JPS61151475A - Apparatus for measuring conductivity of solution - Google Patents

Apparatus for measuring conductivity of solution

Info

Publication number
JPS61151475A
JPS61151475A JP27347084A JP27347084A JPS61151475A JP S61151475 A JPS61151475 A JP S61151475A JP 27347084 A JP27347084 A JP 27347084A JP 27347084 A JP27347084 A JP 27347084A JP S61151475 A JPS61151475 A JP S61151475A
Authority
JP
Japan
Prior art keywords
signal
solution
coil
measured
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27347084A
Other languages
Japanese (ja)
Inventor
Yoshikiyo Takegawa
竹川 恵清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NICHIMOU KK
Nichimo Co Ltd
Original Assignee
NICHIMOU KK
Nichimo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NICHIMOU KK, Nichimo Co Ltd filed Critical NICHIMOU KK
Priority to JP27347084A priority Critical patent/JPS61151475A/en
Publication of JPS61151475A publication Critical patent/JPS61151475A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PURPOSE:To make it possible to detect only an electromagnetically induced signal, by receiving the detection coil opposed to an exciting coil in a hermetically closed container and providing an AC signal applying means and a detection means to the electromagnetic induction pair immersed in a solution to be measured. CONSTITUTION:Because the resistance RX of a liquid channel coil X is changed by the conductivity of a solution to be measured, if an AC signal is applied to an exciting coil L1 and the signal electromagnetically induced to a detection coil L2 through a liquid channel coil LX is measured, the conductivity of the solution to be measured can be measured from the amplitude value of said AC signal. Because the exciting coil L1 and detection coil L2 in an electromagnetic induction coil pair utilize an electromagnetic induction phenomena, the direct contact with the solution of both coils are not required. Because the control signal of the exciting AC signal is detected, the noise signal between the exciting coil L1 and the detection coil L2 and be perfectly cut off.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は被測定溶液の導電率を測定する溶液導電率測定
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a solution conductivity measuring device for measuring the conductivity of a solution to be measured.

〔従来技術〕、 従来の溶液導電率測定装置を第12図に示す。[Prior art] A conventional solution conductivity measuring device is shown in FIG.

測定用電源ACとしては交流電源が用いられ、測定用交
流電源ACからの交流信号は緩衝増幅器A1で増幅され
、測定セルGEに印加される。測定セルGEは第13図
に示すように2枚の対向電極T1.T2を有しており、
被測定溶液をこれら対向電極T1.72間に流入流出さ
せる。被測定溶液の導電率が異なると対向電極間の抵抗
RXが変動する。測定セルCEの交流出力は交流増幅器
A2で増幅される。増幅された交流信号はダイオードD
により整流され、直流増幅器A3に入力される。直流増
幅器A3には演算抵抗Rに並列にサーミスタTHが接続
されており、これにより温度補償がなされる。
An alternating current power source is used as the measuring power source AC, and an alternating current signal from the measuring alternating current power source AC is amplified by a buffer amplifier A1 and applied to the measuring cell GE. As shown in FIG. 13, the measurement cell GE has two opposing electrodes T1. It has T2,
The solution to be measured is caused to flow in and out between these opposing electrodes T1.72. When the conductivity of the solution to be measured differs, the resistance RX between the opposing electrodes varies. The AC output of the measurement cell CE is amplified by an AC amplifier A2. The amplified AC signal is passed through diode D
It is rectified by and input to DC amplifier A3. A thermistor TH is connected to the DC amplifier A3 in parallel to the operational resistor R, thereby performing temperature compensation.

測定セルGE内に被測定溶液を入れ、緩衝増幅器A1を
介して測定用交流電源ACの出力電圧を測定セルGEの
対向電極Tl、T2に印加すると、対向電極T1.T2
間における被測定溶液の抵抗RXに対応する出力信号が
交流増幅器A2、直流増幅器A3を介して出力端Toが
送出される。抵抗RXは、被測定溶液の導電率により異
なるが、被測定溶液の温度によっても異なるため、サー
ミスタTHにより温度補償をおこなう。
When a solution to be measured is placed in the measurement cell GE and the output voltage of the measurement AC power source AC is applied to the counter electrodes Tl, T2 of the measurement cell GE via the buffer amplifier A1, the counter electrodes T1. T2
An output signal corresponding to the resistance RX of the solution to be measured between the two is sent to the output terminal To via the AC amplifier A2 and the DC amplifier A3. The resistance RX varies depending on the conductivity of the solution to be measured, but also varies depending on the temperature of the solution to be measured, so the thermistor TH performs temperature compensation.

しかしながら、このような従来の溶液導電率測定装置で
は、金属で作られた対向電極TI、T2が被測定溶液に
直接触れるため、塩水などの導電率を測定する場合には
対向電極T1. 丁2が溶液により侵され劣化するとい
う問題があった。
However, in such a conventional solution conductivity measurement device, the counter electrodes TI, T2 made of metal directly touch the solution to be measured, so when measuring the conductivity of salt water, etc., the counter electrodes T1. There was a problem that the blade 2 was attacked by the solution and deteriorated.

また従来の溶液導電率測定装置では、出力交流信号をダ
イオードで検波するため対向電極Tl。
Furthermore, in the conventional solution conductivity measuring device, the counter electrode Tl is used to detect the output AC signal with a diode.

12間に必然的に存在する容量により対向電極T2に誘
起する信号も溶液による信号とみなしてしまうという問
題があった。特に低濃度で抵抗RXが大きい場合には誤
差、変動が増加するため低濃度側で使用限界があった。
There has been a problem in that the signal induced in the counter electrode T2 due to the capacitance that inevitably exists between the two electrodes is also considered to be a signal due to the solution. In particular, when the resistance RX is large at low concentrations, errors and fluctuations increase, so there is a limit to its use at low concentrations.

(発明の目的) 本発明は上記事情を考慮してなされたもので測定セルが
被測定溶液に侵され劣化することなく、電ta誘導され
た信号のみを検出することができる溶液導電率測定装置
を提供することを目的とする。
(Object of the Invention) The present invention has been made in consideration of the above circumstances, and is a solution conductivity measurement device that can detect only the signal induced by the electric charge without the measurement cell being corroded by the solution to be measured and deteriorating. The purpose is to provide

(発明の概要) 上記目的を達成するため本発明による溶液導電率測定装
置は、励磁コイルとこの励磁コイルに相対する検出コイ
ルとを有し、被測定溶液中に浸された電磁誘導コイル対
と、この電磁誘導コイル対の励磁コイルに交流信号を印
加する交流信号印加手段と、前記被測定溶液を介して前
記検出コイルに電Iit&誘導された検出信号を、前記
交流信号に同期して検波する検波手段と、この検波手段
の出力信号により前記被測定溶液の導電率を測定する測
定手段とを備えたことを特徴とする。
(Summary of the Invention) In order to achieve the above object, a solution conductivity measuring device according to the present invention includes an excitation coil and a detection coil opposite to the excitation coil, and includes a pair of electromagnetic induction coils immersed in a solution to be measured. , an alternating current signal applying means for applying an alternating current signal to the excitation coil of the electromagnetic induction coil pair, and detecting the detection signal induced in the detection coil via the solution to be measured in synchronization with the alternating current signal. The method is characterized by comprising a detection means and a measurement means for measuring the electrical conductivity of the solution to be measured based on the output signal of the detection means.

〔発明の実施例〕[Embodiments of the invention]

本発明の第1の実施例による溶液導電率測定装置を第1
図に示す。
The solution conductivity measuring device according to the first embodiment of the present invention is
As shown in the figure.

本実施例による溶液導電率測定装置は電磁誘導コイル対
により溶液の導電率を測定する。電11誘導コイル対は
第2図(a)に示すように相対する励磁コイルL1と検
出コイルL2により構成されている。これらコイルL1
とL2を被測定溶液中に浸すと、第2図(a)に示すよ
うにコイルL1とL2の中心を貫く溶液コイルLXが形
成される。
The solution conductivity measuring device according to this embodiment measures the conductivity of a solution using a pair of electromagnetic induction coils. The 11 induction coil pair is composed of an excitation coil L1 and a detection coil L2 that face each other, as shown in FIG. 2(a). These coils L1
When L2 and L2 are immersed in the solution to be measured, a solution coil LX passing through the center of the coils L1 and L2 is formed as shown in FIG. 2(a).

被測定溶液の導電率により液路コイルL3の抵抗RXが
変化するので、励磁コイルL1に交流信号を印加し液路
コイルLXを介して検出コイルL2に電磁誘導される信
号を測定すれば、この信号の振幅値から被測定溶液の導
電率が測定できる。この電磁誘導コイル対における励磁
コイルL1、検出コイルL2は電磁誘導現象を利用して
いるため溶液に直接触れる必要がない。したがって第2
図(a)に示すように各コイルL1.L2を密閉ケース
C31,C82中に入れ、コイルL1.L2が溶液に侵
されないようにすることができる。
The resistance RX of the liquid path coil L3 changes depending on the conductivity of the solution to be measured, so if an AC signal is applied to the excitation coil L1 and the signal electromagnetically induced to the detection coil L2 via the liquid path coil LX is measured, this The conductivity of the solution to be measured can be measured from the amplitude value of the signal. The excitation coil L1 and the detection coil L2 in this electromagnetic induction coil pair utilize the electromagnetic induction phenomenon, so there is no need to directly touch the solution. Therefore, the second
As shown in Figure (a), each coil L1. L2 is placed in the sealed cases C31 and C82, and the coils L1. It is possible to prevent L2 from being attacked by the solution.

励磁コイルL1への交流信号は、溶液増幅器OP1、コ
ンデンサC1、抵抗R1,R2,R3゜R4により構成
された発振回路により発生される。
An alternating current signal to the excitation coil L1 is generated by an oscillation circuit composed of a solution amplifier OP1, a capacitor C1, and resistors R1, R2, R3°R4.

この発振回路において、演算増幅器OP1の負入力端に
は接地されたコンデンサC1が接続されており、この負
入力端と出力端との間には抵抗R1が接続されている。
In this oscillation circuit, a grounded capacitor C1 is connected to the negative input terminal of the operational amplifier OP1, and a resistor R1 is connected between the negative input terminal and the output terminal.

出力端とアースとの間には直列接続された抵抗R2とR
3とR4が挿入されている。抵抗R3と抵抗R4の接続
点は、演算増幅器OPIの正出力端に接続されている。
Resistors R2 and R are connected in series between the output terminal and ground.
3 and R4 are inserted. The connection point between the resistor R3 and the resistor R4 is connected to the positive output terminal of the operational amplifier OPI.

この発振回路は抵抗R2と抵抗R3との接続点(A点)
の電圧によりその振幅が変化するようになっている。
This oscillation circuit is a connection point (point A) between resistor R2 and resistor R3.
Its amplitude changes depending on the voltage.

演算増幅器OP1の出力端にはダイオードD1が接続さ
れ、交流信号を整流する。整流された信号は、コンデン
サC2により平滑される。平滑された直流信号は抵抗R
5を介して演算増幅器OP2に印加されて増幅される。
A diode D1 is connected to the output terminal of the operational amplifier OP1 to rectify the alternating current signal. The rectified signal is smoothed by capacitor C2. The smoothed DC signal is resistor R
5 and is applied to the operational amplifier OP2 and amplified.

この演算増幅器OP2の負入力端と出力端との間には温
度検出素子Rtが接続される。温度検出素子Rtは温度
によりその抵抗値が変化する素子である。この温度検出
素子Rtはできるだけ励磁コイルL1と検出コイルL2
の近傍に位置することが望ましい。このように構成する
ことにより演算増幅器OP2の出力端(8点)における
電圧は温度補償された負の直流信号となる。
A temperature detection element Rt is connected between the negative input terminal and the output terminal of the operational amplifier OP2. The temperature detection element Rt is an element whose resistance value changes depending on the temperature. This temperature detection element Rt is connected to the excitation coil L1 and the detection coil L2 as much as possible.
It is desirable to be located near . With this configuration, the voltage at the output ends (8 points) of the operational amplifier OP2 becomes a temperature-compensated negative DC signal.

演算増幅器OP2の出力端には抵抗R6が接続され、こ
の抵抗R6は演算増幅器OP3の負入力端に接続される
。演算増幅器OP3の出力端と負入力端との間には抵抗
R7が挿入される。演算増幅器OP3の出力端(0点)
にはダイオードD3のカソードが接続され、ダイオード
D3のアノードはA点に接続されている。A点とB点と
の間にはダイオードD2が挿入されている。ダイオード
1〕2のアノードが′A点にカソードがB点に接続され
ている。抵抗R6と抵抗R7を等しくすれば、0点とB
点とは圃が同じで符号が異なる直流信号となる。したが
ってA点の電圧は温度補償されたB点の電圧とその絶対
値が等しくなり、方形波発振回路の振幅が温度により変
化することになる。
A resistor R6 is connected to the output terminal of the operational amplifier OP2, and this resistor R6 is connected to the negative input terminal of the operational amplifier OP3. A resistor R7 is inserted between the output terminal and the negative input terminal of the operational amplifier OP3. Output terminal of operational amplifier OP3 (0 point)
The cathode of the diode D3 is connected to the point A, and the anode of the diode D3 is connected to the point A. A diode D2 is inserted between point A and point B. The anodes of diodes 1 and 2 are connected to point 'A, and the cathodes are connected to point B. If resistance R6 and resistance R7 are made equal, 0 point and B
The point is a DC signal with the same field but a different sign. Therefore, the absolute value of the voltage at point A is equal to the temperature-compensated voltage at point B, and the amplitude of the square wave oscillation circuit changes depending on the temperature.

電磁誘導コイル対の検出コイルL2には演算増幅器OP
5が接続され、検出コイルL2に電磁誘導された検出信
号を交流増幅する。演算増幅器OP5の負入力端と出力
端との間には抵抗R9が挿入されている。また演算増幅
器OP5の負入力端と正入力端は接地された抵抗R8,
R10にそれぞれ接続されている。
An operational amplifier OP is installed in the detection coil L2 of the electromagnetic induction coil pair.
5 is connected to AC amplify the detection signal electromagnetically induced in the detection coil L2. A resistor R9 is inserted between the negative input terminal and the output terminal of the operational amplifier OP5. Further, the negative input terminal and the positive input terminal of the operational amplifier OP5 are connected to a grounded resistor R8,
Each is connected to R10.

交流増幅された検出信号はスイッチSW1゜SW2.S
W3.SW4により検波される。スイッチSW1とSW
2は、一端が演算増幅器OP5の出力端に接続されてい
る。スイッチSW1の他端は一方の出力ライン上の1点
に接続され、スイッチSW2の他端は他方の出力ライン
上のG点に接続されている。スイッチSW3とSW4は
一端が接地されている。スイッチSW3の他端はG点に
接続され、スイッチSW4の他端は1点に接続されてい
る。スイッチSWI、SW2.SW3゜SW4は、励磁
コイルL1に印加する交流信号に同期してオン・オフさ
れる。すなわち励磁コオルL1にあられれる交流信号を
演算増幅器OP4で増幅する。その増幅された信号を、
スイッチSW1とSW3に対する制御φ1とする。スイ
ッチSW2とSW4は制御信号φ1をインバータINV
により反転した制御信号φ2により制御される。
The AC amplified detection signal is sent to switches SW1, SW2. S
W3. It is detected by SW4. Switch SW1 and SW
2 has one end connected to the output end of the operational amplifier OP5. The other end of the switch SW1 is connected to a point on one output line, and the other end of the switch SW2 is connected to a point G on the other output line. One ends of the switches SW3 and SW4 are grounded. The other end of switch SW3 is connected to point G, and the other end of switch SW4 is connected to one point. Switches SWI, SW2. SW3 and SW4 are turned on and off in synchronization with the AC signal applied to the excitation coil L1. That is, the AC signal applied to the excitation coil L1 is amplified by the operational amplifier OP4. The amplified signal,
Control φ1 for switches SW1 and SW3 is assumed. Switches SW2 and SW4 convert control signal φ1 to inverter INV.
It is controlled by a control signal φ2 inverted by .

スイッチSW1.SW2.SW3.SW4により接液さ
れた信号は演算増幅器OP6により直流増幅するととも
に差動出力をシングル出力に変換する。1点にあられれ
た信号は抵抗R11、コンデンサC3により平滑され、
演算増幅器OP6の負入力端に入力される。G点にあら
れれた信号は抵抗R12、コンデンサC4により平滑さ
れ、演算増幅器(1)P6の正入力端に入力される。演
算増幅i1!!:OP6の正入力端には接地された抵抗
R14が接続され、負入力端と出力端の間には抵抗R1
3が挿入されている。演算増幅器OP6の出力端から出
力される信号が被測定溶液の導電率の測定信号である。
Switch SW1. SW2. SW3. The signal applied by SW4 is DC amplified by operational amplifier OP6, and the differential output is converted into a single output. The signal at one point is smoothed by resistor R11 and capacitor C3,
It is input to the negative input terminal of operational amplifier OP6. The signal received at point G is smoothed by resistor R12 and capacitor C4, and is input to the positive input terminal of operational amplifier (1) P6. Operational amplification i1! ! : A grounded resistor R14 is connected to the positive input terminal of OP6, and a resistor R1 is connected between the negative input terminal and the output terminal.
3 has been inserted. The signal output from the output terminal of the operational amplifier OP6 is a measurement signal for the conductivity of the solution to be measured.

次に本実施例による溶液導電率測定装置の動作を海水の
濃度(塩度)を測定する場合を例としてさらに詳細に説
明する。
Next, the operation of the solution conductivity measuring device according to this embodiment will be described in more detail using an example in which the concentration (salinity) of seawater is measured.

まず、温度補ta動作について説明する。First, the temperature compensation ta operation will be explained.

海水の塩度と導電率との関係は第3図に示すように4度
により変化する。同じ塩度であっても温度が上昇すれば
導電率は大きくなる。本実施例のような温度補tmをし
なければ、出力信号は温度の上昇に応じて大ぎくなって
しまい正しい塩度を測定できなくなる。このため本実施
例では温度検出素子Rtにより温度補償をするようにし
ている。
The relationship between the salinity of seawater and the electrical conductivity varies by 4 degrees as shown in FIG. Even if the salinity is the same, the conductivity increases as the temperature increases. If temperature compensation tm is not performed as in this embodiment, the output signal will become too large as the temperature rises, making it impossible to accurately measure salinity. For this reason, in this embodiment, temperature compensation is performed using the temperature detection element Rt.

温度検出素子Rtの抵抗は第4図のように温度の上昇に
つれ低くなる特性を有している。したがって温度が上昇
したとすると、抵抗Rtが低くなり、このため演算増幅
器OP2の増幅率が小さくなる。するとB点の電圧の絶
対値が小さくなる。
As shown in FIG. 4, the resistance of the temperature detection element Rt has a characteristic that it decreases as the temperature rises. Therefore, if the temperature rises, the resistance Rt decreases, and therefore the amplification factor of the operational amplifier OP2 decreases. Then, the absolute value of the voltage at point B becomes smaller.

B点とA点の電圧はその絶対値が等しいから、A点の電
圧は第5図に示すように低くなる。すると発生回路から
出力される交流信号の振幅が小さくなる。すなわち、励
磁コイルし1に加わる交流信号の振幅が温度が上昇する
につれ小さくなる。もし励磁コイルL1に一定振幅の交
流信号が印加されたとすると、溶液め温度の上昇に従っ
て検出信号し2から検出される信号は大きくなるが、本
実施例では温度上昇につれて励磁コイルし1に加わる信
号の振幅が小さくなるため、温度上昇により上昇する分
を相殺するように各抵抗等の回路定数を調整すれば、第
6図に示すように検出コイルL2のD点における検出信
号の1辰幅が温度に依存せず一定となる。
Since the voltages at point B and point A have the same absolute value, the voltage at point A becomes lower as shown in FIG. Then, the amplitude of the AC signal output from the generation circuit becomes smaller. That is, the amplitude of the alternating current signal applied to the excitation coil 1 becomes smaller as the temperature rises. If an alternating current signal with a constant amplitude is applied to the excitation coil L1, as the temperature of the solution rises, the detection signal and the signal detected from 2 will increase; however, in this embodiment, as the temperature rises, the signal added to the excitation coil L1 Since the amplitude of the detection signal at point D of the detection coil L2 becomes smaller, if the circuit constants of each resistor etc. are adjusted to offset the increase due to the temperature rise, the width of the detection signal at point D of the detection coil L2 becomes smaller as shown in Fig. 6. It remains constant regardless of temperature.

次に検出コイルL2に被測定溶液を介して電磁誘導され
た検出信号の検波動作について説明する。
Next, the detection operation of the detection signal electromagnetically induced to the detection coil L2 via the solution to be measured will be described.

検出コイルL2の検出信号は第7図(a)に示すように
小さな振幅の交流信号である。これを演算増幅器OP5
により交流増幅すると第7図(b)に示づようになる。
The detection signal of the detection coil L2 is an alternating current signal with a small amplitude, as shown in FIG. 7(a). This is the operational amplifier OP5
When AC amplification is performed, the result is as shown in FIG. 7(b).

−力制御信号φ1により制御されるSWl、8W3は第
7図(C)に示すように、E点の電位が正の場合にオン
となる。このため1点にはE点の電圧がそのままあられ
れ、G点はOVとなる。逆に制御信号φ2により制御さ
れるsw2.3W4は第7図(d)に示すようにE点の
電位が負の場合にオンする。このため1点の電位はOV
となり、G点の電位はE点の電位がそのままあられれる
。したがって、1点およびG点は第7図(e)、(f>
に示すようになる。これを平滑化し、差動出力をシング
ル出力に変換すると第7図(CI)に示すような検波出
力信号が得られる。
- SW1 and 8W3 controlled by the force control signal φ1 are turned on when the potential at point E is positive, as shown in FIG. 7(C). Therefore, the voltage at point E remains at one point, and point G becomes OV. Conversely, sw2.3W4, which is controlled by the control signal φ2, turns on when the potential at point E is negative, as shown in FIG. 7(d). Therefore, the potential at one point is OV
Therefore, the potential at point G is the same as the potential at point E. Therefore, point 1 and point G are shown in Fig. 7(e), (f>
It becomes as shown in . By smoothing this and converting the differential output to a single output, a detected output signal as shown in FIG. 7 (CI) is obtained.

このように本実施例によれば、温度補償を励磁コイルに
印加する交流信号に対しておこなうため、十分な信号レ
ベルがあり、外部ノイズの影響を受けることがない。ま
た、ダイオードではなく励磁交流信号を制御信号とする
スイッチにより検波しているため、励磁コイルL1と検
出コイルし2間の分布容量により誘導されるノイズ信号
を完全に遮断できるとともに、ダイオードでは不可能な
0.3v以下の微少信号も検波できる。
As described above, according to this embodiment, since temperature compensation is performed on the AC signal applied to the excitation coil, there is a sufficient signal level and there is no influence from external noise. In addition, since detection is performed using a switch that uses an excitation AC signal as a control signal instead of a diode, it is possible to completely block out noise signals induced by the distributed capacitance between the excitation coil L1 and the detection coil 2, which is impossible with a diode. Even minute signals of 0.3V or less can be detected.

本発明の第2の実施例による溶液導電率測定装置を第8
図に示す。励磁コイルL1に加える交流信号を、温度補
償せず、直接交流信号源ACから加えたものである。被
測定溶液の温度が一定であれば、この溶液の濃度を正し
く測定することができる。
The solution conductivity measuring device according to the second embodiment of the present invention is
As shown in the figure. The AC signal applied to the excitation coil L1 is directly applied from the AC signal source AC without temperature compensation. If the temperature of the solution to be measured is constant, the concentration of this solution can be measured correctly.

本発明の第3の実施例による溶液導電率測定装置を第9
図に示す。演算増幅機OP6による直流増幅を省略した
点が第1の実施例と異なる。さらにスイッチSW3とS
W4の一端を検出コイルL2に接続し、他端を接地して
いる。これにより、1点にあられれる信号は第10図に
示すように全波整流波形と同様である。この全波整流波
形をコンデンサC5で平滑化して出力信号を得る。
A ninth embodiment of the solution conductivity measurement device according to the third embodiment of the present invention
As shown in the figure. This embodiment differs from the first embodiment in that DC amplification by the operational amplifier OP6 is omitted. Furthermore, switches SW3 and S
One end of W4 is connected to the detection coil L2, and the other end is grounded. As a result, the signal that appears at one point is similar to a full-wave rectified waveform as shown in FIG. This full-wave rectified waveform is smoothed by capacitor C5 to obtain an output signal.

本発明の第4の実施例による溶液導電率測定装置を第1
1図に示す。直流増幅する演算増幅器OP6どともに交
流増幅する演算増幅器OP5をも省略したものである。
The solution conductivity measuring device according to the fourth embodiment of the present invention is
Shown in Figure 1. The operational amplifier OP6 for direct current amplification and the operational amplifier OP5 for alternating current amplification are also omitted.

増幅しなくとも容量により誘起づ−る信号は検波されず
、液路コイルL3を介して電磁誘導された分のみが検出
されるため、十分な精度を得ることができる。
Even if the signal is not amplified, the signal induced by the capacitance is not detected, and only the signal electromagnetically induced via the liquid path coil L3 is detected, so that sufficient accuracy can be obtained.

また検出信号の交流増幅を省略し、直流増幅のみするよ
うにしてもよい。
Alternatively, AC amplification of the detection signal may be omitted and only DC amplification may be performed.

なお、本発明は海水以外の他の溶液の2J電率測定にも
用いることができる。
Note that the present invention can also be used to measure the 2J electric rate of solutions other than seawater.

〔発明の効果〕〔Effect of the invention〕

以上の通り本発明によれば、測定セルが侵され劣化する
ことなく、かつ電!!誘導−された信号のみを検波する
ことができ、したがって溶液が低温度でも極めて正確に
測定することができる。
As described above, according to the present invention, the measurement cell is not corroded or deteriorated, and the measurement cell is not damaged or deteriorated. ! Only the induced signal can be detected, and therefore extremely accurate measurements can be made even at low solution temperatures.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例による溶液導電率測定装
置の回路図、第2図(a)、(b)fま同溶液導電率測
定装置で用いられる電磁誘導コイル対の斜視図および回
路図、第3図〜第6図【よ同溶液導電率測定装置の温度
補償動作を説明するためのグラフ、第7図(a)〜(g
)は同溶液導電率測定装置の検波動作を説明するための
タイムチャート、 第8図は本発明の第2の実施例による溶液導電率測定装
置の回路図、 第9図は、本発明の第3の実施例による溶液導電率測定
装置の回路図、第10図は同溶液導電率測定装置の検波
動作を説明するためのタイムチャート、 第11図は本発明の第4の実施例による溶液導電率測定
装置の回路図、 第12図は従来の溶液導電率測定装置の回路図、第13
図(a)、(b)は同溶液導電率測定装置で用いられる
測定セルの斜視図および回路図である。 OP1〜OP8・・・演算増幅器、R1−R17・・・
抵抗、Rt・・・温度検出素子、RX・・・液路コイル
の抵抗、01〜C4・・・コンデンIす、Ll・・・励
磁コイル、[2・・・検出コイル、LX・・・液路コイ
ル、SW1〜SW4・・・スイッチ、081.C32・
・・密閉ケース。 出願人代理人  猪  股    清 第3図 第5図 第4図 亀 M6図 ■展 第9図 第10図 第11図 M 12図 、TH 第13図
FIG. 1 is a circuit diagram of a solution conductivity measuring device according to the first embodiment of the present invention, and FIGS. 2(a), (b) and f are perspective views of a pair of electromagnetic induction coils used in the solution conductivity measuring device. and circuit diagrams, Figures 3 to 6 [Graphs for explaining the temperature compensation operation of the same solution conductivity measuring device, Figures 7 (a) to (g)
) is a time chart for explaining the detection operation of the solution conductivity measuring device, FIG. 8 is a circuit diagram of the solution conductivity measuring device according to the second embodiment of the present invention, and FIG. 10 is a time chart for explaining the detection operation of the solution conductivity measuring device according to the fourth embodiment of the present invention. FIG. 11 is a circuit diagram of the solution conductivity measuring device according to the fourth embodiment of the present invention. Figure 12 is a circuit diagram of a conventional solution conductivity measuring device, and Figure 13 is a circuit diagram of a conventional solution conductivity measuring device.
Figures (a) and (b) are a perspective view and a circuit diagram of a measurement cell used in the solution conductivity measuring device. OP1 to OP8... operational amplifier, R1-R17...
Resistance, Rt...temperature detection element, RX...resistance of liquid path coil, 01-C4...condenser Isu, Ll...excitation coil, [2...detection coil, LX...liquid path coil, SW1 to SW4... switch, 081. C32・
...Sealed case. Applicant's agent Kiyoshi Inomata Figure 3 Figure 5 Figure 4 Turtle M6 Figure Exhibition Figure 9 Figure 10 Figure 11 Figure M 12, TH Figure 13

Claims (1)

【特許請求の範囲】 励磁コイルとこの励磁コイルに相対する検出コイルとを
有し、被測定溶液中に浸された電磁誘導コイル対と、 この電磁誘導コイル対の励磁コイルに交流信号を印加す
る交流信号印加手段と、 前記被測定溶液を介して前記検出コイルに電磁誘導され
た検出信号を、前記交流信号に同期して検波する検波手
段と、 この検波手段の出力信号により前記被測定溶液の導電率
を測定する測定手段と を備えたことを特徴とする溶液導電率測定装置。
[Claims] A pair of electromagnetic induction coils that includes an excitation coil and a detection coil opposite to the excitation coil, and is immersed in a solution to be measured, and an alternating current signal is applied to the excitation coil of the pair of electromagnetic induction coils. an alternating current signal applying means; a detection means for detecting a detection signal electromagnetically induced in the detection coil via the measuring solution in synchronization with the alternating current signal; 1. A solution conductivity measuring device comprising: a measuring means for measuring conductivity.
JP27347084A 1984-12-26 1984-12-26 Apparatus for measuring conductivity of solution Pending JPS61151475A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27347084A JPS61151475A (en) 1984-12-26 1984-12-26 Apparatus for measuring conductivity of solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27347084A JPS61151475A (en) 1984-12-26 1984-12-26 Apparatus for measuring conductivity of solution

Publications (1)

Publication Number Publication Date
JPS61151475A true JPS61151475A (en) 1986-07-10

Family

ID=17528363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27347084A Pending JPS61151475A (en) 1984-12-26 1984-12-26 Apparatus for measuring conductivity of solution

Country Status (1)

Country Link
JP (1) JPS61151475A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014149283A (en) * 2013-02-04 2014-08-21 Horiba Advanced Techno Co Ltd Conductivity measuring instrument and correcting method for measurement values therefrom

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014149283A (en) * 2013-02-04 2014-08-21 Horiba Advanced Techno Co Ltd Conductivity measuring instrument and correcting method for measurement values therefrom

Similar Documents

Publication Publication Date Title
EP2316014B1 (en) Method and device for inductive conductivity measurements of a fluid medium
JPS60104263A (en) Detector measuring parameter
KR860003492A (en) Method and device for measuring thickness of thin metal film deposited on conductive support
EP0730139A2 (en) Electromagnetic flowmeter
US7511471B2 (en) Magnetic bridge electric power sensor
JPS5983045A (en) Detector for ion concentration in liquid
US5266899A (en) Salt analyzer switchably capable of employing contact and non-contact conductivity probes
KR880002019A (en) How to measure heating power
JPS61151475A (en) Apparatus for measuring conductivity of solution
JPH10170317A (en) Electromagnetic flowmeter
GB2069709A (en) Temperature compensated ion measurement
JPS61151474A (en) Apparatus for measuring solution conductivity
US2363057A (en) Electrical measuring device
Gledhill et al. A new method for measurement of the high field conductance of electrolytes (The Wien effect)
JP2000162294A (en) Magnetic field sensor
US3538432A (en) Direct reading electrolytic conductivity analyzer
JPS60117142A (en) Measurement for corrosion rate of metal
SU993365A1 (en) Device for measuring internal resistance of electrochemical current source
JPH0715490B2 (en) Conductivity meter circuit
JPH0658333B2 (en) Conductivity measuring method and measuring apparatus therefor
SU104825A1 (en) Method for measuring small alternating currents and voltages compensation methods
RU1637530C (en) Device to measure transfer currents
JPH052864Y2 (en)
SU411401A1 (en)
RU12253U1 (en) CONDUCTOMETER FOR DETERMINING SPECIFIC ELECTRICAL CONDUCTIVITY OF AQUEOUS SOLUTIONS