waste water
KR100362742B1 (en) Livestock wastes and high density nitrogen water wastes nitrogen remove method
KR100513429B1 (en) Treatment system and Nutrient Removal of Wastewater using Media Separator