JPH0133808B2 - - Google Patents

Info

Publication number
JPH0133808B2
JPH0133808B2 JP55084816A JP8481680A JPH0133808B2 JP H0133808 B2 JPH0133808 B2 JP H0133808B2 JP 55084816 A JP55084816 A JP 55084816A JP 8481680 A JP8481680 A JP 8481680A JP H0133808 B2 JPH0133808 B2 JP H0133808B2
Authority
JP
Japan
Prior art keywords
develops
functional group
voltage
display device
polymerization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55084816A
Other languages
Japanese (ja)
Other versions
JPS5710121A (en
Inventor
Tatsuo Masumi
Satoru Isoda
Kenji Nomura
Hiroshi Ono
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP8481680A priority Critical patent/JPS5710121A/en
Publication of JPS5710121A publication Critical patent/JPS5710121A/en
Publication of JPH0133808B2 publication Critical patent/JPH0133808B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/1514Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material
    • G02F1/1516Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising organic material
    • G02F1/15165Polymers

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Description

【発明の詳細な説明】 本発明は、直流電圧印加による酸化還元反応で
物質の色が可逆的に変化するエレクトロクロミツ
ク(以下ECと略す)現象を利用したエレクトロ
クロミツク表示装置(以下、ECDと略す)に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention is an electrochromic display device (hereinafter referred to as ECD) that utilizes the electrochromic (hereinafter referred to as EC) phenomenon in which the color of a substance changes reversibly through an oxidation-reduction reaction caused by the application of a DC voltage. ).

従来から提案されている代表的EC物質として
は、ビオロゲン誘導体などの有機化合物や酸化タ
ングステン(WO3)などの無機化合物がある。
Typical EC substances that have been proposed so far include organic compounds such as viologen derivatives and inorganic compounds such as tungsten oxide (WO 3 ).

ビオロゲン誘導体を用いる系では、ビオロゲン
誘導体を臭化カリウムなどの支持電解質と共に、
水あるいは他の溶媒に溶解する。こうして得られ
たEC溶液層は無色透明な溶液であり、直流電圧
を印加するとビオロゲン誘導体が陰極に相当する
表示電極で還元され発色する。
In systems using viologen derivatives, the viologen derivative is combined with a supporting electrolyte such as potassium bromide,
Soluble in water or other solvents. The EC solution layer thus obtained is a colorless and transparent solution, and when a DC voltage is applied, the viologen derivative is reduced at the display electrode corresponding to the cathode and develops color.

ジヘプチルビオロゲンジブロマイドなどのビオ
ロゲン誘導体では、表示電極上に不溶性の発色層
を折出し、その結果電圧をOFFにしても表示が
保持されるというメモリー機能をもつ。この反応
は可逆反応であり、逆電圧を印加すると消色す
る。この系に用いられるECDセルの構造の模式
図を第1図に示す。図中、1は基板、2は表示電
極、3は対向電極、4はスペーサー、5はEC溶
液である。
Viologen derivatives such as diheptyl viologen dibromide deposit an insoluble coloring layer on the display electrode, which has a memory function that maintains the display even when the voltage is turned off. This reaction is reversible, and the color disappears when a reverse voltage is applied. Figure 1 shows a schematic diagram of the structure of the ECD cell used in this system. In the figure, 1 is a substrate, 2 is a display electrode, 3 is a counter electrode, 4 is a spacer, and 5 is an EC solution.

従来のビオロゲン誘導体EC溶液を用いるECD
は、上記構成のため下記の欠点があつた。
ECD using conventional viologen derivative EC solution
had the following drawbacks due to the above configuration.

(i) 発消色時の電極反応が、ビオロゲン誘導体分
子の物質移動過程で律速されるため応答速度に
限界があり、高速応答性は望めない。
(i) Since the electrode reaction during color development and decolorization is rate-limited by the mass transfer process of viologen derivative molecules, there is a limit to the response speed, and high-speed response cannot be expected.

(ii) 対極反応もビオロゲン誘導体の酸化還元反応
であるため、発消色反応の制御が難しく長寿命
の実現が困難である。
(ii) Since the counter electrode reaction is also a redox reaction of the viologen derivative, it is difficult to control the coloring and fading reaction and it is difficult to achieve a long life.

(iii) 発色状態と消色状態とで溶媒に対する溶解度
が異なり、発色物が表示極上に折出しなければ
ならないという制限を受けるため、使用されう
るEC物質の範囲が狭い。
(iii) The range of usable EC substances is narrow because the solubility in the solvent differs between the colored state and the decolored state, and the colored substance must be precipitated at the top of the display.

本発明は、上記のような従来のECDの欠点を
除去することを目的としており、高速応答性且つ
長寿命のECDを実現することを目的としている。
The present invention aims to eliminate the drawbacks of the conventional ECD as described above, and aims to realize an ECD with high-speed response and long life.

本発明のECDの骨子はEC作用を行なう官能基
を主鎖または側鎖に有する高分子材料(a)と、上記
官能基を特に有さない通常の高分子材料(b)を混合
してなるEC材料組成物を、表示電極上に膜形す
ることを特徴としている。
The gist of the ECD of the present invention is a mixture of a polymeric material (a) having a functional group that performs an EC action in its main chain or side chain, and an ordinary polymeric material (b) that does not have any of the above-mentioned functional groups. It is characterized in that the EC material composition is formed into a film on the display electrode.

本発明の用いる発消色する官能基を高分子の側
鎖、又は主鎖に有する高分子材料(a)としてはラジ
カル重合、縮合重合、イオン重合により得られる
広範囲の高分子から選択され、(イ)ポリスチレン
系、(ロ)ポリアクリルアミド系、(ハ)ポリアクリルエ
ステル系、(ニ)ホリメタクリル系、(ホ)ポリビニルア
セテート系、等の官能基を側鎖に有する高分子誘
導体や、(ヘ)ポリエステル系、(ト)ポリウレタン系、
(チ)ポリアミド系等の官能基を主鎖内に有する高分
子誘導体がある。上記(イ)〜(チ)の各高分子誘導体は
それぞれ下記一般式で示される。
The polymer material (a) having a functional group that develops and fades color in the side chain or main chain of the polymer used in the present invention is selected from a wide range of polymers obtained by radical polymerization, condensation polymerization, and ionic polymerization. Polymer derivatives having functional groups in their side chains, such as a) polystyrene, (b) polyacrylamide, (c) polyacrylic ester, (d) polymethacrylic, and (e) polyvinyl acetate, )Polyester-based, (g)Polyurethane-based,
(h) There are polymer derivatives having functional groups in their main chains, such as polyamides. Each of the polymer derivatives (a) to (h) above is represented by the following general formula.

(但しnは正の整数で重合度を示す。×は電圧印
加で発消色する官能基を示す。) (但しnは正の整数で重合度を示し、×は電圧印
加で発消色する官能基を示す。) (但しRは水素またはメチル基、nは正の整数で
重合度を、また×は電圧印加により発消色を行う
官能基を示す。) (但しnは正の整数で重合度を示し、×は電圧印
加により発消色を行う官能基を示す。) (但しRはアルキレン基またはフエニレン基を示
し、nは正の整数で重合度を示し、×は電圧印加
により発消色を行う官能基を示す。) (但しRはアルキレン基またはフエニレン基を示
し、nは正の整数で重合度を示し、×は電圧印加
により発消色を行う官能基を示す。) (但しRはアルキレン基またはフエニレン基を示
し、nは正の整数で重合度を示し、×は電圧印加
により発消色を行う官能基を示す。) また電圧印加により発消色を行なう官能基とし
てはビピリジン、テトラチオフルバレン、フタロ
シアニン、ポルフイリン、フエノールフタレイ
ン、クリスタルバイオレツト、チオニン色素等の
各誘導体が広範囲に選択出来る。
(However, n is a positive integer and indicates the degree of polymerization. × indicates a functional group that develops and disappears when voltage is applied.) (However, n is a positive integer and indicates the degree of polymerization, and x indicates a functional group that develops and disappears when voltage is applied.) (However, R is hydrogen or a methyl group, n is a positive integer and represents the degree of polymerization, and × represents a functional group that develops and fades color upon application of voltage.) (However, n is a positive integer and indicates the degree of polymerization, and x indicates a functional group that develops and fades color upon application of voltage.) (However, R represents an alkylene group or a phenylene group, n is a positive integer and represents the degree of polymerization, and x represents a functional group that develops and fades color upon application of voltage.) (However, R represents an alkylene group or a phenylene group, n is a positive integer and represents the degree of polymerization, and x represents a functional group that develops and fades color upon application of voltage.) (However, R represents an alkylene group or a phenylene group, n is a positive integer and represents the degree of polymerization, and × represents a functional group that develops and fades color when voltage is applied.) Also, a functional group that develops and fades color when voltage is applied. As the pigment, derivatives such as bipyridine, tetrathiofulvalene, phthalocyanine, porphyrin, phenolphthalein, crystal violet, and thionine pigment can be selected from a wide range.

さらに特に発消色を行なう官能基を有さない高
分子材料(b)としては、ポリスチレン、ポリ塩化ビ
ニル、ポリ酢酸ビニル、ポリアクリル、ポリメタ
クリル等のビニル系ポリマーあるいは芳香族ポリ
エステル、脂肪族ポリエステル、ポリカーボネー
トに代表されるポリエステル系ポリマー、さらに
例えば側鎖に4級アンモニウム塩を有するビニル
系ポリマーの様な高分子電解質等がある。
Furthermore, as the polymer material (b) that does not have a functional group that causes color development/discoloration, examples include vinyl polymers such as polystyrene, polyvinyl chloride, polyvinyl acetate, polyacrylic, polymethacrylic, aromatic polyester, aliphatic polyester, etc. , polyester polymers typified by polycarbonate, and polymer electrolytes such as vinyl polymers having quaternary ammonium salts in their side chains.

上述の様な高分子(a)と、高分子材料(b)から適宜
選択しその望ましい組成のEC材料組成物(エレ
クトロクロミツク材料組成物、ジメチルホルムオ
キシド、ジメチルアセトアミド、ジメチルスルホ
キシド、メタノール、メチルエチルケン等から選
ばれる溶剤に溶解し、透明表示電極上にスピナー
法やドクターブレード法等により製膜し、第2図
に示すECDを構成する。第2図において、6は
電解質溶液であり、LiCl、KCI、NcCI、KBr、
K2SO4、KBF4、K3PO4、KOACなどの支持電解
質を1×10-5〜1モル/lの濃度で溶解し、さら
に対極で可逆反応を行なうレドツクス成分すなわ
ちFe、Co、Cr、Mn、Ni、Cuなどの塩または錯
体などが添加されている。
An EC material composition (electrochromic material composition, dimethyl formoxide, dimethyl acetamide, dimethyl sulfoxide, methanol, methyl It is dissolved in a solvent selected from ethylkene, etc., and formed into a film on a transparent display electrode by a spinner method, a doctor blade method, etc. to constitute the ECD shown in Fig. 2. In Fig. 2, 6 is an electrolyte solution; LiCl, KCI, NcCI, KBr,
A supporting electrolyte such as K 2 SO 4 , KBF 4 , K 3 PO 4 , KOAC, etc. is dissolved at a concentration of 1×10 -5 to 1 mol/l, and redox components such as Fe, Co, and Cr that undergo a reversible reaction at the counter electrode are added. , salts or complexes of Mn, Ni, Cu, etc. are added.

このように調整したECDに表示極側を負にし
て対向電極との間に電圧を印加すると、表示電極
上で還元反応が起つていることを示す電流が観測
され、同時に表示電極上のEC材料組成物膜の着
色が見られ、その応答速度は従来の溶液型の
ECDと比較して数倍速いものであつた。さらに
逆方向の電圧印加によりただちに消色した。
When a voltage is applied between the ECD prepared in this way and the counter electrode with the display electrode side set negative, a current indicating that a reduction reaction is occurring on the display electrode is observed, and at the same time the EC material on the display electrode Coloring of the composition film was observed, and its response speed was faster than that of conventional solution-type films.
It was several times faster than ECD. Furthermore, the color was immediately erased by applying a voltage in the opposite direction.

ここでの反応機構は、表示電極側から注入され
た電子がEC材料組成物膜内を移動して発色基を
還元して発色し、同時に対向電極で電解質溶液中
のFeなどの塩または錯体が酸化されるものと考
えられる。従来の溶液型ECDと異なる特徴は、
反応速度が従来は比較的分子量の大きな発色材料
の拡散速度により律速されていたため速くなかつ
たのに対して、本発明では膜中で起こる電荷移動
が、応答速動を律速するため、高速応答性が得ら
れることが挙げられる。さらに発色基が表示電極
上に膜状に形成されているために安定なメモリー
性能を有することや、発消色時の溶解度の差を利
用する必要がなく、任意な発消色基を選択できる
こと、及び対向電極での反応は電解溶液の鉄など
の金属イオンで行ない、発消色基の劣化を防止で
きるなどの特徴が挙げられる。さらにここで用い
るEC材料組成物による膜材料には、成膜性、電
極表面との接着力、透明性、電解質成分との良好
な接触を得るための親水性、高速応答性を実現す
るために高分子鎖中での発色基が適度な相互作用
を持つこと等の性能が要求されるが、主鎖または
側鎖に官能基を有する高分子材料(a)のみで膜形成
されたECDに較べてポリスチレン系の通常の高
分子材料を加えることにより高速応答性や成膜性
に優れたEC材料組成物を得ることができ、ポリ
アクリルアミド系の高分子材料を添加することに
より親水性や接着力に、またポリアクリルエステ
ル系高分子では透明性や性膜性に、ポリビニルエ
ステル系高分子では電極との接着力に、それぞれ
優れたEC材料組成物を与えることが分つたが、
組成物の手成分である、主鎖または側鎖に発消色
する官能基を有する高分子材料(a)の目的に応じた
使用により、添加する通常の高分子材料(b)の種類
と量を適宜選択することが可能である。
The reaction mechanism here is that electrons injected from the display electrode side move within the EC material composition film and reduce the color-forming group to produce color, and at the same time, at the counter electrode, salts such as Fe or complexes in the electrolyte solution are removed. It is thought to be oxidized. The features that differ from conventional solution-type ECD are:
Conventionally, the reaction rate was not fast because it was limited by the diffusion rate of the coloring material with a relatively large molecular weight, but in the present invention, the charge transfer that occurs in the membrane determines the response rate, resulting in high-speed response. can be obtained. Furthermore, since the color forming group is formed in a film form on the display electrode, it has stable memory performance, and there is no need to use the difference in solubility during color development and decolorization, and it is possible to select any color formation and decolorization group. , and the reaction at the counter electrode is carried out with metal ions such as iron in the electrolytic solution, and features include the ability to prevent deterioration of the color-developing and fading groups. Furthermore, the membrane material made of the EC material composition used here has film formability, adhesion to the electrode surface, transparency, hydrophilicity to obtain good contact with electrolyte components, and high-speed response. Although performance such as appropriate interaction between color-forming groups in the polymer chain is required, compared to ECD film formed only from polymer material (a) having functional groups in the main chain or side chain, By adding an ordinary polystyrene-based polymer material, an EC material composition with excellent high-speed response and film-forming properties can be obtained, and by adding a polyacrylamide-based polymer material, hydrophilicity and adhesive strength can be obtained. It was also found that polyacrylic ester polymers provide EC material compositions with excellent transparency and film properties, and polyvinyl ester polymers provide excellent adhesion with electrodes.
Depending on the intended use of the polymeric material (a), which is a component of the composition and has a functional group that develops and fades color in its main chain or side chain, the type and amount of the ordinary polymeric material (b) to be added. It is possible to select as appropriate.

以上述べたように本発明によるEC材料組成物
を用いたECDでは、従来の溶液形と比較して、
電極での、反応機構が異なることから高速応答性
が可能となり、発消色基が表示電極上に固定され
ているために安定にメモリー性能が得られ、安定
な発消色反応を繰返す発色基を選択でき、また対
向電極で官能基の反応を行なわないことから繰返
し表示寿命を延ばすことができるなどの多くの特
徴を有している。
As described above, in the ECD using the EC material composition according to the present invention, compared to the conventional solution type,
The different reaction mechanisms at the electrodes enable high-speed response, and because the color-developing and fading groups are fixed on the display electrodes, stable memory performance can be obtained, and the color-forming and fading groups repeat stable color-developing and fading reactions. It has many features, such as being able to select the desired value and extending the life of repeated display since no reaction of functional groups occurs at the counter electrode.

以下本発明につき実施例を挙げて具体的に説明
するが、本発明はこれらの実施例に限定されるも
のではない。
EXAMPLES The present invention will be specifically described below with reference to Examples, but the present invention is not limited to these Examples.

実施例 1 重合度2000のクロロメチル化ポリスチレンとN
−モノメチルビオロゲンクロライドを加熱下で反
応して得られたポリスチレン系高分子材料(a)を70
部とポリアクリルエステル高分子電解質(b)を30部
混合し、これをメタノールとメチルエチルケトン
の混合溶剤に溶解してスクリーン印刷法により
SnO2透明ガラス電極上に4μの厚さの膜を形成し
た。対向電極で反応するレドツクス成分としては
Fe2+/Fe3+系を用い、レドツクス成分を含む電
解質溶液としては臭化カリウム水溶液を用いた。
Example 1 Chloromethylated polystyrene with a degree of polymerization of 2000 and N
- Polystyrene polymer material (a) obtained by reacting monomethyl viologen chloride under heating at 70%
and 30 parts of polyacrylic ester polymer electrolyte (b), dissolved in a mixed solvent of methanol and methyl ethyl ketone, and printed using a screen printing method.
A 4 μ thick film was formed on the SnO 2 transparent glass electrode. The redox component that reacts at the counter electrode is
A Fe 2 +/Fe 3+ system was used, and a potassium bromide aqueous solution was used as the electrolyte solution containing the redox component.

上記ECDに、表示電極を陰極として約1.9Vの
直流電圧を印加すると、表示電極上のEC材料組
成物膜が紫色に変化した。この状態で電圧の極性
を逆転すると元の無色透明なEC材料組成物膜に
戻つた。繰り返し寿命は108回以上あり、メモリ
ーは約10時間継続した。応答速度は発消色共に約
5msecであつた。
When a DC voltage of about 1.9 V was applied to the ECD using the display electrode as a cathode, the EC material composition film on the display electrode turned purple. When the polarity of the voltage was reversed in this state, the film returned to its original colorless and transparent EC material composition film. The cycle life was over 108 times, and the memory lasted for about 10 hours. The response speed was approximately 5 msec for both color development and decolorization.

実施例 2 β−ブロモエチルアクリレートとN−モノメチ
ルビオロゲンブロマイドを加熱下で反応していア
クリルエステルモノマーを合成し、H2O2を用い
て重合して得た高分子材料(a)を65部とポリビニル
ブチラール樹脂(b)35部の混合物をブチルアルコー
ルに溶解し、スピナー法によりSnO2透明ガラス
電極上に3μの厚さの膜を形成した。対向電極で
反応するレドツクス成分としてはFe2+/Fe3+
を用いた。レドツクス成分を含む電解質溶液とし
ては臭化カリウム水溶液を用いた。
Example 2 Acrylic ester monomer was synthesized by reacting β-bromoethyl acrylate and N-monomethyl viologen bromide under heating, and 65 parts of polymer material (a) obtained by polymerizing with H 2 O 2 was added. A mixture of 35 parts of polyvinyl butyral resin (b) was dissolved in butyl alcohol, and a 3μ thick film was formed on a SnO 2 transparent glass electrode by a spinner method. The Fe 2 +/Fe 3+ system was used as the redox component that reacts at the counter electrode. Potassium bromide aqueous solution was used as the electrolyte solution containing redox components.

上記ECDに表示電極を陰極として約1.7Vの直
流電圧を印加すると、表示電極上のEC材料組成
物膜が青紫色に変化した。この状態で電圧の極性
を逆転すると元の無色透明なEC材料組成物膜に
戻つた。繰り返し寿命は108回以上あり、メモリ
ーは約10時間継続した。応答速度は発消色共に約
5msecであつた。
When a DC voltage of about 1.7 V was applied to the ECD using the display electrode as a cathode, the EC material composition film on the display electrode changed to a blue-purple color. When the polarity of the voltage was reversed in this state, the film returned to its original colorless and transparent EC material composition film. The cycle life was over 108 times, and the memory lasted for about 10 hours. The response speed was approximately 5 msec for both color development and decolorization.

なお参考のために、高分子材料(a)のみで膜を形
成して得られたECDの性能を比較例として挙げ
る。
For reference, the performance of ECD obtained by forming a film using only the polymer material (a) is listed as a comparative example.

比較例 1 重合度2000のクロロメチル化ポリスチレンとN
−モノメチルビオロゲンクロライドを加熱下で反
応して得たポリスチレン系高分子材料(a)をメタノ
ールとメチルエチルケントの混合溶材に溶解して
スクリーン印刷法によりSnO2透明ガラス電極上
に3μmの膜を形成した。これを実施例1と同様
の条件でECDを作成し表示極を陰極として約
1.9Vの直流電圧を印加すると表示電極上の高分
子材料膜が紫色に変化した。この時の繰り返し寿
命は1067回であり、実施例1、2に較べて繰り
返し寿命が短かかつた。
Comparative example 1 Chloromethylated polystyrene with a degree of polymerization of 2000 and N
- A polystyrene polymer material (a) obtained by reacting monomethyl viologen chloride under heating is dissolved in a mixed solvent of methanol and methyl ethyl Kent, and a 3 μm film is formed on a SnO 2 transparent glass electrode by screen printing. did. An ECD was prepared using this under the same conditions as in Example 1, and the display electrode was used as a cathode.
When a DC voltage of 1.9V was applied, the polymer material film on the display electrode turned purple. The repetition life at this time was 10 6 to 7 times, which was shorter than that of Examples 1 and 2.

この様の高分子材料(a)に通常の高分子材料(b)を
混合することにより、高分子材料(a)のみの膜形成
に較べて、より安定に製膜性を有し、ECDとし
ての繰り返し寿命が長い安定なECDを得ること
が出来た。
By mixing such a polymer material (a) with a normal polymer material (b), it has more stable film forming properties than the film formation using only the polymer material (a), and can be used as an ECD. We were able to obtain a stable ECD with a long repeated life.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のECDを示す構成図、第2図本
発明によるECDの一実施例を示す構成図である。 図において1は基板、2は表示電極、3は対向
電極、4はスペーサー、5はEC溶液層、6は電
解質溶液、7はEC材料組成物膜を表わす。なお
図中同一符号は同一、又は相当部分を示す。
FIG. 1 is a block diagram showing a conventional ECD, and FIG. 2 is a block diagram showing an embodiment of the ECD according to the present invention. In the figure, 1 is a substrate, 2 is a display electrode, 3 is a counter electrode, 4 is a spacer, 5 is an EC solution layer, 6 is an electrolyte solution, and 7 is an EC material composition film. Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】 1 電圧印加による発消色反応を利用するエレク
トロクロミツク表示装置において、発消色する官
能基を高分子の側鎖、又は主鎖に有する高分子材
料(a)と上記管能基を有さない高分子材料(b)を混合
して成るエレクトロクロミツク材料組成物を、表
示電極上に膜状に形成したことを特徴とするエレ
クトロクロミツク表示装置。 2 発消色する官能基を高分子の側鎖に有する高
分子材料(a)として、下記一般式で示されるポリス
チレン誘導体を用いることを特徴とする特許請求
の範囲第1項記載のエレクトロクロミツク表示装
置。 (但しnは正の整数で重合度を示す。×は電圧印
加で発消色する官能基を示す。) 3 発消色する官能基を高分子の側鎖に有する高
分子材料(a)として、下記一般式で示されるポリア
クリルアミド誘導体を用いることを特徴とす特許
請求の範囲第1項記載のエレクトロクロミツク表
示装置。 (但しnは正の整数で重合度を示し、×は電圧印
加で発消色する官能基を示す。) 4 発消色する官能基を高分子の側鎖に有する高
分子材料(a)として、下記一般式で示されるポリア
クリルエステル誘導体又はポリメタクリル誘導体
を用いることを特徴とする特許請求の範囲第1項
記載のエレクトロクロミツク表示装置。 (但し、Rは水素またはメチル基、nは正の整数
で重合度を、また×は電圧印加により発消色を行
う官能基を示す。) 5 発消色する官能基を高分子の側鎖に有する高
分子材料(a)として、下記一般式で示されるポリビ
ニルアセテート誘導体を用いることを特徴とする
特許請求の範囲第1項記載のエレクトロクロミツ
ク表示装置。 (但しnは正の整数で重合度を示し、×は電圧印
加により発消色を行う官能基を示す。) 6 発消色する官能基を高分子の主鎖に有する高
分子材料(a)として、下記一般式で示されるポリエ
ステル誘導体を用いることを特徴とする特許請求
の範囲第1項記載のエレクトロクロミツク表示装
置。 (但しRはアルキレン基またはフエニレン基を示
し、nは正の整数で重合度を示し、×は電圧印加
により発消色を行う官能基を示す。) 7 発消色する官能基を高分子の主鎖に有する高
分子材料(a)として、下記一般式で示されるポリウ
レタン誘導体を用いることを特徴とする特許請求
の範囲第1項記載のエレクトロクロミツク表示装
置。 (但しRはアルキレン基またはフエニレン基を示
し、nは正の整数で重合度を示し、×は電圧印加
により発消色を行う官能基を示す。) 8 発消色する官能基を高分子の主鎖に有する高
分子材料(a)として、下記一般式で示されるポリア
ミド誘導体を用いることを特徴とする特許請求の
範囲第1項記載のエレクトロクロミツク表示装
置。 (但しRはアルキレン基またはフエニレン基を示
し、nは正の整数で重合度を示し、×は電圧印加
により発消色を行う官能基を示す。)
[Scope of Claims] 1. In an electrochromic display device that utilizes a coloring and fading reaction caused by voltage application, a polymer material (a) having a functional group that develops and fades color in a side chain or main chain of the polymer and the above-mentioned 1. An electrochromic display device characterized in that an electrochromic material composition formed by mixing a polymeric material (b) having no functional group is formed in the form of a film on a display electrode. 2. The electrochromic device according to claim 1, characterized in that a polystyrene derivative represented by the following general formula is used as the polymer material (a) having a functional group that develops and fades color in the side chain of the polymer. Display device. (However, n is a positive integer and indicates the degree of polymerization. × indicates a functional group that develops and discolors when voltage is applied.) 3. As a polymer material (a) that has a functional group that develops and discolors in the side chain of the polymer. An electrochromic display device according to claim 1, characterized in that a polyacrylamide derivative represented by the following general formula is used. (However, n is a positive integer and indicates the degree of polymerization, and × indicates a functional group that develops and discolors when voltage is applied.) 4. As a polymer material (a) that has a functional group that develops and discolors in the side chain of the polymer. The electrochromic display device according to claim 1, characterized in that a polyacrylic ester derivative or a polymethacrylic derivative represented by the following general formula is used. (However, R is hydrogen or a methyl group, n is a positive integer and indicates the degree of polymerization, and × indicates a functional group that develops and discolors when voltage is applied.) 5. 2. The electrochromic display device according to claim 1, wherein a polyvinyl acetate derivative represented by the following general formula is used as the polymer material (a). (However, n is a positive integer and indicates the degree of polymerization, and × indicates a functional group that develops and discolors upon application of voltage.) 6. Polymer material having a functional group that develops and discolors in the main chain of the polymer (a) 2. The electrochromic display device according to claim 1, wherein a polyester derivative represented by the following general formula is used as . (However, R represents an alkylene group or a phenylene group, n is a positive integer and represents the degree of polymerization, and × represents a functional group that develops and fades color upon application of voltage.) 7. 2. The electrochromic display device according to claim 1, wherein a polyurethane derivative represented by the following general formula is used as the polymeric material (a) in the main chain. (However, R represents an alkylene group or a phenylene group, n is a positive integer and represents the degree of polymerization, and × represents a functional group that develops and fades color upon application of voltage.) 8. 2. The electrochromic display device according to claim 1, wherein a polyamide derivative represented by the following general formula is used as the polymer material (a) in the main chain. (However, R represents an alkylene group or a phenylene group, n is a positive integer and represents the degree of polymerization, and x represents a functional group that develops and fades color upon application of voltage.)
JP8481680A 1980-06-20 1980-06-20 Display method of electrochromic display Granted JPS5710121A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8481680A JPS5710121A (en) 1980-06-20 1980-06-20 Display method of electrochromic display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8481680A JPS5710121A (en) 1980-06-20 1980-06-20 Display method of electrochromic display

Publications (2)

Publication Number Publication Date
JPS5710121A JPS5710121A (en) 1982-01-19
JPH0133808B2 true JPH0133808B2 (en) 1989-07-14

Family

ID=13841255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8481680A Granted JPS5710121A (en) 1980-06-20 1980-06-20 Display method of electrochromic display

Country Status (1)

Country Link
JP (1) JPS5710121A (en)

Also Published As

Publication number Publication date
JPS5710121A (en) 1982-01-19

Similar Documents

Publication Publication Date Title
EP2013312B9 (en) Electrochromic electrolyte blends
EP1154311A9 (en) Electrochromic element
US6728022B2 (en) Electrochromic device
US6437901B1 (en) Electrochromic device
US6514431B1 (en) Ion conductive material
AU664766B2 (en) Solid-state electrochromic device with proton-conducting polymer electrolyte
US6285486B1 (en) Electrochromic mirror and electrochromic devices
US6532098B1 (en) Electrochromic element
JPH0133808B2 (en)
JPH0133809B2 (en)
US6538792B1 (en) Electrochromic device
US20040070724A1 (en) Display unit and drive method therefor
JPS61185730A (en) Composite film type electrochromic material
JPS60233125A (en) Organic electro-color forming material and manufacture
JPH0115553B2 (en)
JPH0133810B2 (en)
JPH08110533A (en) Electrochromic element
JPS6329248B2 (en)
JPH0730314B2 (en) Electrochromic display material
JPH0139086B2 (en)
JPH06199934A (en) Three-component copolymer of polyvinyl alcohol, its production and color-developing and changing material composed of the polymer
JPH0693066B2 (en) Electrochromic display element
JPS5838931A (en) Electrochromic display element
JPH06199935A (en) Polyvinyl alcohol copolymer, its production and color-developing and changing material composed of the polymer
JPH0115552B2 (en)