JPH0133810B2 - - Google Patents

Info

Publication number
JPH0133810B2
JPH0133810B2 JP55087008A JP8700880A JPH0133810B2 JP H0133810 B2 JPH0133810 B2 JP H0133810B2 JP 55087008 A JP55087008 A JP 55087008A JP 8700880 A JP8700880 A JP 8700880A JP H0133810 B2 JPH0133810 B2 JP H0133810B2
Authority
JP
Japan
Prior art keywords
polymer
develops
group
color
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55087008A
Other languages
Japanese (ja)
Other versions
JPS5711323A (en
Inventor
Kenji Nomura
Satoru Isoda
Hiroshi Ono
Tatsuo Masumi
Hiroko Deguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP8700880A priority Critical patent/JPS5711323A/en
Publication of JPS5711323A publication Critical patent/JPS5711323A/en
Publication of JPH0133810B2 publication Critical patent/JPH0133810B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/1514Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material
    • G02F1/1516Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising organic material
    • G02F1/15165Polymers

Description

【発明の詳細な説明】 本発明は、電圧印加による酸化還元反応により
可逆的に発消色する新規なエレクトロクロミツク
表示素子に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel electrochromic display element that reversibly develops and fades color through redox reactions caused by voltage application.

エレクトロクロミツクデイスプレイ(以下
ECDと略す)では、電圧を印加することにより
透明表示電極で酸化あるいは還元反応がおこり着
色パターンが形成され、逆電圧を印加することに
より逆反応で着色パターンが消色するという機構
を利用している。
Electrochromic display (below)
ECD (abbreviated as ECD) utilizes a mechanism in which an oxidation or reduction reaction occurs on a transparent display electrode by applying a voltage, forming a colored pattern, and by applying a reverse voltage, the colored pattern is erased by a reverse reaction. There is.

このような機構で発消色するECDは、受光型
の表示素子として従来から使用されている液晶と
比べて同程度の消費電力が可能であり、しかも視
野角の依存性がなく鮮やかな色彩表示により見や
すいことや、メモリ機能を持つこと、動作温度範
囲が広いこと、大画面化が容易であるなどの多く
の優れた特長を有しているために注目されてい
る。
ECDs that generate and erase colors using this mechanism can consume about the same amount of power as liquid crystals, which have traditionally been used as light-receiving display elements, and can display vivid colors without viewing angle dependence. It is attracting attention because it has many excellent features such as being easier to view, having a memory function, a wide operating temperature range, and the ability to easily make a large screen.

従来から提案されている代表的なECD材料と
しては、ビオロゲン誘導体(4,4′−ビピリジン
誘導体)などの有機化合物や酸化タングステン
(WO3)、酸化モリブデン(M0O3)などの無機化
合物がある。
Typical ECD materials that have been proposed include organic compounds such as viologen derivatives (4,4'-bipyridine derivatives) and inorganic compounds such as tungsten oxide (WO 3 ) and molybdenum oxide (M 0 O 3 ). be.

これらのなかでビオロゲン誘導体は無機化合物
と比較して鮮やかな色彩表示が得られ、しかも誘
導体の選択により種々の色彩を選択できるという
特長がある。
Among these, viologen derivatives provide a more vivid color display than inorganic compounds, and have the advantage that various colors can be selected by selecting the derivative.

しかしながら、現段階では有機化合物を使つた
ECDでは繰返し表示寿命が短いことやメモリ寿
命が不十分であることなどのために実用化のレベ
ルには達していない。
However, at present, it is difficult to use organic compounds.
ECDs have not yet reached the level of practical use due to their short repeated display life and insufficient memory life.

ここでビオロゲン誘導体の電極での発消色反応
は、次のような式に従つていると考えられてい
る。
Here, the coloring and decoloring reaction of the viologen derivative at the electrode is thought to follow the following equation.

すなわち、ビオロゲン誘導体()は負の電圧
印加により還元されて着色状態のラジカルカチオ
ン()となり、対イオンX-と塩を形成して水
に不溶性となり電極表面上に析出する。この状態
で電圧印加を停止するとそのまま着色状態が保た
れてメモリー作用を示す。消色する場合には逆方
向に電圧を印加すると酸化されて再び()の状
態に戻り、無色の均一な溶液状態となる。
That is, the viologen derivative ( ) is reduced by applying a negative voltage to become a colored radical cation ( ), forms a salt with the counter ion X - , becomes insoluble in water, and precipitates on the electrode surface. When the voltage application is stopped in this state, the colored state is maintained as it is and exhibits a memory effect. When decoloring, applying a voltage in the opposite direction causes oxidation and returns to the state of (), resulting in a colorless, uniform solution state.

このとき、電極における酸化還元反応において
前記の反応式以外の副反応や()が更に還元さ
れて第二還元状態まで進むようなことになれば繰
返し表示寿命に悪影響を及ぼす。
At this time, if side reactions other than the above reaction formula or () are further reduced in the oxidation-reduction reaction at the electrode and proceed to a second reduced state, the repeated display life will be adversely affected.

また、ECDにおいてはメモリー特性を有する
ことが大きな特長であり、一度書き込んだ状態で
消費電力がなく表示できるが、現状ではメモリー
状態を長く保つと逆反応の消色が困難となり、安
定した発消色を繰返すことは困難となる。このメ
モリー状態を保つことにより消色が困難になる原
因としては、(2)のラジカルカチオン塩が電極表面
上で除々に結晶化してゆき、逆電圧を印加しても
酸化反応の速度が低下するためと考えられてい
る。
In addition, a major feature of ECD is that it has memory characteristics, and once it is written, it can be displayed without consuming power, but at present, if the memory state is kept for a long time, it becomes difficult to erase the color due to the reverse reaction, so it is stable. It becomes difficult to repeat colors. The reason why decoloring becomes difficult by maintaining this memory state is that the radical cation salt in (2) gradually crystallizes on the electrode surface, and the rate of oxidation reaction decreases even when a reverse voltage is applied. It is believed that this is because

このような消色が困難になる現象は、表示−消
色を繰返す時に除々に着色物が完全に消色せず堆
積する原因となり、またメモリー作用を利用した
表示を行う場合にメモリー時間が長くなるに従い
十分消色できなくなるという、ECDにとつては
なはだ好ましくない結果となる。
This phenomenon in which decoloring becomes difficult causes colored matter to gradually accumulate without being completely decolorized when displaying and decoloring are repeated, and also causes the memory time to be long when displaying using a memory effect. As the color increases, it becomes impossible to erase the color sufficiently, which is a very unfavorable result for ECD.

このように、ECDに用いる発消色材料には、
発色時に不溶性になり電極面上に析出すること、
発消色時に副反応を伴なわないこと、メモリー状
態で結晶化などを起さないなどの多くの要素を満
足することが要求され、材料選択の制約が多い。
In this way, the color-changing and fading materials used in ECD include:
Becoming insoluble and depositing on the electrode surface when coloring,
There are many restrictions on material selection, as it is required to satisfy many factors, such as not causing side reactions during color development and fading, and not causing crystallization in the memory state.

また、電圧印加により発色するための応答速度
は、現状では数百msecであり更に高速応答性が
要求されている。応答速度があまり早くない原因
として、溶液として存在する発消色材料が電圧印
加により電極面上で発色するためには、比較的分
子量が大きな発消色材料(例えばのようなビオ
ロゲン誘導体)が拡散して電極面上に到達する必
要があるという、拡散により律速された反応機構
に帰因していると考えられている。従つて高速応
答性を実現するためには従来の機構とは異つた機
構を持つEC表示素子の開発が望まれている。
Furthermore, the response speed for color development upon voltage application is currently several hundred milliseconds, and even faster response is required. The reason why the response speed is not so fast is that in order for the coloring/eliminating material that exists as a solution to develop color on the electrode surface when voltage is applied, the coloring/eliminating material with a relatively large molecular weight (for example, viologen derivatives) must diffuse. This is thought to be due to a reaction mechanism that is rate-limited by diffusion, in which it is necessary to reach the electrode surface. Therefore, in order to achieve high-speed response, it is desired to develop an EC display element with a mechanism different from the conventional mechanism.

本発明は、発消色する官能基を高分子の主鎖に
有する高分子エレクトロクロミツク材料を表示電
極上に膜状として形成することにより、従来とは
異つた発色機構により高速応答性を実現するとと
もに、繰返し表示寿命が長く、しかも安定したメ
モリー性能を有するECD素子を提供するもので
ある。
The present invention realizes high-speed response through a coloring mechanism different from conventional ones by forming a polymer electrochromic material having a functional group in the main chain of the polymer on the display electrode in the form of a film. In addition, the present invention provides an ECD element that has a long repeated display life and stable memory performance.

本発明によるECD素子は、下記一般式で示さ
れる高分子EC材料を透明表示電極上に膜状とし
て形成するものである。
The ECD element according to the present invention is one in which a polymer EC material represented by the following general formula is formed in the form of a film on a transparent display electrode.

ここでRはC1〜C10のアルキレン基、フエニレ
ン、トリレン、ジフエニレン、ジフエニレンメタ
ンなどのフエニレン基を示し、Xは電圧印加によ
り発消色する、ビオロゲン、テトラチオフルバレ
ン、ロイコ染料、チオニン、フタロシアニン、ポ
ルフイリンなどの官能基を示す。nは正の整数で
重合度を示す。
Here, R represents a C 1 to C 10 alkylene group, a phenylene group such as phenylene, tolylene, diphenylene, or diphenylenemethane, and X represents a viologen, tetrathiofulvalene, leuco dye, which develops and disappears when voltage is applied. Indicates functional groups such as thionine, phthalocyanine, and porphyrin. n is a positive integer indicating the degree of polymerization.

これらの高分子EC材料は発消色官能基のジオ
ールまたはジアミンとジカルボン酸またはジイソ
シアネートとの縮合反応により得られるが、その
合成経路をビオロゲンを例として示す。
These polymeric EC materials are obtained by the condensation reaction of diols or diamines with color-producing and fading functional groups and dicarboxylic acids or diisocyanates, and the synthesis route will be shown using viologen as an example.

このようにして得られた高分子EC材料を、ジ
メチルホルムアミド、ジメチルアセトアミド、ジ
メチルスルホキシド、メタノール、メチルエチル
ケトン等から選ばれる溶剤に溶解し、透明表示電
極上にスピナー法、スクリーン印刷法、ドクター
ブレード法等により製膜し、図面に示すECD素
子を構成した。
The polymer EC material thus obtained is dissolved in a solvent selected from dimethylformamide, dimethylacetamide, dimethyl sulfoxide, methanol, methyl ethyl ketone, etc., and coated on a transparent display electrode using a spinner method, screen printing method, doctor blade method, etc. The ECD device shown in the drawing was constructed by forming a film.

図において、1は基板、2は表示電極、3は対
向電極、4はスペーサ、5は電解質溶液、6は白
色背景、7は高分子EC膜を示す。
In the figure, 1 is a substrate, 2 is a display electrode, 3 is a counter electrode, 4 is a spacer, 5 is an electrolyte solution, 6 is a white background, and 7 is a polymer EC film.

ここで、透明表示電極2の材料としてはSnO2
In2O3、金属薄膜などが用いられ、対向電極3の
材料として金白金、カーボンなどが用いられる。
白色背景6の材料としては多孔質セラミツクまた
は多孔質白色プラスチツクが用いられる。電解質
材料5にはLiCl、Kcl、NaCl、KBr、K2SO4
KClO4、KBF4、K3PO4、KOAcなどの支持電解
質を1×10-5〜1モル/の濃度で溶解した溶液
にFe、Co、Cr、Mn、Ni、Cuなどの塩または錯
体などを加えて用いられる。このように調整した
ECD素子に表示極側を負に対向電極との間に電
圧を印加すると、表示電極上で還元反応が起つて
いることを示す電流が観測され、同時に表示電極
上の高分子EC膜の着色が見られ、その反応速度
は従来の溶液型のECD素子と比較して数倍早い
ものであつた。さらに、逆方向の電圧印加により
ただちに消色した。
Here, the material of the transparent display electrode 2 is SnO 2 ,
In 2 O 3 , a metal thin film, etc. are used, and the material of the counter electrode 3 is gold platinum, carbon, etc.
As the material for the white background 6, porous ceramic or porous white plastic is used. Electrolyte material 5 includes LiCl, Kcl, NaCl, KBr, K 2 SO 4 ,
Salts or complexes such as Fe, Co, Cr, Mn, Ni, Cu, etc. are added to a solution in which a supporting electrolyte such as KClO 4 , KBF 4 , K 3 PO 4 , KOAc, etc. is dissolved at a concentration of 1 ×10 -5 to 1 mol/. It is used in addition. Adjusted like this
When a voltage is applied to the ECD element with the display electrode side negative and the counter electrode, a current indicating that a reduction reaction is occurring on the display electrode is observed, and at the same time, the polymer EC film on the display electrode is colored. The reaction rate was several times faster than that of conventional solution-type ECD devices. Furthermore, the color was immediately erased by applying a voltage in the opposite direction.

ここでの反応機構は、表示電極側から注入され
た電子が高分子EC膜を移動して発色基を還元し
て発色し、同時に対向電極で電解質溶液中のFe
などの塩または錯体が酸化されるものと考えられ
る。従来の溶液型ECD素子と異なる特長は、反
応速度が従来は比較的分子量の大きな発色材料の
拡散速度により律速されていたために早くなかつ
たのに対して、本発明の素子では、速度の早い膜
中の電荷移動により律速されるために高速応答性
が得られることが挙げられる。さらに、発色基が
表示電極上に膜状に形成されているために安定な
メモリー性能を有することや発消色時の溶解度の
差を利用する必要がなく、任意な発消色基を選択
できること、及び対向電極での反応は電解質溶液
の鉄などの金属イオンで行い、発消色基の劣化を
防止できるなどの特徴が挙げられる。
The reaction mechanism here is that electrons injected from the display electrode side move through the polymer EC membrane and reduce the color-forming groups to produce color, while at the same time the opposite electrode absorbs Fe in the electrolyte solution.
It is thought that salts or complexes such as The feature that differs from conventional solution-type ECD devices is that the reaction rate was conventionally slow because it was limited by the diffusion rate of the coloring material with a relatively large molecular weight, whereas the device of the present invention has a fast membrane. One example is that high-speed response can be obtained because the rate is determined by the movement of charges inside. Furthermore, since the color-forming group is formed in the form of a film on the display electrode, it has stable memory performance, and there is no need to utilize differences in solubility during color development and decolorization, and any color-forming and decolorizing group can be selected. , and the reaction at the counter electrode is carried out with metal ions such as iron in the electrolyte solution, which is characterized by the ability to prevent deterioration of the color-developing and fading groups.

ここで用いる高分子EC膜材料には、成膜性、
電極表面との接着力、透明性、電解質成分との良
好な接触を得るための親水性、高速応答性を実現
するために高分子鎖中でのEC発色基が適度な相
互作用を持つこと等の性能が要求されるが、ポリ
エステル誘導体、ポリウレタン誘導体およびポリ
アミド誘導体の選択は、目標とする性能により行
い得る。
The polymer EC film material used here has film formability,
Adhesive strength with the electrode surface, transparency, hydrophilicity for good contact with electrolyte components, moderate interaction of EC color forming groups in the polymer chain to achieve high-speed response, etc. However, the selection of polyester derivatives, polyurethane derivatives, and polyamide derivatives can be made depending on the target performance.

以上述べたように、本発明による高分子EC膜
によるECD素子では、従来の溶液型と比較して、
電極での反応機構が異なることから高速応答性が
可能となり、発消色基が表示電極上に固定されて
いるために安定なメモリー性能が得られ、安定な
発消色反応を繰返す発色基を選択できるためや対
向電極での反応を行わないことから繰返表示寿命
を延ばすことができるなどの多くの特長を有して
いる。
As described above, in the ECD device using the polymer EC film according to the present invention, compared to the conventional solution type,
The different reaction mechanisms at the electrodes enable high-speed response, and because the color-developing and color-developing groups are fixed on the display electrodes, stable memory performance can be obtained. It has many advantages, such as being able to select one another and extending the life of repeated display because no reaction takes place at the counter electrode.

以下本発明につき実施例をあげて具体的に説明
するが本発明はこれに限定されるものではない。
EXAMPLES The present invention will be specifically described below with reference to Examples, but the present invention is not limited thereto.

実施例 1 4,4′−ビピリジンと4−ブロモ−1−ブタノ
ールとからビオロゲンジオールを合成し、これと
イソフタル酸クロライドとの界面重縮合によりポ
リエステルを合成した。これをジメチルホルムア
ミドに溶解してドクターブレード法によりSnO2
透明電極上に3μの膜を形成した。電解質溶液と
してK2SO4を0.05モル/、FeCl2を0.05モル/
を含む水溶液を用いてECDセルを構成した。
なお、対向電極として金ペースト、白色地背景材
料として多孔質セラミツク板を用いた。この
ECD素子の表示極側を負として対向電極との間
にパルス電圧を印加して発色の応答速度を調べた
ところ、従来のヘプチルビオロゲンを用いた溶液
型では150msecであつたのに対して2msecで反
射D濃度0.8に達した。逆方向にパルス電圧を印
加することにより2msecで消色した。着色パル
ス巾5msec、消色パルス巾5msecの繰返し表示
で3ケ月以上の寿命が得られた。さらに、5m
secのパルス電圧を印加した後1分間メモリー状
態に保持し、次いで5msecの消去パルスを加え
る繰返し表示でも3ケ月以上の寿命が得られた。
Example 1 Viologen diol was synthesized from 4,4'-bipyridine and 4-bromo-1-butanol, and polyester was synthesized by interfacial polycondensation of this with isophthalic acid chloride. This was dissolved in dimethylformamide and converted to SnO 2 using the doctor blade method.
A 3μ film was formed on the transparent electrode. As an electrolyte solution, 0.05 mol/K 2 SO 4 and 0.05 mol/FeCl 2 were used.
An ECD cell was constructed using an aqueous solution containing .
Note that gold paste was used as the counter electrode, and a porous ceramic plate was used as the white background material. this
When we investigated the response speed of color development by applying a pulse voltage between the display electrode side of the ECD element as a negative electrode and the counter electrode, we found that it was 2 msec, compared to 150 msec in the conventional solution type using heptyl viologen. Reflection D density reached 0.8. The color was erased in 2 msec by applying a pulse voltage in the opposite direction. A life of more than 3 months was obtained by repeatedly displaying a coloring pulse width of 5 msec and a decoloring pulse width of 5 msec. Furthermore, 5m
A life of more than 3 months was obtained by repeatedly displaying the memory state by applying a sec pulse voltage, holding it in the memory state for 1 minute, and then adding a 5 msec erasing pulse.

実施例 2 実施例1で合成したビオロゲンジオールと2,
4−トリレンジイソシアネートからポリウレタン
を合成し、これを用いて実施例1と同様なECD
素子を構成した。表示極側を負として対向電極と
の間にパルス電圧を印加して応答速度を調べたと
ころ、2msecで反射D濃度0.8に達した。逆方向
への電圧印加による消色応答速度は3msecであ
つた。着色パルス巾5msec、消色パルス巾5m
secの繰返し表示で3ケ月以上の寿命が得られた。
さらに、5msecの着色パルス電圧を印加した後
1分間メモリー状態に保持し、次いで5msecの
消色パルスを加える繰返し表示でも3ケ月以上の
寿命が得られた。
Example 2 Viologen diol synthesized in Example 1 and 2,
Polyurethane was synthesized from 4-tolylene diisocyanate and used to perform ECD in the same manner as in Example 1.
The element was constructed. When the response speed was examined by applying a pulse voltage between the display electrode and the counter electrode with the display electrode as negative, the reflection D density reached 0.8 in 2 msec. The decoloring response speed due to voltage application in the opposite direction was 3 msec. Coloring pulse width 5msec, decoloring pulse width 5m
A life of more than 3 months was obtained by repeatedly displaying sec.
Furthermore, after applying a coloring pulse voltage of 5 msec, maintaining the memory state for 1 minute, and then applying a decoloring pulse of 5 msec for repeated display, a life of more than 3 months was obtained.

実施例 3 4,4′−ビピリジンと4−ブロモ−1−ブチル
アミン臭酸塩とから合成したビオロゲンジアミン
臭酸塩とアジピン酸クロライドかららポリアミド
を合成し、これを用いて実施例1と同様なECD
素子を構成した。表示極側を負として対向電極と
の間にパルス電圧を印加して応答速度を調べたと
ころ、2msecで反射D濃度0.8に達した。逆方向
への電圧印加による消色応答速度は2msecであ
つた。着色パルス巾5msec、消色パルス巾5m
secの繰返し表示で3ケ月以上の寿命が得られた。
さらに、5msecの着色パルス電圧を印加した後
1分間メモリー状態に保持し、次いで5msecの
消色パルスを加える繰返し表示でも3ケ月以上の
寿命が得られた。
Example 3 Polyamide was synthesized from viologen diamine hydrochloride synthesized from 4,4'-bipyridine and 4-bromo-1-butylamine hydrochloride and adipic acid chloride, and using this polyamide was synthesized in the same manner as in Example 1. E.C.D.
The element was constructed. When the response speed was examined by applying a pulse voltage between the display electrode and the counter electrode with the display electrode as negative, the reflection D density reached 0.8 in 2 msec. The decoloring response speed due to voltage application in the opposite direction was 2 msec. Coloring pulse width 5msec, decoloring pulse width 5m
A life of more than 3 months was obtained by repeatedly displaying sec.
Furthermore, after applying a coloring pulse voltage of 5 msec, maintaining the memory state for 1 minute, and then applying a decoloring pulse of 5 msec for repeated display, a life of more than 3 months was obtained.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明による、ECD素子の一例であり、
図において1は基板ガラス、2は表示電極、3は
対向電極、4はスペーサー、5は電解質溶液、6
は白色地背景材料、7は高分子EC膜を示す。
The figure is an example of an ECD element according to the present invention,
In the figure, 1 is a substrate glass, 2 is a display electrode, 3 is a counter electrode, 4 is a spacer, 5 is an electrolyte solution, and 6
7 shows the white background material, and 7 shows the polymer EC film.

Claims (1)

【特許請求の範囲】 1 電圧印加による発消色反応を利用するエレク
トロクロミツクデイスプレイにおいて、発消色す
る官能基を高分子の主鎖に有する高分子エレクト
ロクロミツク材料を予め表示電極上に膜状として
形成することを特徴とするエレクトロクロミツク
デイスプレイ素子。 2 発消色する官能基を高分子の主鎖に有する高
分子エレクトロクロミツク材料として、下記一般
式で示されるポリエステル誘導体を用いることを
特徴とする特許請求の範囲第1項記載のエレクト
ロクロミツクデイスプレイ素子。 (但しRはアルキレン基またはフエニレン基を示
し、Xは電圧印加により発消色する官能基を示
す。nは正の整数で重合度を示す。) 3 発消色する官能基を高分子の主鎖に有する高
分子エレクトロクロミツク材料として、下記一般
式で示されるポリウレタン誘導体を用いることを
特徴とする特許請求の範囲第1項記載のエレクト
ロクロミツクデイスプレイ素子。 (但しRはアルキレン基またはフエニレン基を示
し、Xは電圧印加により発消色する官能基を示
す。nは正の整数で重合度を示す。) 4 発消色する官能基を高分子の主鎖に有する高
分子エレクトロクロミツク材料として、下記一般
式で示されるポリアミド誘導体を用いることを特
徴とする特許請求の範囲第1項記載のエレクトロ
クロミツクデイスプレイ素子。 (但しRはアルキレン基またはフエニレン基を示
し、Xは電圧印加により発消色する官能基を示
す。nは正の整数で重合度を示す。)
[Claims] 1. In an electrochromic display that utilizes a coloring and fading reaction caused by the application of a voltage, a polymer electrochromic material having a functional group that develops and fades color in the main chain of the polymer is coated in advance on a display electrode. An electrochromic display element characterized in that it is formed into a shape. 2. The electrochromic device according to claim 1, characterized in that a polyester derivative represented by the following general formula is used as the polymer electrochromic material having a functional group that develops and fades color in the main chain of the polymer. Display element. (However, R indicates an alkylene group or a phenylene group, and X indicates a functional group that develops and discolors upon application of voltage. n is a positive integer and indicates the degree of polymerization.) 3. The functional group that develops and discolors is the main group of the polymer. 2. The electrochromic display element according to claim 1, wherein a polyurethane derivative represented by the following general formula is used as the polymer electrochromic material in the chain. (However, R represents an alkylene group or a phenylene group, and X represents a functional group that develops and fades color upon application of voltage. n is a positive integer indicating the degree of polymerization.) 4. The functional group that develops and fades color is the main group of the polymer. 2. The electrochromic display element according to claim 1, wherein a polyamide derivative represented by the following general formula is used as the polymer electrochromic material in the chain. (However, R represents an alkylene group or a phenylene group, and X represents a functional group that develops and fades color upon application of voltage. n is a positive integer and represents the degree of polymerization.)
JP8700880A 1980-06-23 1980-06-23 Electrochromic display element Granted JPS5711323A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8700880A JPS5711323A (en) 1980-06-23 1980-06-23 Electrochromic display element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8700880A JPS5711323A (en) 1980-06-23 1980-06-23 Electrochromic display element

Publications (2)

Publication Number Publication Date
JPS5711323A JPS5711323A (en) 1982-01-21
JPH0133810B2 true JPH0133810B2 (en) 1989-07-14

Family

ID=13902914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8700880A Granted JPS5711323A (en) 1980-06-23 1980-06-23 Electrochromic display element

Country Status (1)

Country Link
JP (1) JPS5711323A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60103329A (en) * 1983-11-11 1985-06-07 Ricoh Co Ltd Optical image writing element

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY *

Also Published As

Publication number Publication date
JPS5711323A (en) 1982-01-21

Similar Documents

Publication Publication Date Title
US6992808B2 (en) Electrochromic display device and electrodeposition-type display device
EP1488280B1 (en) Electrochromic display device
EP1475656A1 (en) Electrochemical display element and electrochemical display
CA2441266A1 (en) Electrochromic display device and compositions useful in making such devices
US6885489B2 (en) Display unit and driving method therefor
US4693564A (en) Electrochromic display device
JPH11101994A (en) Picture display device of electrodeposition type
JPH0133810B2 (en)
JP2006146252A (en) Electrodeposition-type display element, electrodeposition-type display device, and method for manufacturing electrodeposition-type display device
JPH0133809B2 (en)
JPS61185730A (en) Composite film type electrochromic material
JPH0115553B2 (en)
JPS59217787A (en) Electrochromic material
JPH0133808B2 (en)
JP4470451B2 (en) Method for producing electrochemical dimmer and method for producing polymer electrolyte
JPH0139086B2 (en)
JP4506171B2 (en) Electrochemical light control device and method for manufacturing the same
JPS6227115B2 (en)
JPH0115552B2 (en)
JPS6334914B2 (en)
JPH0693066B2 (en) Electrochromic display element
JP2004309946A (en) Electrochemical display device and its manufacturing method
JP2005189384A (en) Electrochemical light controlling device and its driving method
JP2934933B2 (en) Electrochromic display device
JPS5937311B2 (en) display element