JPH0132762Y2 - - Google Patents

Info

Publication number
JPH0132762Y2
JPH0132762Y2 JP1983039300U JP3930083U JPH0132762Y2 JP H0132762 Y2 JPH0132762 Y2 JP H0132762Y2 JP 1983039300 U JP1983039300 U JP 1983039300U JP 3930083 U JP3930083 U JP 3930083U JP H0132762 Y2 JPH0132762 Y2 JP H0132762Y2
Authority
JP
Japan
Prior art keywords
infrared
heater
furnace
heating
constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1983039300U
Other languages
Japanese (ja)
Other versions
JPS59145067U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP3930083U priority Critical patent/JPS59145067U/en
Publication of JPS59145067U publication Critical patent/JPS59145067U/en
Application granted granted Critical
Publication of JPH0132762Y2 publication Critical patent/JPH0132762Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Tunnel Furnaces (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Furnace Details (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Control Of Resistance Heating (AREA)
  • Resistance Heating (AREA)

Description

【考案の詳細な説明】 本考案はたとえば厚膜焼成に用いるのに好適な
赤外線連続加熱炉に関するものである。
[Detailed Description of the Invention] The present invention relates to an infrared continuous heating furnace suitable for use, for example, in thick film firing.

厚膜IC製品は、絶縁基板上に導体、抵抗体、
誘導体、インダクタその他のペーストを所要の回
路パターンとなるように印刷したのち、それぞれ
のペーストに応じた温度で加熱焼成することによ
り作られる。この焼成手段として従来一般に炉芯
管(マツフル)をトンネル炉体に挿設したコンベ
ア炉が用いられていたが、加熱が間接的であるた
め処理に時間がかかり、電力消費量及び炉の大き
さの点からも不利があつた。
Thick film IC products have conductors, resistors, and
It is made by printing pastes such as dielectrics, inductors, etc. in the desired circuit pattern, and then heating and baking them at temperatures appropriate for each paste. Conventionally, a conveyor furnace in which a furnace core tube (matsufuru) is inserted into a tunnel furnace body has been used as a means of firing, but since the heating is indirect, the processing takes time, and the power consumption and size of the furnace are high. There was also a disadvantage from this point of view.

これを改善するため、炉内に炉芯管を設けるこ
となくベルトコンベアの上方と下方に赤外線ラン
プを配設し、この赤外線ランプにより赤外線を被
処理物に直接照射する構造のものが提案されてい
る。この方式によれば、ペーストへの吸収率が良
い赤外線の性質を利用して短時間での焼成が可能
となる。しかし、従来の赤外線焼成炉では、コン
ベアベルト上方と下方の赤外線ランプを、炉内に
挿入した熱電対からの信号で電圧制御して炉温を
調整していたので、該制御に伴つて照射される赤
外線波長が変動し、これにより焼成される厚膜
IC製品の電気的特性の安定性が阻害され、こと
に抵抗値などにバラツキが多発しやすいという不
具合があつた。
In order to improve this, a structure has been proposed in which infrared lamps are placed above and below the belt conveyor without providing a furnace core tube in the furnace, and the infrared lamps directly irradiate infrared rays onto the processed material. There is. According to this method, it is possible to bake in a short time by utilizing the property of infrared rays, which have a high absorption rate into the paste. However, in conventional infrared firing furnaces, the furnace temperature was adjusted by controlling the voltage of the infrared lamps above and below the conveyor belt using signals from thermocouples inserted into the furnace. The infrared wavelength varies, and the thick film is fired as a result.
The problem was that the stability of the electrical characteristics of IC products was affected, and in particular, resistance values were likely to fluctuate frequently.

本考案は前記のような従来の赤外線加熱炉の欠
点を除去し、炉温を必要な高精度に保持させつつ
しかも赤外線波長の変動がなく安定した一定波長
で行わしめ、短い処理時間でしかも高品質な厚膜
IC製品を得ることができるこの種加熱炉を提供
しようとするものである。
The present invention eliminates the drawbacks of conventional infrared heating furnaces as described above, maintains the furnace temperature with the necessary high precision, and performs heating at a stable and constant wavelength without fluctuations in the infrared wavelength, resulting in short processing time and high heat treatment. quality thick film
The present invention aims to provide a heating furnace of this type that can produce IC products.

この目的を達成するため本考案は、内面に耐熱
内張りを施して筒状の直接加熱室を形成したトン
ネル状炉体にコンベアベルトを通した形式の連続
加熱炉であつて、前記直接加熱室のベルトコンベ
ア上部域に赤外線ヒータを配設すると共に、この
赤外線ヒータを、炉温と係りなく被処理物に応じ
た一定波長の赤外線を照射するように制御するた
めの定電流または定電力制御装置と接続し、ベル
トコンベアの下部域には抵抗発熱ヒータを配設す
ると共に、抵抗発熱ヒータを、該ヒータと前記赤
外線ヒータによる両発熱量で創成される炉温の検
出器を介して前記赤外線ヒータの制御系と独立し
た炉温コートロール用の制御装置で制御するよう
に構成したものである。
To achieve this objective, the present invention provides a continuous heating furnace in which a conveyor belt is passed through a tunnel-shaped furnace body with a heat-resistant lining on the inner surface to form a cylindrical direct heating chamber. An infrared heater is disposed in the upper area of the belt conveyor, and a constant current or constant power control device is used to control the infrared heater so that it irradiates infrared rays of a constant wavelength depending on the object to be processed, regardless of the furnace temperature. A resistance heating heater is disposed in the lower area of the belt conveyor, and the resistance heating heater is connected to the infrared heater through a detector of the furnace temperature created by the heat generated by the heater and the infrared heater. It is configured to be controlled by a control device for the furnace temperature coating roll that is independent from the control system.

以下本考案の実施例を添付図面に基いて説明す
る。
Embodiments of the present invention will be described below with reference to the accompanying drawings.

第1図ないし第3図は本考案に係る赤外線連続
加熱炉の一実施例を示すもので、1はトンネル状
の炉体で、耐火レンガ、セラミツクウールなどの
断熱材で構成され、長手方向の両端には炉入口1
1と炉出口12が開設されると共に、それら炉入
口11と炉出口12を含む炉体内面には超耐熱結
晶化ガラスあるいはセラミツクなどからなる鏡面
状の内張り13が設けられ、この内張り13の内
部にトンネル状をなした直接加熱室2が形成され
ている。直接加熱室2は室内を横断する遮蔽体2
1,21により長手方向で数室に区分されてい
る。
Figures 1 to 3 show an embodiment of an infrared continuous heating furnace according to the present invention. 1 is a tunnel-shaped furnace body, which is made of a heat insulating material such as firebrick or ceramic wool; Furnace inlet 1 on both ends
1 and a furnace outlet 12 are opened, and a mirror-like lining 13 made of ultra-heat-resistant crystallized glass or ceramic is provided on the inner surface of the furnace body including the furnace inlet 11 and furnace outlet 12. A tunnel-shaped direct heating chamber 2 is formed in the chamber. The direct heating chamber 2 has a shield 2 that crosses the room.
It is divided into several chambers in the longitudinal direction by 1 and 21.

3は前記炉入口11と連通した入口筒、4は炉
出口12と連通した冷却筒であり、冷却筒4は外
周に水ジヤケツトが囲繞されている。そして、入
口筒3と冷却筒4の各端部には被処理物Wの入口
5と出口6とが開口され、スライド扉7,8によ
り開口の大きさを調整するようになつている。9
は前記入口5から出口6の間に通されたコンベア
ベルトで、プーリ91,92に巻回され、駆動機
構により所定の速度で被処理物Wを入口筒3−直
接加熱室2−冷却部4へと移送するようになつて
いる。
Reference numeral 3 denotes an inlet tube communicating with the furnace inlet 11, and 4 a cooling tube communicating with the furnace outlet 12. The outer periphery of the cooling tube 4 is surrounded by a water jacket. An inlet 5 and an outlet 6 for the object to be processed W are opened at each end of the inlet cylinder 3 and the cooling cylinder 4, and the sizes of the openings are adjusted by slide doors 7 and 8. 9
A conveyor belt is passed between the inlet 5 and the outlet 6, and is wound around pulleys 91 and 92, and a drive mechanism moves the workpiece W at a predetermined speed between the inlet cylinder 3 - the direct heating chamber 2 - the cooling section 4 It is now being transferred to

10は前記直接加熱室2のベルトコンベア上部
域に配設される赤外線ヒータであり、直接加熱室
2の各ゾーンA,B,Cごとに群をなしている。
図示するものでは赤外線ヒータ10として棒状ラ
ンプを用い、これを直接加熱室2を横断して炉体
1に挿着支持せしめている。この構成の代りに板
状、マツト状のユニツトを用いてもよいのは勿論
である。
Infrared heaters 10 are arranged in the upper region of the belt conveyor of the direct heating chamber 2, and are arranged in groups for each zone A, B, and C of the direct heating chamber 2.
In the illustrated example, a rod-shaped lamp is used as the infrared heater 10, which is directly inserted and supported in the furnace body 1 across the heating chamber 2. Of course, a plate-shaped or mat-shaped unit may be used instead of this configuration.

14は直接加熱室2のベルトコンベア下部域に
配設される加熱ヒータであり、前記赤外線ヒータ
10と同じように各ゾーンA,B,Cごとに群を
なしている。この加熱ヒータ14はスパイラル線
状、帯状又は棒状をなした通常の抵抗発熱体で十
分であり、これにより装置コストを低減すること
ができる。
Reference numeral 14 denotes heaters disposed in the lower region of the belt conveyor in the direct heating chamber 2, and like the infrared heaters 10, they are arranged in groups for each zone A, B, and C. As the heater 14, an ordinary resistance heating element in the form of a spiral wire, a band, or a rod is sufficient, thereby reducing the cost of the apparatus.

しかして、前記各ゾーンの赤外線ヒータ10は
給電回路(電源回路)15と接続されるが、本考
案は第3図でひとつのゾーンを抽出して示すよう
に給電回路15に定電流又は定電力装置16を介
在せしめ、この定電流又は定電力装置16によ
り、外部電源の変化に関係なくしかも常に被処理
物の赤外線吸収波長特性などに合致した波長温度
で赤外線放射を行わしめるようにしている。
Therefore, the infrared heater 10 in each zone is connected to a power supply circuit (power supply circuit) 15, but the present invention provides a constant current or constant power to the power supply circuit 15 as shown in FIG. A device 16 is interposed, and by this constant current or constant power device 16, infrared radiation is always performed at a wavelength temperature that matches the infrared absorption wavelength characteristics of the object to be treated, regardless of changes in the external power source.

図示するものでは定電力装置を用いており、こ
の定電力装置は、被処理物に最適な赤外線波長に
対応する任意の電力を設定する設定器18と、電
流検出コイル17と、これから検出された電流値
と電圧検出コイル17からの電圧とを演算し、予
め設定器18に入力しておいた電力とを比較して
その偏差に応じて所定の信号を発する演算ユニツ
ト19と、この演算ユニツト19からの信号で設
定電力と合致するように赤外線ヒータ10への供
給電力を加減するサイリスタユニツトの如きコン
トローラ20とからなつている。
In the illustrated example, a constant power device is used, and this constant power device includes a setting device 18 for setting an arbitrary power corresponding to an infrared wavelength optimal for the object to be processed, a current detection coil 17, and a current detection coil 17. A calculation unit 19 that calculates the current value and the voltage from the voltage detection coil 17, compares it with the power input in advance to the setting device 18, and issues a predetermined signal according to the deviation; The controller 20, such as a thyristor unit, adjusts the power supplied to the infrared heater 10 to match the set power based on a signal from the infrared heater 10.

一方、前記加熱ヒータ14は前記赤外線ヒータ
10と同系又は別系の給電回路15′に接続され、
しかもこの給電回路15′には前記赤外線ヒータ
10の制御系と独立した炉温コントロール用の制
御装置22が介在されている。前記制御装置22
は、当該ゾーンに最適な温度に対応する電力(電
圧)を任意設定する温度設定調節器23と炉内温
度を検出して温度設定調節器23に入力する熱電
対などの検出器24と、検出された温度と設定温
度とを温度設定調節器23で比較し偏差に応じた
信号により加熱ヒータ14への供給電力を加減す
るサイリスタユニツトの如きコントローラ25と
を備えている。前記検出器24は加熱ヒータ14
の上部域たとえばコンベアコベルト9の中央直下
部位に挿設される。
On the other hand, the heater 14 is connected to a power supply circuit 15' that is the same or different from the infrared heater 10,
Furthermore, a control device 22 for controlling the furnace temperature, which is independent from the control system of the infrared heater 10, is interposed in the power supply circuit 15'. The control device 22
, a temperature setting regulator 23 that arbitrarily sets the power (voltage) corresponding to the optimum temperature for the zone, a detector 24 such as a thermocouple that detects the temperature inside the furnace and inputs it to the temperature setting regulator 23, The controller 25, such as a thyristor unit, compares the set temperature with the set temperature using a temperature setting regulator 23, and adjusts or reduces the power supplied to the heater 14 based on a signal corresponding to the deviation. The detector 24 is a heater 14
The conveyor belt 9 is inserted into the upper region thereof, for example, directly below the center of the conveyor belt 9.

その他図面において、26は直接加熱室2の各
ゾーンA,B,Cに設けられたガス導入部であ
り、窒素ガス等の不活性ガスあるいは空気を導入
する。ガス導入部26は多数の噴孔を有し、第1
図で示すように導入ガスが被処理物の移送方向と
向流するような配置に設けられる。27は赤外線
テスト穴、28はガスタイト殻壁である。
In other drawings, reference numeral 26 denotes a gas introduction section provided in each zone A, B, and C of the direct heating chamber 2, into which an inert gas such as nitrogen gas or air is introduced. The gas introduction part 26 has a large number of nozzle holes, and the first
As shown in the figure, the arrangement is such that the introduced gas flows countercurrently to the direction in which the object to be processed is transported. 27 is an infrared test hole, and 28 is a gas-tight shell wall.

次に本考案の使用状態と作用を説明する。厚膜
ペーストで所要の回路パターンを印刷した被処理
物を焼成するにあたつては、被処理物Wの特性た
とえばペーストの種類(抵抗用、導体用、誘電体
用等)、成分、赤外線吸収特性などのパラメータ
に応じる最適な照射波長とこれに対応する電力又
は電流値を、各ゾーンA,B,Cにおける定電流
又は定電圧装置16の設定器18にそれぞれ設定
し、また被処理物の焼成温度プロフアイルに対応
する炉温を各ゾーンの温度設定調節器23に設定
し、ガス導入部26から所要の雰囲気を供給する
と共に赤外線ヒータ10と加熱ヒータ14に夫々
給電して直接加熱室2を焼成温度まで上昇させ
る。そして、コンベアベルト9を駆動して被処理
物Wを入口5から一定速度で移動させる。
Next, the usage conditions and effects of the present invention will be explained. When firing a workpiece printed with a desired circuit pattern using thick film paste, the characteristics of the workpiece W, such as the type of paste (for resistors, conductors, dielectrics, etc.), components, infrared absorption, etc. The optimum irradiation wavelength and the corresponding power or current value according to parameters such as characteristics are set in the setting device 18 of the constant current or constant voltage device 16 in each zone A, B, and C, and the The furnace temperature corresponding to the firing temperature profile is set in the temperature setting controller 23 of each zone, the required atmosphere is supplied from the gas introduction part 26, and power is supplied to the infrared heater 10 and heating heater 14 respectively to directly heat the heating chamber 2. to the firing temperature. Then, the conveyor belt 9 is driven to move the object W to be processed from the entrance 5 at a constant speed.

こうすれば、被処理物Wは入口筒3から直接加
熱室2に装入され、まずゾーンAにおいて赤外線
ヒータ10と加熱ヒータ14の両発熱で形成され
ている温度雰囲気により全体が加熱されると同時
に、コンベア上部域の赤外線ヒータ10により赤
外線が被処理物に直接照射され、この赤外線エネ
ルギーが浸透することによりペーストは急速に硬
化が進み、次いで直接加熱室2のゾーンB、ゾー
ンCへと移送されながら上記の加熱が連続して行
われ、短時間で焼成が完了する。そして焼成が終
つたものは冷却筒4を通過する間に冷やされ、出
口6から取り出される。
In this way, the workpiece W is directly charged into the heating chamber 2 from the inlet cylinder 3, and the entire workpiece is first heated in the zone A by the temperature atmosphere formed by the heat generated by both the infrared heater 10 and the heating heater 14. At the same time, the infrared heater 10 in the upper area of the conveyor directly irradiates the workpiece with infrared rays, and as this infrared energy penetrates, the paste rapidly hardens, and is then directly transferred to zone B and zone C of the heating chamber 2. The above-mentioned heating is performed continuously while heating, and the firing is completed in a short time. The fired product is cooled while passing through the cooling tube 4 and taken out from the outlet 6.

このような焼成過程において、従来の赤外線連
続炉では、炉温を熱電対により検出して赤外線ヒ
ータそのものを電力制御して炉温のコントロール
を行つていた。そのため赤外線照射波長がいわゆ
るフラツキを起していた。しかるに本考案では、
炉温の制御と赤外線ヒータの制御を別系で行い、
赤外線照射を炉温と切り離して常に被処理物に応
じた一定波長で行うようにしている。すなわち、
定電流又は定電力装置16に、被処理物Wの特性
に応ずる赤外線照射波長を創成する電流又は電力
を設定し、赤外線ヒータ10に流れる給電回路1
5の電流や電力が変動したときにその変動分を電
流検出コイル17で検出し、演算ユニツト19及
びコントローラ20を介して補正することによ
り、炉温制御と無関係に常に一定の赤外線波長で
の照射を行う。そして、この状態で赤外線照射に
よる熱量とベルトコンベア下部域の加熱ヒータ1
4による熱量の合成で炉温が形成され、この炉温
をコンベアベルトの直近位置で検出器24により
連続検出し、これが予め設定した焼成温度と偏差
があらわれたときに、温度設定調節器23からの
信号でコントローラ25が作動し、加熱ヒータ1
4の発熱量を増減する。
In such a firing process, in conventional infrared continuous furnaces, the furnace temperature is controlled by detecting the furnace temperature with a thermocouple and controlling the power of the infrared heater itself. As a result, the wavelength of infrared irradiation caused so-called fluctuation. However, in this invention,
The furnace temperature and infrared heater are controlled separately,
The infrared irradiation is separated from the furnace temperature so that the infrared irradiation is always performed at a constant wavelength depending on the object to be treated. That is,
A current or power that creates an infrared irradiation wavelength corresponding to the characteristics of the object W to be treated is set in the constant current or constant power device 16, and the current or power flows to the infrared heater 10 in the power supply circuit 1.
When the current or power of 5 fluctuates, the current detection coil 17 detects the fluctuation and corrects it via the arithmetic unit 19 and controller 20, so that irradiation at a constant infrared wavelength is always performed regardless of furnace temperature control. I do. In this state, the amount of heat generated by infrared irradiation and the heater 1 in the lower area of the belt conveyor are heated.
The furnace temperature is formed by the synthesis of the heat amount in step 4, and this furnace temperature is continuously detected by the detector 24 at a position close to the conveyor belt, and when a deviation from the preset firing temperature appears, the temperature setting controller 23 The controller 25 is activated by the signal, and the heater 1
Increase or decrease the amount of heat generated in step 4.

このようなことから、直接加熱室2の各ゾーン
A,B,Cにおいて、焼成工程で重要な炉温を規
定内の高い精度でコントロールすることが可能と
なるうえに、炉温制御と無関係に、常に一定波長
での安定した赤外線照射加熱が行われることにな
り、従つて、赤外線利用による効率化と、電気特
性にバラツキのない高品質化が併せて達成され
る。
For this reason, in each zone A, B, and C of the direct heating chamber 2, it is possible to control the furnace temperature, which is important in the firing process, with high accuracy within the specified specifications, and it is possible to control the furnace temperature independently of the furnace temperature control. , stable infrared irradiation heating is always performed at a constant wavelength, and therefore, efficiency by utilizing infrared rays and high quality with no variation in electrical properties can be achieved at the same time.

本考案は厚膜IC製品の乾燥、焼成に好適であ
るほか、一般の金属又は非金属の熱処理にも適用
し得るのは勿論である。
The present invention is suitable for drying and baking thick film IC products, and can of course also be applied to heat treatment of general metals or non-metals.

以上説明した本考案によるときには、トンネル
状炉体にコンベアベルトを通しコンベアベルトの
上部域に赤外線ヒータを、コンベアベルトの下部
域に加熱ヒータを夫々配しているため、上下を赤
外線照射で加熱する方式にくらべて安価な炉構造
とすることができ、しかも、赤外線ヒータ10
を、炉温と係りなく被処理物に応じた一定波長の
赤外線を照射するように制御するための定電流ま
たは定電力制御装置16と接続し、抵抗発熱ヒー
タ14を、該ヒータと前記赤外線ヒータによる両
発熱量で創成される炉温の検出器24を介して、
前記赤外線ヒータ10の制御系と独立した炉温コ
ートロール用の制御装置22で制御するように構
成したので、炉温を規定内の高い精度でコントロ
ールしつつ、常に被処理物の特性に応じた一定の
安定波長で赤外線を照射することができ、これに
より急速化熱と波長のフラツキ防止とを同時に実
現でき、たとえば高品質の厚膜IC製品を能率良
く生産することが可能になるなどのすぐれた効果
が得られる。
According to the present invention described above, the conveyor belt is passed through the tunnel-shaped furnace body, and an infrared heater is placed in the upper area of the conveyor belt, and a heating heater is placed in the lower area of the conveyor belt, so that the upper and lower parts are heated by infrared irradiation. The furnace structure can be made cheaper than that of the infrared heater 10.
is connected to a constant current or constant power control device 16 for controlling the irradiation of infrared rays of a constant wavelength depending on the object to be processed regardless of the furnace temperature, and the resistance heating heater 14 is connected to the heater 14 and the infrared heater. Through the detector 24 of the furnace temperature generated by both calorific values,
Since it is configured to be controlled by the furnace temperature coating roll control device 22 that is independent of the control system of the infrared heater 10, the furnace temperature can be controlled with high accuracy within the specified range, and the temperature can always be adjusted according to the characteristics of the workpiece. It is possible to irradiate infrared rays with a certain stable wavelength, which enables rapid heating and prevention of wavelength fluctuations at the same time, and has advantages such as making it possible to efficiently produce high-quality thick-film IC products. You can get the same effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案による赤外線連続加熱炉の一実
施例を示す縦断側面図、第2図は同じくその縦断
正面図、第3図は本考案における赤外線ヒータ及
び加熱ヒータの制御系を例示するブロツク図であ
る。 1……トンネル状炉体、2……加熱室、9……
ベルトコンベア、10……赤外線ヒータ、13…
…耐熱内張り、14……加熱ヒータ、16……定
電流又は定電力装置、22……制御装置。
FIG. 1 is a vertical side view showing an embodiment of the continuous infrared heating furnace according to the present invention, FIG. 2 is a vertical front view thereof, and FIG. 3 is a block diagram illustrating the infrared heater and the control system for the heater according to the present invention. It is a diagram. 1...Tunnel-shaped furnace body, 2...Heating chamber, 9...
Belt conveyor, 10... Infrared heater, 13...
...Heat-resistant lining, 14... Heater, 16... Constant current or constant power device, 22... Control device.

Claims (1)

【実用新案登録請求の範囲】 内面に耐熱内張り13を施して筒状の直接加熱
室2を形成したトンネル状炉体1にコンベアベル
ト9を通した形式の連続加熱炉であつて、 前記直接加熱室2のベルトコンベア上部域に赤
外線ヒータ10を配設すると共に、この赤外線ヒ
ータ10を、炉温と係りなく被処理物に応じた一
定波長の赤外線を照射するように制御するための
定電流または定電力制御装置16と接続し、 ベルトコンベアの下部域には抵抗発熱ヒータ1
4を配設すると共に、抵抗発熱ヒータ14を、該
ヒータと前記赤外線ヒータによる両発熱量で創成
される炉温の検出器24を介して、前記赤外線ヒ
ータ10の制御系と独立した炉温コートロール用
の制御装置22で制御するように構成したことを
特徴とする赤外線連続加熱炉。
[Claims for Utility Model Registration] A continuous heating furnace of the type in which a conveyor belt 9 is passed through a tunnel-shaped furnace body 1 having a heat-resistant lining 13 on the inner surface to form a cylindrical direct heating chamber 2, the direct heating An infrared heater 10 is installed in the upper area of the belt conveyor in the chamber 2, and a constant current or a constant current is used to control the infrared heater 10 so that it irradiates infrared rays with a constant wavelength depending on the object to be processed, regardless of the furnace temperature. It is connected to the constant power control device 16, and a resistance heating heater 1 is installed in the lower area of the belt conveyor.
At the same time, the resistance heating heater 14 is connected to a furnace temperature court independent of the control system of the infrared heater 10 via a furnace temperature detector 24 generated by the heat generated by both the resistance heater 14 and the infrared heater. An infrared continuous heating furnace characterized in that it is configured to be controlled by a roll control device 22.
JP3930083U 1983-03-18 1983-03-18 Infrared continuous heating furnace Granted JPS59145067U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3930083U JPS59145067U (en) 1983-03-18 1983-03-18 Infrared continuous heating furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3930083U JPS59145067U (en) 1983-03-18 1983-03-18 Infrared continuous heating furnace

Publications (2)

Publication Number Publication Date
JPS59145067U JPS59145067U (en) 1984-09-28
JPH0132762Y2 true JPH0132762Y2 (en) 1989-10-05

Family

ID=30169951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3930083U Granted JPS59145067U (en) 1983-03-18 1983-03-18 Infrared continuous heating furnace

Country Status (1)

Country Link
JP (1) JPS59145067U (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013105959B4 (en) * 2013-06-07 2019-06-19 Heraeus Noblelight Gmbh Operating method and apparatus for irradiating a substrate
JP7178823B2 (en) * 2018-08-17 2022-11-28 東京応化工業株式会社 Substrate heating device and substrate processing system
JP7236284B2 (en) * 2019-02-12 2023-03-09 東京応化工業株式会社 Substrate heating device and substrate processing system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58197526A (en) * 1982-05-13 1983-11-17 Toshiba Corp Temperature controller

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58197526A (en) * 1982-05-13 1983-11-17 Toshiba Corp Temperature controller

Also Published As

Publication number Publication date
JPS59145067U (en) 1984-09-28

Similar Documents

Publication Publication Date Title
EP0307319B1 (en) Reflow furnace
US20050236385A1 (en) Conveyor type oven
US3884667A (en) Tunnel furnace, and a method of operating same
US6129258A (en) Muffle convection brazing and annealing system and method
GB1420096A (en) Method and apparatus for controlling wall thickness during a blow-moulding operation
EP0026032B1 (en) Heat treatment process and apparatus
US4416623A (en) Muffle furnace
JPH0132762Y2 (en)
EP2963372B1 (en) Drying device
CA1138196A (en) Method of and an apparatus for continuous heat treatment of separated elongated metallic material
JP3734854B2 (en) Hot air circulation type individual multiple enamel wire baking furnace and method for producing enamel wire using the same
JPH0243038Y2 (en)
US3807943A (en) Muffle furnace for treatment of articles on conveyor
US5868564A (en) Sequential step belt furnace with individual concentric heating elements
JPH05114570A (en) Photoirradiation heating system
ES351739A1 (en) Method and apparatus for controlling annealing furnaces
JPH0799311B2 (en) Heating furnace temperature control method
JPS579835A (en) Method and device for temperature controlling of continuous heating furnace
JPS5844130B2 (en) Continuous annealing equipment for rod-shaped or tubular metal materials
SU870887A1 (en) Plant for heat treatment of construction articles
JPH01131887A (en) Resistor with axial connector and device for drying other electronic element
JPS6017989B2 (en) Electric heat treatment furnace
SU761811A1 (en) Plant for heat treating of parts
SU714943A1 (en) Method of controlling heating temperature of elongated articles
JPH0390520A (en) Apparatus for correcting flatness of steel strip in continuous annealing furnace