JPS61151474A - Apparatus for measuring solution conductivity - Google Patents

Apparatus for measuring solution conductivity

Info

Publication number
JPS61151474A
JPS61151474A JP27346984A JP27346984A JPS61151474A JP S61151474 A JPS61151474 A JP S61151474A JP 27346984 A JP27346984 A JP 27346984A JP 27346984 A JP27346984 A JP 27346984A JP S61151474 A JPS61151474 A JP S61151474A
Authority
JP
Japan
Prior art keywords
signal
solution
coil
measured
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27346984A
Other languages
Japanese (ja)
Inventor
Yoshikiyo Takegawa
竹川 恵清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NICHIMOU KK
Nichimo Co Ltd
Original Assignee
NICHIMOU KK
Nichimo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NICHIMOU KK, Nichimo Co Ltd filed Critical NICHIMOU KK
Priority to JP27346984A priority Critical patent/JPS61151474A/en
Publication of JPS61151474A publication Critical patent/JPS61151474A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

PURPOSE:To make it possible to compensate the temp. in the measurement of conductivity, by receiving the detection coil opposed to an exciting coil in a hermetically closed case and providing the exciting coil AC signal applying means of an electromagnetic induction coil pair immersed in a solution to be measured and a temp. compensation means for compensating temp. by changing the amplitude of an AC signal. CONSTITUTION:Because the resistance RX of a liquid channel coil X is changed by the conductivity of a solution to be measured, if an AC signal is applied to an exciting coil L and the signal magnetically induced to a detection coil L2 through a liquid channel coil LX is measured, the conductivity of the solution to be measured can be measured from the amplitude value of said AC signal. The exciting coil L1 and detection coil L2 in an electromagnetic induction coil pair utilize an electromagnetic induction phenomena and, therefore, the direct contact with the solution thereof is not required. Because the compensation of temp. is performed to the AC signal applied to the exciting oil, the effect of external noise is not received.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は被測定溶液の導電率を測定する溶液導電率測定
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a solution conductivity measuring device for measuring the conductivity of a solution to be measured.

〔従来技術〕[Prior art]

従来の溶液導電率測定装置を第10図に示す。 A conventional solution conductivity measuring device is shown in FIG.

測定用電源ACとしては交流電源が用いられ、測定用交
流電源ACからの交流信号はN衝増#A器A1で増幅さ
れ、測定セルCEに印加される。測定セルGEは第11
図に示すように2枚の対向電極T1.T2を有しており
、被測定溶液をこれら対向電極T 1 、 、T 2間
に流入流出させる。被測定溶液の導電率が異なると対向
電極間の抵抗RXが変動する。測定セルC、Eの交流出
力は交流増幅器A2で増幅される。増幅された交流信号
はダイオードDにより整流され、直流増幅器A3に入力
される。直流増幅器A3には演算抵抗Rに並列にサーミ
スタTHが接続されており、これにより温度補償がなさ
れる。
An alternating current power source is used as the measuring power source AC, and the alternating current signal from the measuring alternating current power source AC is amplified by the N amplifier #A device A1 and applied to the measuring cell CE. The measurement cell GE is the 11th
As shown in the figure, two opposing electrodes T1. T2, and the solution to be measured flows in and out between these opposing electrodes T1, T2. When the conductivity of the solution to be measured differs, the resistance RX between the opposing electrodes varies. The AC outputs of measurement cells C and E are amplified by AC amplifier A2. The amplified AC signal is rectified by diode D and input to DC amplifier A3. A thermistor TH is connected to the DC amplifier A3 in parallel to the operational resistor R, thereby performing temperature compensation.

測定セルGE内に被測定溶液を入れ、緩衝増幅号へ1を
介して測定用交流電源ACの出力電圧を測定セルCEの
対向電極T1.T2に印加1°ると、対向電極T1.7
2間における被測定溶液の抵抗RXに対応する出力信号
が交流増幅器A2、直流増幅器A3を介して出力端To
が送出される。抵抗RXは、被測定溶液の導電率により
異なるが、被測定溶液の温度によっても異なるため、サ
ーミスタTt−(により温度補償をおこなう。
A solution to be measured is placed in the measurement cell GE, and the output voltage of the measurement AC power source AC is applied to the buffer amplifier No. 1 through the counter electrode T1. of the measurement cell CE. When applying 1° to T2, the counter electrode T1.7
The output signal corresponding to the resistance RX of the solution to be measured between the two is sent to the output terminal To via the AC amplifier A2 and the DC amplifier A3.
is sent. The resistance RX varies depending on the conductivity of the solution to be measured, but also varies depending on the temperature of the solution to be measured, so temperature compensation is performed by the thermistor Tt-(.

しかしながら、このような従来の溶液導電率測定装置で
は、金属で作られた対向電極T1.T2が被測定溶液に
直接触れるため、塩水などの導電率を測定する場合には
対向電極T1.T2が溶液により侵され劣化するという
問題があった。
However, in such a conventional solution conductivity measuring device, the counter electrode T1. Since T2 directly contacts the solution to be measured, when measuring the conductivity of salt water, etc., the counter electrode T1. There was a problem that T2 was attacked by the solution and deteriorated.

また従来の溶液導電率測定装置では、温度補償が測定セ
ルの出力側でおこなわれるが、出力側では信号レベルが
低いため、外部ノイズの影響を受は易く十分満足できる
温度補償をすることが困難であった。
In addition, in conventional solution conductivity measurement devices, temperature compensation is performed on the output side of the measurement cell, but because the signal level is low on the output side, it is easily affected by external noise, making it difficult to perform sufficient temperature compensation. Met.

〔発明の目的〕[Purpose of the invention]

本発明は上記事情を考慮してなされたもので測定セルが
被測定溶液に侵され劣化することなく、適正な温度補償
をづることができる溶液導電率測定装置を提供すること
を目的とする。
The present invention has been made in consideration of the above circumstances, and it is an object of the present invention to provide a solution conductivity measuring device that can perform appropriate temperature compensation without causing the measurement cell to deteriorate due to being corroded by the solution to be measured.

〔発明の概要〕[Summary of the invention]

上記目的を達成するため本発明による溶液導電率測定装
置は、励磁コイルとこの励磁コイルに相対する検出コイ
ルとを有し、被測定溶液中に浸された電磁誘導コイル対
と、この電磁誘導コイル対の励磁コイルに交流信号を印
加する交流信号印加手段と、前記被測定溶液の温度を検
出する温度検出手段と、この温度検出手段の検出信号に
基づいて前記交流信号印加手段により印加される前記交
流信号の振幅を変化させて温度補償をする温度補償手段
と、前記被測定溶液を介して前記検出コイルに電磁誘導
された検出信号により前記被測定溶液の導電率を測定す
る測定手段とを備えたことを特徴とする。
In order to achieve the above object, the solution conductivity measuring device according to the present invention has an excitation coil and a detection coil opposite to the excitation coil, and includes a pair of electromagnetic induction coils immersed in a solution to be measured, and the electromagnetic induction coil. an alternating current signal applying means for applying an alternating current signal to a pair of excitation coils; a temperature detecting means for detecting the temperature of the solution to be measured; Temperature compensating means for temperature compensation by changing the amplitude of an alternating current signal; and measuring means for measuring the conductivity of the solution to be measured using a detection signal electromagnetically induced to the detection coil via the solution to be measured. It is characterized by:

〔発明の実施例〕[Embodiments of the invention]

本発明の第1の実施例による溶液導電率測定装置を第1
図に示す。
The solution conductivity measuring device according to the first embodiment of the present invention is
As shown in the figure.

本実施例による溶液導電率測定装置は電磁誘導コイル対
により溶液の導電率を測定する。電磁誘導コイル対は第
2図(a)に示づように相対する励磁コイルL1と検出
コイルL2により構成されている。これらコイルL1と
し2を被測定溶液中に浸すと、第2図(a)に示すよう
にコイルL1とL2の中心を貴く溶液コイルしXが形成
される。
The solution conductivity measuring device according to this embodiment measures the conductivity of a solution using a pair of electromagnetic induction coils. As shown in FIG. 2(a), the electromagnetic induction coil pair is composed of an excitation coil L1 and a detection coil L2 that face each other. When these coils L1 and 2 are immersed in the solution to be measured, the centers of the coils L1 and L2 are tightly coiled with the solution to form a shape X, as shown in FIG. 2(a).

被測定溶液の導電率により液路コイルL3の抵抗RXが
変化するので、励磁コイルL1に交流信号を印加し液路
コイルし×を介して検出コイルL2に電磁誘導される信
号を測定すれば、この信号の振幅値から被測定溶液の導
電率が測定できる。この電Vit1誘導コイル対におけ
る励磁コイルL1、検出コイルL2は電磁誘導現象を利
用しているため溶液に直接触れる必要がない。したがっ
て第2図(a)に示すように各コイルL1.L2を密閉
ケースC31,C82中に入れ、コイルL1.L2が溶
液に侵されないようにすることができる。
Since the resistance RX of the liquid path coil L3 changes depending on the conductivity of the solution to be measured, if an AC signal is applied to the excitation coil L1 and the signal electromagnetically induced to the detection coil L2 via the liquid path coil is measured, The conductivity of the solution to be measured can be measured from the amplitude value of this signal. Since the excitation coil L1 and the detection coil L2 in this Vit1 induction coil pair utilize electromagnetic induction phenomena, there is no need to directly touch the solution. Therefore, as shown in FIG. 2(a), each coil L1. L2 is placed in the sealed cases C31 and C82, and the coils L1. It is possible to prevent L2 from being attacked by the solution.

励磁コイルL1への交流信号は、溶液増幅器OP1、コ
ンデンサC1、抵抗R1,R2,R3゜R4により構成
された発振回路により発生される。
An alternating current signal to the excitation coil L1 is generated by an oscillation circuit composed of a solution amplifier OP1, a capacitor C1, and resistors R1, R2, R3°R4.

この発振回路において、演算増幅器OP1の負入力端に
は接地されたコンデンサC1が接続されており、この負
入力端と出力端との間には抵抗R1が接続されている。
In this oscillation circuit, a grounded capacitor C1 is connected to the negative input terminal of the operational amplifier OP1, and a resistor R1 is connected between the negative input terminal and the output terminal.

出力端とアースとの間には直列接続された抵抗R2とR
3とR4が挿入されている。抵抗R3と抵抗R4の接続
点は、演算増幅器OP1の正出力端に接続されている。
Resistors R2 and R are connected in series between the output terminal and ground.
3 and R4 are inserted. The connection point between the resistor R3 and the resistor R4 is connected to the positive output terminal of the operational amplifier OP1.

この発振回路は抵抗R2と抵抗R3との接続点(A点)
の電圧によりその振幅が変化するようになっている。
This oscillation circuit is a connection point (point A) between resistor R2 and resistor R3.
Its amplitude changes depending on the voltage.

演算増幅器OP1の出力端にはダイオードD1が接続さ
れ、交流信号を整流する。整流された信号は、コンデン
サC2により平滑される。平滑された直流信号は抵抗R
5を介して演算増幅器OP2に印加されて増幅される。
A diode D1 is connected to the output terminal of the operational amplifier OP1 to rectify the alternating current signal. The rectified signal is smoothed by capacitor C2. The smoothed DC signal is resistor R
5 and is applied to the operational amplifier OP2 and amplified.

この演算増幅器OP2の負入力端と出力端との間には温
度検出素子Rtが接続される。温度検出素子R1は温度
によりその抵抗値が変化する素子である。この温度検出
素子Rtはできるだけ励磁コイルL1と検出コイル[2
の近傍に位置することが望ましい。このように構成する
ことにより演算増幅器OP2の出力端(B点)における
電圧は温度補償された負の直流信号となる。
A temperature detection element Rt is connected between the negative input terminal and the output terminal of this operational amplifier OP2. The temperature detection element R1 is an element whose resistance value changes depending on the temperature. This temperature detection element Rt is connected to the excitation coil L1 and the detection coil [2] as much as possible.
It is desirable to be located near . With this configuration, the voltage at the output terminal (point B) of the operational amplifier OP2 becomes a temperature-compensated negative DC signal.

演算増幅器OP2の出力端には抵抗R6が接続され、こ
の抵抗R6は演算増幅器OP3の負入力端に接続される
。演算増幅器OP3の出力端と負入力端との間には抵抗
R7が挿入される。演算増幅50P3の出力端(0点)
にはダイオードD3のカソードが接続され、ダイオード
D3のアノードはA点に接続されている。A点とB点と
の間にはダイオードD2が挿入されている。ダイオード
D2のアノードがA点にカソードがB点に接続されてい
る。抵抗R6と抵抗R7を等しくすれば、0点とB点と
は値が同じで符号が異なる直流信号となる。したがって
A点の電圧は温度補償されたB点の電圧とその絶対値が
等しくなり、方形波発振回路の振幅が温度により変化す
ることになる。
A resistor R6 is connected to the output terminal of the operational amplifier OP2, and this resistor R6 is connected to the negative input terminal of the operational amplifier OP3. A resistor R7 is inserted between the output terminal and the negative input terminal of the operational amplifier OP3. Output end of operational amplifier 50P3 (0 point)
The cathode of the diode D3 is connected to the point A, and the anode of the diode D3 is connected to the point A. A diode D2 is inserted between point A and point B. The anode and cathode of the diode D2 are connected to point A and point B, respectively. If the resistors R6 and R7 are made equal, the 0 point and the B point will be DC signals with the same value but different signs. Therefore, the absolute value of the voltage at point A is equal to the temperature-compensated voltage at point B, and the amplitude of the square wave oscillation circuit changes depending on the temperature.

電磁誘導コイル対の検出コイルL2には演算増幅器OP
5が接続され、検出コイルL2に電v!1誘導された検
出信号を交流増幅する。演算増幅器OP5の負入力端と
出力端との間には抵抗R9が挿入されている。また演算
増幅器OP5の負入力端と正入力端は接地された抵抗R
8,RIOにそれぞれ接続されている。
An operational amplifier OP is installed in the detection coil L2 of the electromagnetic induction coil pair.
5 is connected, and a voltage V! is applied to the detection coil L2. 1. AC amplify the induced detection signal. A resistor R9 is inserted between the negative input terminal and the output terminal of the operational amplifier OP5. Furthermore, the negative input terminal and the positive input terminal of the operational amplifier OP5 are connected to a grounded resistor R.
8, each connected to RIO.

交流増幅された検出信号はスイッチSWI。The AC amplified detection signal is sent to the switch SWI.

SW2.SW3.SW4により検波される。スイッチS
W1とSW2は、一端が演算増幅器OP5の出力端に接
続されている。スイッチSW1の他端は一方の出力ライ
ン上の1点に接続され、スイッチSW2の他端は他方の
出力ライン上のG点に接続されている。スイッチSW3
とSW4は一端が接地されている。スイッチSW3の他
端はG点に接続され、スイッチSW4の他端は1点に接
続されている。スイッチSW1.SW2.SW3゜SW
4は、励磁コイルL1に印加する交流信号に同期してオ
ン・オフされる。すなわち励磁コイルL1にあられれる
交流信号を演算増幅器OP4で増幅する。その増幅され
た信号を、スイッチSW1とSW3に対する制御φ1と
する。スイッチSW2とSW4は制御信号φ1をインバ
ータINVにより反転した制御信号φ2により制御され
る。
SW2. SW3. It is detected by SW4. switch S
One end of W1 and SW2 is connected to the output end of operational amplifier OP5. The other end of the switch SW1 is connected to a point on one output line, and the other end of the switch SW2 is connected to a point G on the other output line. switch SW3
and SW4 are grounded at one end. The other end of switch SW3 is connected to point G, and the other end of switch SW4 is connected to one point. Switch SW1. SW2. SW3゜SW
4 is turned on and off in synchronization with the AC signal applied to the excitation coil L1. That is, the AC signal applied to the excitation coil L1 is amplified by the operational amplifier OP4. The amplified signal is used as control φ1 for switches SW1 and SW3. The switches SW2 and SW4 are controlled by a control signal φ2 obtained by inverting the control signal φ1 by an inverter INV.

スイッチSWI、SW2.8W3.8W4により検波さ
れた信号は演算増幅器OP6により直流増幅するととも
に差動出力をシングル出力に変換する。1点にあられれ
た信号は抵抗R11、コンデンサC3により平滑され、
演算増幅器OP6の負入力端に入力される。G点にあら
れれた信号は抵抗R12、コンデンサC4により平滑さ
れ、演算増幅器OP6の正入力端に入力される。演算増
幅器OP6の正入力端には接地されIC抵抗R14が接
続され、負入力端と出力端の間には抵抗R13が挿入さ
れている。演算増幅器OP6の出力端から出力さ机る信
号が被測定溶液の導電率の測定信号である。
The signals detected by the switches SWI and SW2.8W3.8W4 are DC amplified by the operational amplifier OP6, and the differential output is converted into a single output. The signal at one point is smoothed by resistor R11 and capacitor C3,
It is input to the negative input terminal of operational amplifier OP6. The signal received at point G is smoothed by resistor R12 and capacitor C4, and is input to the positive input terminal of operational amplifier OP6. The positive input terminal of the operational amplifier OP6 is grounded and connected to an IC resistor R14, and the resistor R13 is inserted between the negative input terminal and the output terminal. The signal outputted from the output terminal of the operational amplifier OP6 is a signal for measuring the conductivity of the solution to be measured.

次に本実施例による溶液導電率測定装置の動作を海水の
温度(塩度)を測定する場合を例としてさらに詳細に説
明する。
Next, the operation of the solution conductivity measuring device according to this embodiment will be described in more detail using an example in which the temperature (salinity) of seawater is measured.

まず、温度補償動作について説明する。First, the temperature compensation operation will be explained.

海水の塩度と導電率との関係は第3図に示すように温度
により変化する。同じ塩度であっても温度が上昇すれば
導電率は大きくなる。本実施例のような温度補償をしな
ければ、出力信号は温度の上昇に応じて大きくなってし
まい正しい塩度を測定できなくなる。このため本実施例
では温度検出素子Rtにより温度補償をするようにして
いる。
The relationship between the salinity and electrical conductivity of seawater changes depending on the temperature, as shown in FIG. Even if the salinity is the same, the conductivity increases as the temperature increases. If temperature compensation is not performed as in this embodiment, the output signal will increase as the temperature increases, making it impossible to accurately measure salinity. For this reason, in this embodiment, temperature compensation is performed using the temperature detection element Rt.

温度検出素子Rtの抵抗は第4図のように温度の上昇に
つれ低くなる特性を有している。したがって温度が上昇
したとすると、抵抗Rtが低くなり、このため演算増幅
器OP2の増幅率が小さくなる。するとB点の電圧の絶
対値が小さくなる。
As shown in FIG. 4, the resistance of the temperature detection element Rt has a characteristic that it decreases as the temperature rises. Therefore, if the temperature rises, the resistance Rt decreases, and therefore the amplification factor of the operational amplifier OP2 decreases. Then, the absolute value of the voltage at point B becomes smaller.

B点とA点の電圧はその絶対値が等しいから、A点の電
圧は第5図に示すように低くなる。すると。
Since the voltages at point B and point A have the same absolute value, the voltage at point A becomes lower as shown in FIG. Then.

発生回路から出力される交流信号の振幅が小さくなる。The amplitude of the AC signal output from the generation circuit becomes smaller.

すなわち、励磁コイルL1に加わる交流信号の振幅が温
度が上界するにつれ小さくなる。もし励磁コイルL1に
一定振幅の交流信号が印加されたとすると、溶液の温度
の上昇に従って検出信号L2から検出される信号は大き
くなるが、本実施例では温度上昇につれて励磁コイルL
1に加わる信号の振幅が小さくなるため、温度上昇によ
り上昇する分を相殺するように各抵抗等の回路定数を調
整すれば、第6図に示ずように検出コイルL2のD点に
おける検出信号の振幅が温度に依存せず一定となる。
That is, the amplitude of the AC signal applied to the excitation coil L1 becomes smaller as the temperature rises. If an AC signal with a constant amplitude is applied to the excitation coil L1, the signal detected from the detection signal L2 increases as the temperature of the solution increases, but in this example, as the temperature increases, the excitation coil L
Since the amplitude of the signal applied to the detection coil L2 becomes smaller, if the circuit constants of each resistor etc. are adjusted to offset the increase due to the temperature rise, the detection signal at the point D of the detection coil L2 becomes smaller as shown in FIG. The amplitude of is constant regardless of temperature.

次に検出コイルL2に被測定溶液を介して電磁誘導され
た検出信号の検波動作について説明する。
Next, the detection operation of the detection signal electromagnetically induced to the detection coil L2 via the solution to be measured will be described.

検出コイルL2の検出信号は第7図(a)に示すように
小さな振幅の交流信号である。これを演算増幅器OP5
により交流増幅すると第7図(b)に示すようになる。
The detection signal of the detection coil L2 is an alternating current signal with a small amplitude, as shown in FIG. 7(a). This is the operational amplifier OP5
When AC amplification is performed, the result is as shown in FIG. 7(b).

−力制御信号φ1により制御されるSWl、SW3は第
7図(C)に示すように、E点の電位が正の場合にオン
となる。このため1点にはE点の電圧がそのままあられ
れ、G点はOVとなる。逆に制御信号φ2により制御さ
れるSW2.8W4は第7図(d>に示すようにE点の
電位が負の場合にオンする。このため1点の電位はOV
となり、G点の電位はE点の電位がそのままあられれる
。したがって、1点およびG点は第7図(e)、(f)
に示すようになる。これを平滑化し、差動出力をシング
ル出力に変換すると第7図(g)に示すような検波出力
信号が得られる。
- SW1 and SW3 controlled by the force control signal φ1 are turned on when the potential at point E is positive, as shown in FIG. 7(C). Therefore, the voltage at point E remains at one point, and point G becomes OV. Conversely, SW2.8W4, which is controlled by the control signal φ2, turns on when the potential at point E is negative, as shown in FIG. 7 (d>. Therefore, the potential at one point is OV
Therefore, the potential at point G is the same as the potential at point E. Therefore, point 1 and point G are shown in Fig. 7(e) and (f).
It becomes as shown in . By smoothing this and converting the differential output to a single output, a detected output signal as shown in FIG. 7(g) is obtained.

このように本実施例によれば、温度補償を励磁コイルに
印加する交流信号に対しておこなうため、十分な信号レ
ベルがあり、外部ノイズの影響を受けることがない。ま
た、ダイオードではなく励磁交流信号を制御信号とする
スイッチにより検波しているため、励磁コイルL1と検
出コイル12間の分布容量により誘導されるノイズ信号
を完全に遮断できるとともに、ダイオードでは不可能な
0.3V以下の微少信号も検波できる。
As described above, according to this embodiment, since temperature compensation is performed on the AC signal applied to the excitation coil, there is a sufficient signal level and there is no influence from external noise. In addition, since detection is performed using a switch that uses an excitation AC signal as a control signal instead of a diode, it is possible to completely block noise signals induced by the distributed capacitance between the excitation coil L1 and the detection coil 12, and it is also possible to completely block out noise signals that are not possible with diodes. It can also detect minute signals of 0.3V or less.

次に本発明の第2の実施例による溶液導電率測定装置を
第8図に示す。検出コイルL2に電磁誘導された検出信
号を検波する回路が第1の実施例と異なる。すなわち検
出コイルL2に誘導された検出信号は抵抗R15が入出
力端間に接続された演算増幅器OP7で交流増幅される
。増幅された交流信号はダイオードD4で整流され検波
される。
Next, a solution conductivity measuring device according to a second embodiment of the present invention is shown in FIG. The circuit for detecting the detection signal electromagnetically induced in the detection coil L2 is different from the first embodiment. That is, the detection signal induced in the detection coil L2 is AC amplified by an operational amplifier OP7 having a resistor R15 connected between the input and output terminals. The amplified AC signal is rectified and detected by diode D4.

整流された信号は、抵抗R16が入出力端間に接続され
た演算増幅器OP8により直流増幅され、出力信号が得
られる。
The rectified signal is DC amplified by an operational amplifier OP8 with a resistor R16 connected between the input and output terminals, and an output signal is obtained.

次に本発明の第3の実施例による溶液導電率測定装置を
第9図に示す。検出コイルに電磁誘導された検出信号を
ダイオードD5.D6.D7゜D8からなるダイオード
ブリッジ回路により全□波整流された′直流信号を直流
電流計AMPにより測定する。極めて簡単に測定信号を
得ることができる。 なお、本発明は海水以外の他の溶
液の導電率測定にも用いることができる。
Next, a solution conductivity measuring device according to a third embodiment of the present invention is shown in FIG. The detection signal electromagnetically induced in the detection coil is passed through the diode D5. D6. A DC signal that has been fully square-wave rectified by a diode bridge circuit consisting of D7 and D8 is measured by a DC ammeter AMP. Measurement signals can be obtained extremely easily. Note that the present invention can also be used to measure the conductivity of solutions other than seawater.

〔発明の効果〕〔Effect of the invention〕

以上の通り本発明によれば、測定セルが被測定溶液に侵
されて劣化することなくかつ高精度の温度補償をするこ
とができる。
As described above, according to the present invention, highly accurate temperature compensation can be performed without the measurement cell being attacked by the solution to be measured and deteriorating.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例による溶液導電率測定装
置の回路図、第2図(a)、(b)は同溶液導電率測定
装置で用いられる電磁誘導コイル対の斜視図および回路
図、第3図〜第6図は同溶液導電率測定装置の温度補償
動作を説明するためのグラフ、第7図(a)〜(g)は
同溶液S電率測定装置の検波動作を説明するためのタイ
ムチャート、 第8図は本発明の第2の実施例による溶液導電率測定装
置の回路図、 第9図は、本発明の第3の実施例による溶液導電率測定
装置の回路図、 第10図は従来の溶液導電率測定装置の回路図、第11
図(a)、(b)は同溶液導電率測定装置で用いられる
測定セルの斜視図および回路図である。 OPI〜OP8・・・演算増幅器、R1−R17・・・
抵抗、−Rt・・・温度検出素子、RX・・・液路コイ
ルの抵抗、C1〜C4・・・コンデンサ、Ll・・・励
磁コイル、L2・・・検出コイル、UX・・・液路コイ
ル、SW1〜SW4・・・スイッチ、C81,C32・
・・密閉ケース。 第3図 】度− 第5図 0610°20@30’温度 第4図 第6図
FIG. 1 is a circuit diagram of a solution conductivity measuring device according to a first embodiment of the present invention, and FIGS. 2(a) and 2(b) are perspective views of a pair of electromagnetic induction coils used in the solution conductivity measuring device. The circuit diagram, Figures 3 to 6 are graphs for explaining the temperature compensation operation of the solution conductivity measuring device, and Figures 7 (a) to (g) show the detection operation of the solution S conductivity measuring device. A time chart for explanation, FIG. 8 is a circuit diagram of a solution conductivity measuring device according to a second embodiment of the present invention, and FIG. 9 is a circuit diagram of a solution conductivity measuring device according to a third embodiment of the present invention. Figure 10 is a circuit diagram of a conventional solution conductivity measuring device, and Figure 11 is a circuit diagram of a conventional solution conductivity measuring device.
Figures (a) and (b) are a perspective view and a circuit diagram of a measurement cell used in the solution conductivity measuring device. OPI~OP8... operational amplifier, R1-R17...
Resistance, -Rt...Temperature detection element, RX...Resistance of liquid path coil, C1-C4...Capacitor, Ll...Excitation coil, L2...Detection coil, UX...Liquid path coil , SW1 to SW4...switch, C81, C32...
...Sealed case. Figure 3] Degrees - Figure 5 0610°20@30' Temperature Figure 4 Figure 6

Claims (1)

【特許請求の範囲】 励磁コイルとこの励磁コイルに相対する検出コイルとを
有し、被測定溶液中に浸された電磁誘導コイル対と、 この電磁誘導コイル対の励磁コイルに交流信号を印加す
る交流信号印加手段と、 前記被測定溶液の温度を検出する温度検出手段と、 この温度検出手段の検出信号に基づいて前記交流信号印
加手段により印加される前記交流信号の振幅を変化させ
て温度補償をする温度補償手段と、前記被測定溶液を介
して前記検出コイルに電磁誘導された検出信号により前
記被測定溶液の導電率を測定する測定手段と を備えたことを特徴とする溶液導電率測定装置。
[Claims] A pair of electromagnetic induction coils that includes an excitation coil and a detection coil opposite to the excitation coil, and is immersed in a solution to be measured, and an alternating current signal is applied to the excitation coil of the pair of electromagnetic induction coils. AC signal applying means; temperature detecting means for detecting the temperature of the solution to be measured; and temperature compensation by changing the amplitude of the AC signal applied by the AC signal applying means based on the detection signal of the temperature detecting means. and a measuring means for measuring the conductivity of the solution to be measured using a detection signal electromagnetically induced to the detection coil via the solution to be measured. Device.
JP27346984A 1984-12-26 1984-12-26 Apparatus for measuring solution conductivity Pending JPS61151474A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27346984A JPS61151474A (en) 1984-12-26 1984-12-26 Apparatus for measuring solution conductivity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27346984A JPS61151474A (en) 1984-12-26 1984-12-26 Apparatus for measuring solution conductivity

Publications (1)

Publication Number Publication Date
JPS61151474A true JPS61151474A (en) 1986-07-10

Family

ID=17528350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27346984A Pending JPS61151474A (en) 1984-12-26 1984-12-26 Apparatus for measuring solution conductivity

Country Status (1)

Country Link
JP (1) JPS61151474A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102809698A (en) * 2012-08-24 2012-12-05 福建师范大学 Measurement system adopting excitation signals with two waveforms for conductivity of solution

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102809698A (en) * 2012-08-24 2012-12-05 福建师范大学 Measurement system adopting excitation signals with two waveforms for conductivity of solution
CN102809698B (en) * 2012-08-24 2014-09-03 福建师范大学 Measurement system adopting excitation signals with two waveforms for conductivity of solution

Similar Documents

Publication Publication Date Title
US7511471B2 (en) Magnetic bridge electric power sensor
US20040008026A1 (en) Magnetic field detection circuit using magnetic impedance device
US5266899A (en) Salt analyzer switchably capable of employing contact and non-contact conductivity probes
KR880002019A (en) How to measure heating power
EP0316914A2 (en) High-frequency oscillation type proximity switch
JPS61151474A (en) Apparatus for measuring solution conductivity
JPH10170317A (en) Electromagnetic flowmeter
JPS61151475A (en) Apparatus for measuring conductivity of solution
CN108508063A (en) Conductivity meter
TWI239393B (en) Apparatus for testing the metal object
JP2751269B2 (en) Electromagnetic flow meter
SU1539687A1 (en) Transducer of electromagnetic radiation
JPS62207968A (en) Conductivity meter circuit
SU1550401A1 (en) Conductivity apparatus
SU723381A1 (en) Autocompensation-type liquid level indicator
JPS6149626B2 (en)
JPH0814971A (en) Electromagnetic flowmeter
SU104825A1 (en) Method for measuring small alternating currents and voltages compensation methods
SU1022084A1 (en) Device for measuring magnetic core loss
SU758020A1 (en) Magnetometer
RU2007691C1 (en) Device for movement measurement
JPH052864Y2 (en)
SU842594A1 (en) Transformer bridge for measuring complex resistor parameters
SU1165999A1 (en) Current transducer
JPS5819966B2 (en) displacement converter