JPS62207968A - Conductivity meter circuit - Google Patents

Conductivity meter circuit

Info

Publication number
JPS62207968A
JPS62207968A JP5167486A JP5167486A JPS62207968A JP S62207968 A JPS62207968 A JP S62207968A JP 5167486 A JP5167486 A JP 5167486A JP 5167486 A JP5167486 A JP 5167486A JP S62207968 A JPS62207968 A JP S62207968A
Authority
JP
Japan
Prior art keywords
voltage
electrodes
circuit
liquid
square wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5167486A
Other languages
Japanese (ja)
Other versions
JPH0715490B2 (en
Inventor
Teruyoshi Minaki
三奈木 輝良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP61051674A priority Critical patent/JPH0715490B2/en
Publication of JPS62207968A publication Critical patent/JPS62207968A/en
Publication of JPH0715490B2 publication Critical patent/JPH0715490B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To eliminate the influence of polarization without using a costly material such as platinum black for electrodes by sampling a measuring voltage near the time right after the impression of a square wave AC voltage when the influence of the current occurring in the capacity of an electrode cable is not received. CONSTITUTION:The square wave AC voltage V1 is impressed to one 1' of the electrode immersed in a liquid to be measured via a buffer amplifier 6 and is applied to a control signal generating circuit 9. The signal generating circuit 9 supplies sample pulses PA, PB, PC deviated to the time right after the rise timing of the square wave AC voltage V1 to sample holding circuits 10A, 10B, 10C and causes electrodes 1, 1', to discharge by a discharge circuit 11 in the period when the V1 is of a zero level. The measuring voltage proportional only to the current flowing between the electrodes is calculated by an arithmetic circuit 12 in accordance with the voltage sampled near the time right after the impression of the square wave AC voltage where the influence of the electric current occurring in the capacity of the electrode cable is not received. The conductivity of the liquid to be measured is thus determined.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は2電極方式の液体導電厚計回路の改良に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to an improvement of a two-electrode type liquid conductivity thickness meter circuit.

〈従来技術〉 第3図に基づいて、2電極方式液体導電率計の従来構成
を説明する。1.1’は被測定液2内に浸された一対の
対向電極、3.3′は電極に対するケーブル4,4′の
接続端子である。5は矩形波交流電圧v1の発生回路、
6はパ、ファアンプで、そのに変換する電流・電圧変換
回路で、非反転入力端子が基準電位に、反転入力端子と
出力端子間に帰還抵抗R(を有し、反転入力端子に接続
されたケーブル4から流入する交流電流!。をV2 ”
−−Io’ Tt(の関係で電圧忙変換する。8は、矩
形波交流電圧■1で駆動される同期整流回路であり、V
2は直流電圧信号EK変換される。
<Prior Art> The conventional configuration of a two-electrode liquid conductivity meter will be explained based on FIG. 1.1' is a pair of opposing electrodes immersed in the liquid to be measured 2, and 3.3' is a connection terminal of the cables 4, 4' to the electrodes. 5 is a generator circuit for rectangular wave AC voltage v1;
Reference numeral 6 denotes a current/voltage conversion circuit that converts the current to the amplifier.The non-inverting input terminal is at the reference potential, and the feedback resistor R is connected to the inverting input terminal. AC current flowing from cable 4! is V2”
--Io' Tt (The voltage is converted according to the relationship. 8 is a synchronous rectifier circuit driven by the rectangular wave AC voltage
2 is converted into a DC voltage signal EK.

第4図は、電極1.1’を介して測定される被測定液と
ケーブル4,4′の等価回路を示すもので。
FIG. 4 shows an equivalent circuit of the liquid to be measured via the electrode 1.1' and the cables 4, 4'.

す、RaはCaの並列抵抗、コンデンサC6と抵抗Ra
の直列回路は、ケーブル4,4′の容量及び抵抗分を示
す。
, Ra is the parallel resistance of Ca, capacitor C6 and resistance Ra
The series circuit represents the capacitance and resistance of the cables 4, 4'.

〈発明の解決すべき問題点〉 このような、21!極方式の構成で液抵抗Rcを矩形波
交流電圧を印加したとき流れる電流に基づいて測定する
場合、Caの影響を受けないようにするには、交流電圧
の周波数を高くする方法がとられているが、周波数を高
くするとケーブルの容量C6の影響が出てくる。
<Problems to be solved by the invention> 21! When measuring the liquid resistance Rc based on the current flowing when a square wave AC voltage is applied in a polar method configuration, a method of increasing the frequency of the AC voltage is used to avoid the influence of Ca. However, when the frequency is increased, the influence of the cable's capacitance C6 appears.

又Cを極力大きくする為に、電極l、1′に白金黒を使
用する等の方法がとられるが、白金黒は高価であり、コ
ストアップとなる欠点がある。
In order to make C as large as possible, methods such as using platinum black for the electrodes 1 and 1' are taken, but platinum black is expensive and has the disadvantage of increasing costs.

本発明は、電極に白金黒等の高価な材質を使うことなく
、SUS等の材質の電極を使用し、電極と液との間の容
量による、いわゆる分極の影響を受けることなく、導電
率を高いレンジまで正確に測定できる回路の実現を目的
とする。
The present invention uses electrodes made of materials such as SUS without using expensive materials such as platinum black for the electrodes, and improves conductivity without being affected by so-called polarization due to the capacitance between the electrode and the liquid. The aim is to realize a circuit that can accurately measure up to a high range.

く問題点を解決するための手段〉 本発明の構成上の特徴は、被測定液に浸された1対の測
定電極間に印加される矩形波交流電圧により電極間に流
れる電流に比例した測定電圧に基づいて被測定液の導電
率を測定する回路において、上記矩形波交流電圧印加直
後で電極ケーブル容量に起因する電流の影#を受けない
近傍で上記測定電圧を時間をずらせて3点サンプルする
手段と、この手段のサンプル電圧に基づいて上記矩形波
交流電圧印加のタイミングにおける上記電極間に流れる
電流のみに比例する測定電圧を演算する手段と、この演
算電圧に基づいて上記被測定液の導電率を演算する手段
とを具備せしめた点にある。
Means for Solving the Problems> The structural feature of the present invention is that a square wave AC voltage is applied between a pair of measurement electrodes immersed in a liquid to be measured, and the measurement is proportional to the current flowing between the electrodes. In a circuit that measures the electrical conductivity of a liquid to be measured based on voltage, samples are taken at three points with the measurement voltage shifted in time immediately after the rectangular wave alternating voltage is applied and in the vicinity where the current does not affect the current caused by the electrode cable capacitance. means for calculating a measurement voltage that is proportional only to the current flowing between the electrodes at the timing of applying the rectangular wave alternating voltage based on the sample voltage of this means; The present invention also includes means for calculating conductivity.

〈作用〉 間をずらせて3点サンプルされ、このサンプル電圧に基
づいて矩形波交流電圧印加のタイミングにおける電極間
電流に比例した測定電圧が演算される。
<Operation> Three points are sampled at different intervals, and a measured voltage proportional to the inter-electrode current at the timing of applying the rectangular wave alternating voltage is calculated based on the sample voltage.

〈実施例〉 第1図に基づいて本発明導電率計回路の一実施例を説明
する。第3図で説明した4!素と同一要素には同一符号
を付して説明は省略する。
<Embodiment> An embodiment of the conductivity meter circuit of the present invention will be described based on FIG. 4 explained in Figure 3! Elements that are the same as the element are given the same reference numerals and explanations are omitted.

矩形波交流電圧v1は、正と負の半サイクルの間に一定
時間のゼロレベルを有する3値信号とされ、バッファア
ンプ6を介して電極の一方1’に印加されると共に、コ
ントロール信号発生回路9に与えられる。
The rectangular wave AC voltage v1 is a ternary signal having a zero level for a certain period of time between the positive and negative half cycles, and is applied to one of the electrodes 1' via the buffer amplifier 6, and is also applied to the control signal generation circuit. given to 9.

コントロール信号発生回路9は、矩形波交流電圧v1の
立上りのタイミングの直後に時間をずらせたサンプルパ
ルスPA、PB、PCヲサンプルホールド回路10A、
 10B、 10oに供給すると共Kv1ゼロレベルの
期間に電極1.】′を短絡する放電回路11に放電用コ
ントロール信号PDを供給する。
The control signal generation circuit 9 includes a sample hold circuit 10A for sample pulses PA, PB, and PC whose time is shifted immediately after the timing of the rise of the rectangular wave AC voltage v1;
10B and 10o, and during the period when Kv1 is at zero level, electrode 1. A discharge control signal PD is supplied to the discharge circuit 11 which short-circuits the discharge control signal PD.

サンプルホールド回路10A、lOB、lOcのサンプ
ル電圧■よ、VB、Vo  は、演算回路12に導かれ
The sample voltages (2), VB, and Vo of the sample and hold circuits 10A, 1OB, and 1Oc are led to the arithmetic circuit 12.

演算結果が出力信号Eとして発信される。The calculation result is transmitted as an output signal E.

jlE2図η)は矩形波交流電圧v1の波形図、(B)
は測定電圧v2の波形図、忙)はサンプルパルスpA、
 pB。
jlE2 Figure η) is a waveform diagram of the rectangular wave AC voltage v1, (B)
is the waveform diagram of the measurement voltage v2, and the sample pulse pA is
pB.

P及び放電用コントロール信号PDの波形図を示す。A waveform diagram of P and discharge control signal PD is shown.

矩形波交流電圧v1の立上りのタイミングt。から極め
て短時間にはケーブルの容量、抵抗によるスパイクが発
生し、以後接液容量C9液抵抗R,Caの並列抵抗Rc
によりなだらかに低下する電圧波形となる。
Timing t of the rise of the rectangular wave AC voltage v1. In a very short period of time, a spike occurs due to the capacitance and resistance of the cable, and after that, the liquid capacitance C9 liquid resistance R, the parallel resistance Rc of Ca
This results in a voltage waveform that gradually decreases.

第4図の等価回路を用いて、■、を電極に印加した時の
測定電圧v2について考えると、V2 =R(’ J 
十R(” 12           (1)ここでC
6・R,(Caであることから、toの直後で12の影
響の小さいタイミングt1でのサンプル電圧■Aは、(
1)式で2項を無視して、 vA  ” v2(t=t  )  # Rf  ’1
(t=t1)となる。従って(2)式より、一般的K。
Using the equivalent circuit in Fig. 4, and considering the measured voltage v2 when ■ is applied to the electrode, V2 = R(' J
10R(” 12 (1) where C
6・R, (Ca, the sample voltage ■A at timing t1, which is immediately after to and has a small influence of 12, is (
1) Ignoring the second term in formula, vA ” v2 (t=t) # Rf '1
(t=t1). Therefore, from equation (2), general K.

V2#A (1+ B e−”)          
(41と表わされる。
V2#A (1+ B e-”)
(Represented as 41.

今求めたい値は、1=1゜のタイミングにおけるv2の
値であり、この値によりRcは、と表わされ、E、R(
は既知の値であるから、V2(tヨ)が演算により求ま
ればRcの値も求まることになる。
The value we want to find now is the value of v2 at the timing of 1=1°, and with this value, Rc is expressed as E, R(
Since is a known value, if V2(tyo) is found by calculation, the value of Rc will also be found.

ここで、t=toの直後で12の影響の小さい、互いに
近接したタイミング11+ tze t3におけるサン
プル電圧vA、VB、voは、 となる。今、1例としてt=tt=2・IK y j3
”I   K#  2 3tKの様に’11 ’21 t3を決めるとA、B、
Cは以下の様になる となる。これら定数A、B、CよFJ(5)式のRcは
、となる。
Here, sample voltages vA, VB, and vo at timing 11+tze t3, which are close to each other and have a small influence on 12 immediately after t=to, are as follows. Now, as an example, t=tt=2・IK y j3
If you decide '11 '21 t3 like ``I K# 2 3tK, A, B,
C will be as follows. Rc of the FJ formula (5) is given by these constants A, B, and C.

これは電極間容量C1,ケーブル容量C6の影響を受け
ない電極間抵抗の値を示すもので、この電極間抵抗Rよ
り、求める導1!L率Jは、J==−!L (K:電極
の形状で決まる定数)Rc で簡単に演算することができる。
This indicates the value of interelectrode resistance that is not affected by interelectrode capacitance C1 and cable capacitance C6, and from this interelectrode resistance R, the conduction 1! The L rate J is J==-! It can be easily calculated using L (K: a constant determined by the shape of the electrode) Rc.

上記(6)〜(8)式よりA、B、Cを演算する手段は
What is the means for calculating A, B, and C from the above equations (6) to (8)?

マイクロプロセ、す手段により高速演算が可能であり、
出力信号Eの連続性は、従来のアナログ方式とほとんど
変らず、演算精度もt。のごく近傍の3点のサンプル電
圧を用いるので、高精度の近似演算を実現することがで
きる。
High-speed calculation is possible using a microprocessor.
The continuity of the output signal E is almost the same as that of the conventional analog system, and the calculation accuracy is also t. Since sample voltages at three points very close to are used, highly accurate approximate calculation can be realized.

上記実施例では(2)式に基づいて、(4)式の形をv
2の一般式としたが、これに代えて V2#A’t2+B’t+C’           
06と2次式で近似しても同様に札を求めることかでき
る。さらKこれを簡易化し、t ” toの近傍では時
間tとv2とは比較的直線関係に近いことに着目して、 Vz : A’ t + B’           
    (IIの1次式と見なして同様にRcを求める
ことも可能である。
In the above embodiment, based on equation (2), the form of equation (4) is v
2, but instead of this, V2#A't2+B't+C'
06 and a quadratic formula, the card can be found in the same way. Furthermore, by simplifying this and focusing on the fact that the time t and v2 have a relatively close linear relationship in the vicinity of t''to, Vz: A' t + B'
(It is also possible to similarly obtain Rc by regarding it as a linear equation of II.

く効果〉 以上説明したように、本発明によれば、次のような効果
が期待できる。
Effects> As explained above, according to the present invention, the following effects can be expected.

(1)  ケーブル容量の影響をほとんど受けずに高精
度に導電率を測定することができる。
(1) Conductivity can be measured with high precision without being affected by cable capacity.

(2)  電極に高価な白金黒を使用せず、5US(ス
テンレス合金)やチタン等の比較的C(電極と液との容
量)の小さい電極を用いても、交流矩形波交流電圧の周
波数を上けることなく、測定が可能となる。
(2) Even if you do not use expensive platinum black for the electrodes and use electrodes with relatively low C (capacity between electrode and liquid) such as 5US (stainless alloy) or titanium, the frequency of AC rectangular wave AC voltage can be controlled. Measurements can be made without raising the temperature.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す構成図、第2図は動作
説明のための波形図、第3図は従来技術の一例を示す構
成図、第4図は電極間及びケーブルの等価回路を示す。 1.1’・・・対向電極、4.4′・・・ケーブル、5
・・・矩形波交流電圧発生回路、6・・・バッファアン
プ、7・・・電流・電圧変換回路、9・・・コントロー
ル信号発生回路、10A、 10B、 10c・・・サ
ンプルホールド回路、11−・・放電回路、12・・・
演算回路。
Fig. 1 is a block diagram showing one embodiment of the present invention, Fig. 2 is a waveform diagram for explaining operation, Fig. 3 is a block diagram showing an example of the conventional technology, and Fig. 4 is equivalent between electrodes and cables. Shows the circuit. 1.1'...Counter electrode, 4.4'...Cable, 5
. . . Rectangular wave alternating current voltage generation circuit, 6 . . Buffer amplifier, 7 . . . Current/voltage conversion circuit, 9 . ...Discharge circuit, 12...
Arithmetic circuit.

Claims (1)

【特許請求の範囲】[Claims] 被測定液に浸された1対の測定電極間に印加される矩形
波交流電圧により電極間に流れる電流に比例した測定電
圧に基づいて被測定液の導電率を測定する回路において
、上記矩形波交流電圧印加直後で電極ケーブル容量に起
因する電流の影響を受けない近傍で上記測定電圧を時間
をずらせて3点サンプルする手段と、この手段のサンプ
ル電圧に基づいて上記矩形波交流電圧印加のタイミング
における上記電極間に流れる電流のみに比例する測定電
圧を演算する手段と、この演算電圧に基づいて上記被測
定液の導電率を演算する手段とを具備した導電率計回路
In a circuit that measures the electrical conductivity of a liquid to be measured based on a measurement voltage proportional to a current flowing between the electrodes by a rectangular wave AC voltage applied between a pair of measurement electrodes immersed in the liquid to be measured, the rectangular wave means for sampling the measured voltage at three points at different times in the vicinity immediately after application of the alternating current voltage and not affected by the current caused by the electrode cable capacitance, and the timing of applying the rectangular wave alternating voltage based on the sample voltage of this means. A conductivity meter circuit comprising means for calculating a measurement voltage proportional only to the current flowing between the electrodes, and means for calculating the conductivity of the liquid to be measured based on the calculated voltage.
JP61051674A 1986-03-10 1986-03-10 Conductivity meter circuit Expired - Lifetime JPH0715490B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61051674A JPH0715490B2 (en) 1986-03-10 1986-03-10 Conductivity meter circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61051674A JPH0715490B2 (en) 1986-03-10 1986-03-10 Conductivity meter circuit

Publications (2)

Publication Number Publication Date
JPS62207968A true JPS62207968A (en) 1987-09-12
JPH0715490B2 JPH0715490B2 (en) 1995-02-22

Family

ID=12893426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61051674A Expired - Lifetime JPH0715490B2 (en) 1986-03-10 1986-03-10 Conductivity meter circuit

Country Status (1)

Country Link
JP (1) JPH0715490B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0522293A2 (en) * 1991-06-06 1993-01-13 Tadahiro Ohmi Method of measuring very small quantity of impurity in gas
JP2010501872A (en) * 2006-08-30 2010-01-21 メトラー−トレド アクチェンゲゼルシャフト Method for measuring the electrical conductivity of a solution
JP2020016500A (en) * 2018-07-24 2020-01-30 アズビル株式会社 Electrical conductivity meter

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6752167B2 (en) * 2017-02-27 2020-09-09 アズビル株式会社 Electrical conductivity meter

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5228367A (en) * 1975-08-28 1977-03-03 Yokogawa Hokushin Electric Corp Liquid conductivity measuring apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5228367A (en) * 1975-08-28 1977-03-03 Yokogawa Hokushin Electric Corp Liquid conductivity measuring apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0522293A2 (en) * 1991-06-06 1993-01-13 Tadahiro Ohmi Method of measuring very small quantity of impurity in gas
JP2010501872A (en) * 2006-08-30 2010-01-21 メトラー−トレド アクチェンゲゼルシャフト Method for measuring the electrical conductivity of a solution
JP2020016500A (en) * 2018-07-24 2020-01-30 アズビル株式会社 Electrical conductivity meter

Also Published As

Publication number Publication date
JPH0715490B2 (en) 1995-02-22

Similar Documents

Publication Publication Date Title
CN100541208C (en) The measuring method of electrical conductivity of solution
JP3084581B2 (en) Method and apparatus for measuring equilibrium force by electrostatic charge control
CN114910696A (en) Non-contact measurement device and method for direct-current voltage of electric wire
US3474330A (en) Conductivity measuring apparatus with means for comparing sampled and reference voltages
JPH071289B2 (en) Method and apparatus for measuring conductivity without influence of polarization
JPS62207968A (en) Conductivity meter circuit
JPH09211046A (en) Method and apparatus for non-contact detection of potential
US5248934A (en) Method and apparatus for converting a conventional DC multimeter to an AC impedance meter
JPS60178368A (en) Method and device for converting measured current into pulse rate proportional to said current
JP3322726B2 (en) Capacitance detection circuit
SU1148002A1 (en) Device for measuring resistance of electrochemical resistors
US10871461B1 (en) Conductivity measurment methods and systems
JP2801304B2 (en) Solution resistivity measuring device
SU1404977A1 (en) Device for measuring electric conductivity of fluids
SU705319A1 (en) Device for measuring electric conductance of liquid media
SU742724A1 (en) Temperature registering device
SU744342A1 (en) Instrument for measuring touch voltage and step and resistance of groundings
SU949539A1 (en) Conductometric pickup resistance meter
JPS6313486Y2 (en)
SU363053A1 (en) HALL EFFECT METER
SU1756812A1 (en) Device for measuring corrosion activity of soil
RU2029965C1 (en) Capacitive sensor dielectric loss measuring device
JPH02170040A (en) Method and device for measuring electrical conductivity
SU104825A1 (en) Method for measuring small alternating currents and voltages compensation methods
JP3371847B2 (en) Impedance / voltage conversion device and its conversion method