JPH0133777B2 - - Google Patents

Info

Publication number
JPH0133777B2
JPH0133777B2 JP54090945A JP9094579A JPH0133777B2 JP H0133777 B2 JPH0133777 B2 JP H0133777B2 JP 54090945 A JP54090945 A JP 54090945A JP 9094579 A JP9094579 A JP 9094579A JP H0133777 B2 JPH0133777 B2 JP H0133777B2
Authority
JP
Japan
Prior art keywords
probe
change
liquid
electrodes
bubble
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54090945A
Other languages
Japanese (ja)
Other versions
JPS5614938A (en
Inventor
Kunishiro Mori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP9094579A priority Critical patent/JPS5614938A/en
Publication of JPS5614938A publication Critical patent/JPS5614938A/en
Publication of JPH0133777B2 publication Critical patent/JPH0133777B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Description

【発明の詳細な説明】 本発明は、液体中に発生する気体の泡(気泡)
を検出する方式および液面を検出する方式に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to gas bubbles (bubbles) generated in a liquid.
The present invention relates to a method for detecting liquid level and a method for detecting liquid level.

液体中に発生する気泡をそのまま放置すると、
重大な事故を招く場合がある。例えば、原子炉の
冷却水のように、燃料棒の冷却を目的とする液体
が、燃料棒の過熱等により気泡を発生した場合に
おいて、ただちにこの気泡を検出し、冷却水を追
加するか、また発生する気泡によるタンク内ガス
を抜き取るかの作業を実施しなければ、熱暴走も
しくはタンクの破壊が発生し、重大な事故を引き
起しかねない。
If you leave the bubbles that form in the liquid as is,
This may lead to serious accidents. For example, if a liquid intended for cooling fuel rods, such as cooling water in a nuclear reactor, generates bubbles due to overheating of the fuel rods, it is necessary to immediately detect the bubbles and add cooling water. If the gas bubbles generated in the tank are not removed, thermal runaway or tank destruction may occur, leading to a serious accident.

このような液体中に発生する気泡を検出するた
めに、従来行なわれていた典型的な方式の一つ
は、第1図に示すように、先端の露出された内部
電極1と、これと絶縁体2で絶縁された外部電極
3を備えたプローブ4を液体中に浸漬し、プロー
ブ4の両電極に直流源5を接続して駆動し、回路
に流れる電流変化を、回路中に挿入接続した抵抗
6の両端電位差の変化として取り出し、これを増
幅器7で増幅して、例えば、メータ等の表示器8
で表示するようにしているものが知られている。
この方式においては、液体中に浸漬されたプロー
ブ4の両電極1,3間の電気抵抗が、気泡発生に
より変化するので、抵抗6の両端間電位差が変化
し、これによつて表示器8に気泡発生が表示され
る。
As shown in Figure 1, one of the typical methods conventionally used to detect bubbles generated in a liquid is to use an internal electrode 1 with an exposed tip and an insulated A probe 4 equipped with an external electrode 3 insulated by a body 2 is immersed in a liquid, and a direct current source 5 is connected to both electrodes of the probe 4 to drive it, and changes in the current flowing through the circuit are inserted and connected into the circuit. It is extracted as a change in the potential difference across the resistor 6, amplified by an amplifier 7, and displayed on a display 8 such as a meter.
It is known that it is displayed as .
In this method, the electrical resistance between the electrodes 1 and 3 of the probe 4 immersed in the liquid changes due to the generation of bubbles, so the potential difference between both ends of the resistor 6 changes, which causes the display 8 to change. Bubble formation is displayed.

このような従来の方式では、気泡発生による電
気抵抗の変化は微小であるため、検出感度が低い
欠点を持つばかりでなく、増幅器7として高い安
定度を必要とする高利得直流増幅器を使用しなけ
ればならず高価になる。
In such a conventional method, since the change in electrical resistance due to bubble generation is minute, it not only has the drawback of low detection sensitivity, but also requires the use of a high-gain DC amplifier as the amplifier 7, which requires high stability. However, it becomes expensive.

また公知の他の方式として、抵抗ブリツジの一
辺に第1図と同様のプローブを接続して、気泡発
生によるプローブ両電極間の電気抵抗の変化によ
るブリツジのアンバランスによつて気泡検出を行
うものもあるが、この方式も、検出感度が悪い欠
点がある。
Another known method is to connect a probe similar to that shown in Figure 1 to one side of a resistive bridge, and detect air bubbles based on the unbalance of the bridge due to changes in electrical resistance between both electrodes of the probe due to air bubble generation. However, this method also has the drawback of poor detection sensitivity.

更に、上述した二方式において、直流電源の代
りに正弦波交流電源を用いることも行なわれてい
るが、この場合でも、気泡発生による電気抵抗の
変化によつて気泡を検出することは同じであり、
相変らず検出感度が低い欠点がある。
Furthermore, in the above two methods, a sine wave AC power source is used instead of a DC power source, but even in this case, bubbles are still detected based on the change in electrical resistance caused by bubble generation. ,
It still has the drawback of low detection sensitivity.

なお、上述の従来の気泡検出方式は、液面検出
にも利用されている。即ち、気泡率100%が液の
ない状態であるので、液面がプローブより上か下
かを検出することができる。
Note that the conventional bubble detection method described above is also used for liquid level detection. That is, since a bubble rate of 100% means that there is no liquid, it is possible to detect whether the liquid level is above or below the probe.

本発明は、上述の従来の方式の欠点に鑑み、高
感度かつ安定で、安価に実現できる気泡検出方式
および液面検出方式を提供することを目的とす
る。
SUMMARY OF THE INVENTION In view of the drawbacks of the conventional methods described above, it is an object of the present invention to provide a bubble detection method and a liquid level detection method that are highly sensitive, stable, and can be realized at low cost.

本発明は、プローブの両電極に供給する電源と
して交番矩形波を印加し、これによつて、検出信
号としてプローブの両電極間の抵抗変化による信
号ばかりでなく、静電容量の変化による信号も同
時に取り出して、検出感度を向上させたものであ
る。
The present invention applies an alternating rectangular wave as a power supply to both electrodes of the probe, and thereby detects not only a signal due to a change in resistance between both electrodes of the probe, but also a signal due to a change in capacitance between the two electrodes of the probe. They are taken out at the same time to improve detection sensitivity.

以下、本発明を図面に示す実施例を参照して詳
細に説明する。
Hereinafter, the present invention will be explained in detail with reference to embodiments shown in the drawings.

第2図は本発明の一実施例を示すブロツク図
で、従来と同様のプローブ4の両電極1,3間
へ、矩形波電源9を接続し、その途中に増幅器1
0を接続している。
FIG. 2 is a block diagram showing an embodiment of the present invention, in which a rectangular wave power source 9 is connected between both electrodes 1 and 3 of a probe 4 similar to the conventional one, and an amplifier 1 is connected in the middle.
0 is connected.

ここで、プローブ4の両電極1,3間の等価回
路は第3図に示すように、両電極周辺の液体のも
つ比抵抗による体積抵抗Rと、両電極1,3間を
絶縁する絶縁体の誘電率と、電極周辺の液体の持
つ誘電率とで決まる静電容量Cとの並列回路で表
わされる。
Here, the equivalent circuit between the electrodes 1 and 3 of the probe 4 is as shown in FIG. It is represented by a parallel circuit with a capacitance C determined by the dielectric constant of the liquid around the electrode and the dielectric constant of the liquid around the electrode.

ところで、このようなCR並列回路の両端に矩
形波を印加すると、過渡現象により、その波形は
変化する。即ちCとRによる微分波が加算された
形となることは良く知られている。そして、Rお
よびCのいずれが変化しても、波形に変化が現わ
れるし、両方が変つても変化する。
By the way, when a rectangular wave is applied to both ends of such a CR parallel circuit, the waveform changes due to a transient phenomenon. That is, it is well known that the differential wave due to C and R is added. If either R or C changes, a change will appear in the waveform, and if both change, it will also change.

従つて、第2図において、プローブ4の両電極
1,3へ矩形波を印加することは、第3図のよう
なCR並列回路へ矩形波を印加している場合と等
価であり、プローブを浸漬した液体に気泡が発生
することは、第3図の抵抗Rおよび容量Cが変化
することと等価であり、従つて、気泡発生と同時
に増幅器10へ入力する波形が変化し、これによ
つて、気泡発生を検出することができる。
Therefore, in FIG. 2, applying a rectangular wave to both electrodes 1 and 3 of the probe 4 is equivalent to applying a rectangular wave to the CR parallel circuit as shown in FIG. The generation of bubbles in the immersed liquid is equivalent to a change in the resistance R and capacitance C shown in FIG. , bubble generation can be detected.

ここで、増幅器10へ入力する信号波の気泡発
生の変化は、C、R両方の変化の結果としての変
化分、即ち抵抗Rの変化による変化分に、静電容
量Cの変化による微分波の変化分が加算されたも
のとなる。これに対し、従来のように、直流や正
弦波交流を用いる場合は、この抵抗の変化分のみ
を検出しているので、過渡現象を利用して抵抗変
化分に加えて静電容量の変化分を検出する本発明
では、従来法に比し、検出感度が大幅に改善され
ることは、明らかである。
Here, the change in bubble generation in the signal wave input to the amplifier 10 is due to the change in both C and R, that is, the change due to the change in resistance R, and the change in the differential wave due to the change in capacitance C. The amount of change is added. On the other hand, when direct current or sine wave alternating current is used, as in the past, only the change in resistance is detected, so using transient phenomena, in addition to the change in resistance, the change in capacitance is detected. It is clear that in the present invention, the detection sensitivity is significantly improved compared to the conventional method.

従来の方式でも、液中に浸漬したプローブの両
電極間の等価回路は、第3図のように表わされる
が、従来のように直流を印加した場合、Cの変化
を取り出すことは不可能である。また、正弦波交
流を印加した場合でも、静電容量Cは、位相に影
響を与え、さして信号振幅の変化には影響しな
い。しかしながら、本発明によるときは、抵抗変
化と静電容量の変化を、信号波の振幅変化として
取り出すことができるので、検出感度を大幅に向
上させることができる。なお、本発明では、矩形
波印加による過渡現象を利用して抵抗変化分と静
電容量の変化分を取出しているので、従来例に比
して特にS/Nが悪くなることはない。
Even with the conventional method, the equivalent circuit between both electrodes of the probe immersed in the liquid is expressed as shown in Figure 3, but when direct current is applied as in the conventional method, it is impossible to extract the change in C. be. Furthermore, even when a sinusoidal alternating current is applied, the capacitance C affects the phase and does not significantly affect the change in signal amplitude. However, according to the present invention, since changes in resistance and capacitance can be detected as changes in the amplitude of the signal wave, detection sensitivity can be significantly improved. In addition, in the present invention, since the resistance change and the capacitance change are extracted using the transient phenomenon caused by the application of a rectangular wave, the S/N ratio is not particularly deteriorated compared to the conventional example.

この、気泡検出方式はもちろん従来のものと同
様、液面検出にも利用され得る。
This bubble detection method can of course be used for liquid level detection as well as conventional methods.

このように、プローブの駆動源として矩形波を
使用すれば高い検出感度を得ることができる。
In this way, high detection sensitivity can be obtained by using a rectangular wave as the drive source for the probe.

また、本発明において、矩形波は交番矩形波で
あるから、プローブの2つの電極が交互に正、負
の電位になるので、両電極の電解腐食を減少する
効果がある。
Furthermore, in the present invention, since the rectangular wave is an alternating rectangular wave, the two electrodes of the probe alternately have positive and negative potentials, which has the effect of reducing electrolytic corrosion of both electrodes.

なお、検出信号の増幅器としては、従来のよう
に、高い安定性を必要とされる高利得直流増幅器
を使用する必要が無く、安価な交流増幅器で良い
利点がある。
It should be noted that, as an amplifier for the detection signal, there is no need to use a high gain DC amplifier that requires high stability as in the conventional case, and an inexpensive AC amplifier has the advantage of being sufficient.

さらに、本発明による方式は、抵抗変化ばかり
でなく、容量変化も検出するので、従来方式では
不可能であつた絶縁性液体(例えば絶縁油等)の
中に発生する気泡検出も可能である。
Furthermore, since the method according to the present invention detects not only resistance changes but also capacitance changes, it is also possible to detect bubbles generated in an insulating liquid (for example, insulating oil), which was impossible with conventional methods.

このように、プローブの駆動を交番矩形波で行
なつて、容量変化分をも加算検出する本発明の方
式は、従来の装置の簡単な変更によつて実現でき
るので、従来装置の高感度化も容易であり、また
交流増幅器が利用できることから、安価なシステ
ムが実現できる。
As described above, the method of the present invention, which drives the probe with an alternating square wave and adds and detects changes in capacitance, can be realized by simple modification of conventional equipment, so it is possible to improve the sensitivity of conventional equipment. Since it is easy to use and an AC amplifier can be used, an inexpensive system can be realized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の気泡検出方式を示すブロツク
図、第2図は本発明の一実施例を示すブロツク
図、第3図は液体に浸漬した状態でのプローブの
等価回路を示す図である。 1……内部電極、2……外部電極、3……絶縁
体、4……プローブ、9……矩形波電源、10…
…増幅器。
FIG. 1 is a block diagram showing a conventional bubble detection method, FIG. 2 is a block diagram showing an embodiment of the present invention, and FIG. 3 is a diagram showing an equivalent circuit of a probe immersed in liquid. DESCRIPTION OF SYMBOLS 1...Internal electrode, 2...External electrode, 3...Insulator, 4...Probe, 9...Square wave power supply, 10...
…amplifier.

Claims (1)

【特許請求の範囲】[Claims] 1 二つの互に絶縁されかつ外部へ露出された先
端電極を有するプローブを液体中に配置し、該プ
ローブの二電極へ電源を供給して気泡発生にとも
なう電気的変化を検出するようにした気泡・液面
検出方式において、上記電源として交番矩形波電
源を用いたことを特徴とする気泡・液面検出方
式。
1. A probe having two mutually insulated tip electrodes exposed to the outside is placed in a liquid, and electric power is supplied to the two electrodes of the probe to detect electrical changes caused by bubble generation. - A bubble/liquid level detection method characterized in that an alternating square wave power source is used as the power source in the liquid level detection method.
JP9094579A 1979-07-19 1979-07-19 Bubble and liquid level detecting system Granted JPS5614938A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9094579A JPS5614938A (en) 1979-07-19 1979-07-19 Bubble and liquid level detecting system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9094579A JPS5614938A (en) 1979-07-19 1979-07-19 Bubble and liquid level detecting system

Publications (2)

Publication Number Publication Date
JPS5614938A JPS5614938A (en) 1981-02-13
JPH0133777B2 true JPH0133777B2 (en) 1989-07-14

Family

ID=14012591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9094579A Granted JPS5614938A (en) 1979-07-19 1979-07-19 Bubble and liquid level detecting system

Country Status (1)

Country Link
JP (1) JPS5614938A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100467335B1 (en) * 2002-11-22 2005-01-24 지아이 주식회사 Foaming action detector using fuzzy multi-step contact method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5445196A (en) * 1977-09-16 1979-04-10 Doryokuro Kakunenryo Signal treating method of void meter

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5445196A (en) * 1977-09-16 1979-04-10 Doryokuro Kakunenryo Signal treating method of void meter

Also Published As

Publication number Publication date
JPS5614938A (en) 1981-02-13

Similar Documents

Publication Publication Date Title
US6392416B1 (en) Electrode integrity checking
US3242729A (en) Electrolytic flowmeter
JPH05187900A (en) Error detecting circuit for magnetic flow-rate measuring apparatus
CA2477822A1 (en) Stabilized conductivity sensing system
KR840001336A (en) Ion concentration meter
JPH0133777B2 (en)
JPH071289B2 (en) Method and apparatus for measuring conductivity without influence of polarization
JPS58198749A (en) Apparatus for measuring concentration of electrolyte solution
JP2751269B2 (en) Electromagnetic flow meter
JPH05203604A (en) Measuring method and device for oxygen concentration
JPH0442770Y2 (en)
JPS5869273U (en) Inspection equipment using electrical resistance method
JPS5928369Y2 (en) Interface potential measuring device
JP2655533B2 (en) Sensor connection judgment circuit in constant potential electrolysis type gas measurement device
SU1346993A1 (en) Device for measuring electrical conduction of liquid
JPS61151475A (en) Apparatus for measuring conductivity of solution
JPS6118240B2 (en)
JPS6313457Y2 (en)
SU640195A1 (en) Gaseous medium density measuring device
SU1215032A1 (en) Apparatus for measuring liquid electrical conductance
JPS61151474A (en) Apparatus for measuring solution conductivity
SU894522A1 (en) Conductometric device
JPH02170040A (en) Method and device for measuring electrical conductivity
SU580455A1 (en) Electroconductive liquid level monitor
Kumar et al. Dispersion of resistivity anomalies in critical binary liquid systems