JPH0132435B2 - - Google Patents

Info

Publication number
JPH0132435B2
JPH0132435B2 JP55079446A JP7944680A JPH0132435B2 JP H0132435 B2 JPH0132435 B2 JP H0132435B2 JP 55079446 A JP55079446 A JP 55079446A JP 7944680 A JP7944680 A JP 7944680A JP H0132435 B2 JPH0132435 B2 JP H0132435B2
Authority
JP
Japan
Prior art keywords
air
heat exchanger
reversing heat
hydrocarbons
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55079446A
Other languages
Japanese (ja)
Other versions
JPS576281A (en
Inventor
Hiroshi Ishii
Teruji Kaneko
Akira Wakaizumi
Yoshiaki Utsunomya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Oxygen Co Ltd
Original Assignee
Japan Oxygen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Oxygen Co Ltd filed Critical Japan Oxygen Co Ltd
Priority to JP7944680A priority Critical patent/JPS576281A/en
Publication of JPS576281A publication Critical patent/JPS576281A/en
Publication of JPH0132435B2 publication Critical patent/JPH0132435B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04303Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04242Cold end purification of the feed air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/24Processes or apparatus using other separation and/or other processing means using regenerators, cold accumulators or reversible heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/60Processes or apparatus using other separation and/or other processing means using adsorption on solid adsorbents, e.g. by temperature-swing adsorption [TSA] at the hot or cold end

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は空気液化分離装置における炭化水素の
除去方法に関し、詳しくはリバーシング熱交換器
を通過した原料空気を次いで吸着器に導入し、該
原料空気中に含有する炭化水素を除去することに
より精溜塔に到達する炭化水素を無くし、もつて
空気分離装置の安全性の向上と液体酸素放出によ
るロスの防止を図つた方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for removing hydrocarbons in an air liquefaction separation device. This invention relates to a method for eliminating hydrocarbons from reaching a rectification column by removing hydrocarbons contained in feed air, thereby improving the safety of an air separation device and preventing loss due to liquid oxygen release.

〔従来の技術〕[Conventional technology]

リバーシング熱交換器を用いて原料空気を冷却
する型式の空気液化分離装置においては、該リバ
ーシング熱交換器において原料空気に含有する水
分、炭酸ガスを凝結固化して析出除去し、該熱交
換器の原料空気流路に蓄積した水分、炭酸ガスは
原料空気流路と廃ガス流路とを交互に切換えるこ
とにより、昇華除去している。
In an air liquefaction separation device that uses a reversing heat exchanger to cool feed air, the reversing heat exchanger condenses and solidifies moisture and carbon dioxide contained in the feed air to precipitate and remove the heat exchanger. Moisture and carbon dioxide accumulated in the raw air flow path of the vessel are sublimated and removed by alternately switching between the raw air flow path and the waste gas flow path.

しかし、原料空気中の炭化水素類は、このリバ
ーシング熱交換器では除去されずに精溜塔に侵入
して液体空気、液体酸素中に濃縮されるので、低
温の液相吸着器により除去し、また常時一定量の
液体酸素を放出することにより安全を確保してい
る。
However, hydrocarbons in the feed air are not removed by this reversing heat exchanger but enter the rectification column and are concentrated in liquid air and liquid oxygen, so they are removed by a low-temperature liquid phase adsorber. Safety is also ensured by constantly releasing a certain amount of liquid oxygen.

例えば第1図に示すリバーシング熱交換器を使
用する全低圧式空気液化分離装置においては、次
の様な方法により、原料空気に同伴されて侵入す
る水分、炭酸ガス、炭化水素類を除去していた。
For example, in a total low-pressure air liquefaction separation device that uses a reversing heat exchanger as shown in Figure 1, the following method is used to remove moisture, carbon dioxide, and hydrocarbons that enter the feed air. was.

即ち、管1より導入された加圧原料空気は、切
換弁2a,2b、管3a,3b、リバーシング熱
交換器の温ブロツク4、冷ブロツク5のそれぞれ
の切換通路4a,4b,5a,5b、管6a,6
b、戻止弁7a,7bからなる切換流路の一方、
例えば切換弁2a、管3a、切換通路4a,5
a、管6a、戻止弁7aを通つて冷却されるとと
もに水分、炭酸ガスを除去されて管8に導出され
る。
That is, the pressurized raw air introduced from the pipe 1 is passed through the switching valves 2a, 2b, the pipes 3a, 3b, and the switching passages 4a, 4b, 5a, 5b of the hot block 4 and cold block 5 of the reversing heat exchanger, respectively. , tubes 6a, 6
b, one side of the switching flow path consisting of the return valves 7a and 7b;
For example, the switching valve 2a, the pipe 3a, the switching passages 4a, 5
a, a pipe 6a, and a check valve 7a, where it is cooled, moisture and carbon dioxide are removed, and the water is led out to a pipe 8.

尚、上記リバーシング熱交換器の温ブロツク4
及び冷ブロツク5には、それぞれ酸素ガス通路4
c,5c、窒素ガス通路4d,5dが設けられる
とともに、冷ブロツク5には再熱回路5eが設け
られている。
In addition, the heating block 4 of the reversing heat exchanger
and the cold block 5 are each provided with an oxygen gas passage 4.
In addition, the cold block 5 is provided with a reheat circuit 5e.

前記管8に導出した原料空気は、一部を管16
に分岐した後、大部分が管9を経て精溜塔の下部
塔10に導入されて精溜され、下部塔10上部に
生成した液体窒素は、弁15を経て上部塔13に
導入される。
A portion of the raw air led out to the pipe 8 is passed through the pipe 16.
After branching, most of the liquid nitrogen is introduced into the lower column 10 of the rectification column via pipe 9 to be rectified, and the liquid nitrogen generated above the lower column 10 is introduced into the upper column 13 via valve 15.

また、管8から管16に分岐した原料空気の一
部は、リバーシング熱交換器の冷ブロツク5の再
熱回路5eを経た後、管17から膨脹タービン1
8に導入され、降圧して管19から精溜塔の上部
塔13に導入される。この時前記リバーシング熱
交換器で捕足されなかつた微量の炭化水素類は上
部塔13に侵入する。
A part of the feed air branched from the pipe 8 to the pipe 16 passes through the reheat circuit 5e of the cold block 5 of the reversing heat exchanger, and then flows from the pipe 17 to the expansion turbine 1.
8, the pressure is reduced, and the product is introduced into the upper column 13 of the rectification column through a pipe 19. At this time, trace amounts of hydrocarbons not captured by the reversing heat exchanger enter the upper column 13.

下部塔10底部の液体空気は、炭化水素吸着器
14によつて含有する炭化水素の大部分を除去さ
れて弁12を経て上部塔13に導入される。
The liquid air at the bottom of the lower column 10 is introduced into the upper column 13 through the valve 12 after most of the hydrocarbons contained therein are removed by the hydrocarbon adsorber 14 .

また、上部塔13下部の凝縮器11に溜る液体
酸素は、液酸ポンプ20で循環し、循環吸着器2
1により液体酸素中の炭化水素を濾過し、液相中
のアセチレン等を捕捉する。しかし、この液相に
含有するメタンは、循環吸着器21では殆んど濾
過せず通過し、前記膨脹タービン18の経路から
の炭化水素と共に液体酸素中に蓄積されて行き、
次第に高濃度になつて行くので、常時一定量の液
体酸素を管22より装置外へ放出して安全を確保
している。
In addition, the liquid oxygen accumulated in the condenser 11 at the bottom of the upper column 13 is circulated by the liquid acid pump 20, and
1 to filter hydrocarbons in liquid oxygen and capture acetylene, etc. in the liquid phase. However, the methane contained in this liquid phase passes through the circulation adsorber 21 without being filtered, and is accumulated in the liquid oxygen together with the hydrocarbons from the path of the expansion turbine 18.
Since the concentration gradually increases, a certain amount of liquid oxygen is always released from the pipe 22 to the outside of the device to ensure safety.

尚、精溜塔の凝縮器11から導出する製品酸素
ガスは、管23、上記酸素ガス通路5c,4cを
経て管31から採取される。また、精溜塔の上部
塔13から導出する純窒素ガスは、管24、上記
純窒素ガス通路5d,4dを経て管32から採取
され、上部塔13の不純窒素、即ち廃ガスは、管
25、弁26、管27を経た後に上記切換流路の
一方に帰還し、例えば戻止弁7b、管6b、切換
通路5b,4b、管3b、切換弁2bを経て切換
通路5b,4bに析出した水分、炭酸ガスを昇華
同伴して管28、制動用ブロワー29,管30を
経て放出される。
Note that the product oxygen gas led out from the condenser 11 of the rectification column is collected from the pipe 31 via the pipe 23 and the oxygen gas passages 5c and 4c. Further, pure nitrogen gas led out from the upper column 13 of the rectification column is collected from the pipe 32 via the pipe 24 and the pure nitrogen gas passages 5d and 4d, and impure nitrogen from the upper column 13, that is, waste gas, is collected from the pipe 25. , the valve 26, and the pipe 27, and then returned to one of the switching passages, and deposited in the switching passages 5b, 4b, for example, via the check valve 7b, the pipe 6b, the switching passages 5b, 4b, the pipe 3b, and the switching valve 2b. Moisture and carbon dioxide are sublimed and entrained and discharged through the pipe 28, the brake blower 29, and the pipe 30.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、前述のごとく、下部塔10底部の液体
空気は、弁12を経て上部塔13に導入される際
に、炭化水素吸着器14によつて液体空気中に含
有する炭化水素を除去されるが、炭化水素吸着器
14で除去されるのは、主としてアセチレンであ
り、メタンは捕捉されずに上部塔13に侵入す
る。したがつて、前記膨脹タービン18を経て来
る経路及び炭化水素吸着器14を経て来る経路の
双方から上部塔13に侵入した炭化水素類は、上
部塔13下部の凝縮器11に溜る液体酸素中に濃
縮される。
However, as described above, when the liquid air at the bottom of the lower column 10 is introduced into the upper column 13 through the valve 12, the hydrocarbons contained in the liquid air are removed by the hydrocarbon adsorber 14. , it is mainly acetylene that is removed in the hydrocarbon adsorber 14, and methane enters the upper column 13 without being captured. Therefore, the hydrocarbons that have entered the upper column 13 from both the path passing through the expansion turbine 18 and the path passing through the hydrocarbon adsorber 14 are contained in the liquid oxygen accumulated in the condenser 11 at the bottom of the upper column 13. Concentrated.

そこで前述の如く、液酸ポンプ20により、こ
の液体酸素を循環し、循環吸着器21により液体
酸素中の炭化水素を濾過しているが、ここでも液
相中のメタンは殆んど通過し、アセチレン等が捕
捉される。したがつて、メタンは液体酸素中に蓄
積されて行き、次第に高濃度になつて行くので常
時一定量の液体酸素を管22より装置外へ放出す
ることにより、危険な状態になるのを防いでい
る。
Therefore, as mentioned above, this liquid oxygen is circulated by the liquid acid pump 20, and the hydrocarbons in the liquid oxygen are filtered by the circulation adsorber 21, but here too, most of the methane in the liquid phase passes through. Acetylene etc. are captured. Therefore, methane accumulates in the liquid oxygen and gradually becomes highly concentrated, so a dangerous situation can be prevented by constantly releasing a certain amount of liquid oxygen to the outside of the device through the pipe 22. There is.

このため上記従来法では製品となる液体酸素の
ロス及び寒冷のロスを避けられなかつた。
For this reason, in the conventional method described above, loss of liquid oxygen and loss of cooling cannot be avoided.

また上記炭化水素吸着器14及び循環吸着器2
1は、吸着した炭化水素を脱着し、再生しなけれ
ば連続使用できないので、両吸着器14,21を
それぞれ複数設けて切換え使用し、しかもこれら
の両吸着器14,21を再生するためには、別途
再生用ガスの供給源と該再生用ガスを加熱するた
めの加熱源を必要としていた。
In addition, the hydrocarbon adsorption device 14 and the circulation adsorption device 2
1 cannot be used continuously unless the adsorbed hydrocarbons are desorbed and regenerated, so a plurality of both adsorbers 14 and 21 are provided and used selectively, and in order to regenerate both adsorbers 14 and 21, , a separate supply source for regeneration gas and a heating source for heating the regeneration gas were required.

そこで、本発明は、リバーシング熱交換器がプ
レツシヤ−スイング操作されていることに着目
し、リバーシング熱交換器の直後に吸着器を設
け、リバーシング熱交換器の切換に同期して該吸
着器を切換えて炭化水素類を除去するようにし、
液体酸素及びその寒冷のロスや吸着器再生のため
の熱損失を解消した空気分離装置における炭化水
素の除去方法を提供することを目的としている。
Therefore, the present invention focuses on the fact that the reversing heat exchanger is operated under pressure swing, and an adsorber is provided immediately after the reversing heat exchanger, and the adsorption device is installed in synchronization with the switching of the reversing heat exchanger. Change the equipment to remove hydrocarbons,
The object of the present invention is to provide a method for removing hydrocarbons in an air separation device that eliminates the loss of liquid oxygen and its refrigeration and the heat loss for adsorber regeneration.

〔課題を解決するための手段〕[Means to solve the problem]

本発明方法は、原料空気をリバーシング熱交換
器に導入して冷却し、同時に含有する水分及び炭
酸ガスを析出させて除去した後、吸着剤を充填し
切換使用する吸着器に導入して、該低温原料空気
中に含有する炭化水素類を吸着除去する精製工程
と、精溜塔より帰還する廃ガスを前記吸着器に導
入して上記精製工程で前記吸着剤中に吸着された
炭化水素類を脱着した後、上記リバーシング熱交
換器に導入して上記精製工程で析出した水分及び
炭酸ガスを同伴して該リバーシング熱交換器を再
生する再生工程とを有し、前記精製工程と再生工
程を、リバーシング熱交換器の切換周期と同周期
に切換えることを特徴としている。
In the method of the present invention, raw air is introduced into a reversing heat exchanger to be cooled, and at the same time, moisture and carbon dioxide contained therein are precipitated and removed, and then an adsorbent is filled and introduced into an adsorber that is switched to use. A purification step in which hydrocarbons contained in the low-temperature feed air are adsorbed and removed, and waste gas returned from a rectification tower is introduced into the adsorber to produce hydrocarbons adsorbed in the adsorbent in the purification step. and a regeneration step of regenerating the reversing heat exchanger by introducing it into the reversing heat exchanger and entraining the moisture and carbon dioxide precipitated in the refining step, and regenerating the reversing heat exchanger. It is characterized by switching the process at the same cycle as the switching cycle of the reversing heat exchanger.

また製品酸素及び製品窒素の採取率が高く、リ
バーシング熱交換器の非切換通路(酸素ガス通
路、窒素ガス通路)に不純物の混入が許されない
これら製品ガスを大量に流す場合には、原料空気
に対する廃ガスの比率が低くなり、したがつて炭
化水素吸着器の再生が困難となるが、この場合は
真空ポンプによつて廃ガスを大気圧以下の圧力に
減圧排気することにより、吸着器の再生を行なう
ことも含むものである。
In addition, when the extraction rate of product oxygen and product nitrogen is high and a large amount of these product gases, which do not allow impurities to be mixed into the non-switching passages (oxygen gas passage, nitrogen gas passage) of the reversing heat exchanger, are flowing, it is necessary to The ratio of the waste gas to the hydrocarbon adsorber becomes low, making it difficult to regenerate the hydrocarbon adsorber. This also includes regeneration.

さらに上記廃ガスの減圧排気による吸着器の再
生工程の減圧を膨脹タービンの制動用ブロワーに
よつて行なうことも含むものである。
Furthermore, the present invention also includes the use of a brake blower of the expansion turbine to reduce the pressure in the adsorber regeneration step by exhausting the waste gas under reduced pressure.

〔作用〕[Effect]

上記のごとく構成することにより、原料空気が
液化して精溜塔に導入される前に、低温圧力スイ
ング吸着方法により不純物である炭化水素類を除
去でき、空気分離装置の安全性の向上と液体酸素
放出による製品のロス及び寒冷のロスを防止する
ことができる。
With the above configuration, impurities such as hydrocarbons can be removed using the low temperature pressure swing adsorption method before the feed air is liquefied and introduced into the rectification column, improving the safety of the air separation equipment and Product loss and cold loss due to oxygen release can be prevented.

また、リバーシング熱交換器は、数分から数十
分の短時間で切換えられているため、吸着器も同
じ短時間での切換となり、吸着剤の量を少なくす
ることができる。しかも、吸着器の再生は、リバ
ーシング熱交換器の再生を行うための低温低圧の
廃ガスをそのまま用いるので、別途再生用ガスを
用意する必要がなく、再生用ガスの供給源や加熱
源を必要としない。
Further, since the reversing heat exchanger is switched in a short time of several minutes to several tens of minutes, the adsorbent can also be switched in the same short time, and the amount of adsorbent can be reduced. Moreover, the regeneration of the adsorber uses the low-temperature, low-pressure waste gas that is used to regenerate the reversing heat exchanger, so there is no need to prepare a separate regeneration gas, and the regeneration gas supply source and heating source are not required. do not need.

〔実施例〕〔Example〕

以下本発明を第2図に示す一実施例にしたがつ
て説明する。尚、本実施例は、吸着器の再生工程
の減圧を膨脹タービンの制動用ブロワーによつて
行なう場合の例である。また前記第1図に示した
従来例と同一要素のものには同一符号を付して詳
細な説明を省略する。
The present invention will be described below with reference to an embodiment shown in FIG. Note that this embodiment is an example in which the pressure reduction in the regeneration process of the adsorber is performed by a brake blower of an expansion turbine. Further, the same elements as those of the conventional example shown in FIG. 1 are given the same reference numerals and detailed explanations will be omitted.

管1より6ata、30℃の原料空気10000Nm3/h
が導入され、一方の切換弁2a、管3aを経てリ
バーシング熱交換器の温ブロツク4の切換通路4
aを流れて冷却されると共にその伝熱面に水分を
凝結させ、さらにリバーシング熱交換器の冷ブロ
ツク5の切換通路5aを流れて−170℃まで冷却
され、その伝熱面に炭酸ガスを析出させると共に
自身は精製されて管6aより導出する。
6ata, 30℃ raw air 10000Nm 3 /h from pipe 1
is introduced into the switching passage 4 of the hot block 4 of the reversing heat exchanger via one switching valve 2a and the pipe 3a.
It flows through the switching passage 5a of the cold block 5 of the reversing heat exchanger and is cooled to -170°C, and carbon dioxide gas is condensed on the heat transfer surface of the reversing heat exchanger. At the same time as it is precipitated, it is purified and discharged from the tube 6a.

この管6aを導出した低温空気には、原料空気
と同濃度のメタン1〜2ppm及び極微量のアセチ
レン等が含まれるが、これらの炭化水素類を除去
するために、該低温空気は次いでシリカゲル等の
吸着剤を充填し、切換使用される一対でなる吸着
器33a,33bの一方の吸着器33aに導入さ
れ、炭化水素類が吸着除去される。これらのリバ
ーシング熱交換器による水分、炭酸ガスの析出除
去、及び吸着器による炭化水素類の吸着除去から
なる精製工程により含有不純物を完全に除去され
た精製低温空気は戻止弁7aを経て管8へ導出さ
れる。
The low-temperature air led out of this tube 6a contains 1 to 2 ppm of methane at the same concentration as the raw air, and a trace amount of acetylene, etc., but in order to remove these hydrocarbons, the low-temperature air is then treated with silica gel, etc. The adsorbent is introduced into one adsorber 33a of a pair of adsorbers 33a and 33b which are used alternately, and hydrocarbons are adsorbed and removed. Purified low-temperature air from which impurities have been completely removed through a purification process consisting of precipitation and removal of moisture and carbon dioxide by these reversing heat exchangers, and adsorption and removal of hydrocarbons by an adsorption device, is passed through a return valve 7a into a pipe. 8.

ここで、前記切換弁2a,2b及び戻止弁7
a,7bは、リバーシング熱交換器の切換通路4
a,4b,5a,5b、さらに吸着器33a,3
3bを夫々切換えるためのものであり、5〜10分
の間隔で作動し、これにより各通路及び各吸着器
を原料空気と廃ガスが交替して流れる。即ち上記
説明では、それぞれ符号にaを付した通路に原料
空気が流れ、含有する水分、炭酸ガス、炭化水素
類を除去される精製工程を行つており、同じくb
を付した通路に帰還した廃ガスが流れ、後述の再
生工程を行つている状態である。
Here, the switching valves 2a, 2b and the return valve 7
a, 7b are switching passages 4 of the reversing heat exchanger
a, 4b, 5a, 5b, and further adsorbers 33a, 3
3b, and are operated at intervals of 5 to 10 minutes, so that feed air and waste gas alternately flow through each passage and each adsorber. That is, in the above explanation, the raw air flows through the passages marked with a, and a purification process is carried out in which the contained moisture, carbon dioxide gas, and hydrocarbons are removed, and similarly, b
The returned waste gas flows through the passage marked with , undergoing the regeneration process described below.

管8へ導出した精製低温空気は二分され、その
第1の流れ8000Nm3/hは管9を経て複式精溜塔
の下部塔10に供給され、ここで凝縮器11によ
る上昇ガスの凝縮液化、液体空気の還流作用によ
つて精溜が行なわれ、下部の酸素富化液体空気と
上部の液体窒素に分離し、該酸素富化液体空気
は、弁12を経て膨脹し、温度降下して上部塔1
3に導入されさらに精溜に供される。
The purified low-temperature air led out to pipe 8 is divided into two parts, and the first stream of 8000 Nm 3 /h is fed via pipe 9 to the lower column 10 of the double rectification column, where the rising gas is condensed and liquefied by a condenser 11. Rectification is performed by the reflux action of the liquid air, separating it into oxygen-enriched liquid air in the lower part and liquid nitrogen in the upper part. Tower 1
3 and further subjected to rectification.

この場合、前記従来法では、この経路に炭化水
素吸着器14が挿入されていたが、本発明方法に
よる場合は前記吸着器33aで除去されているた
め、その必要が無い。
In this case, in the conventional method, the hydrocarbon adsorber 14 was inserted into this path, but in the method of the present invention, since the hydrocarbon adsorber 33a removes the hydrocarbons, this is not necessary.

また下部塔10上部に溜つた液体窒素は、弁1
5を経て上部塔13の上部へ送られ上部塔13の
還流液となる。
In addition, the liquid nitrogen accumulated in the upper part of the lower column 10 is removed from the valve 1
5 and is sent to the upper part of the upper column 13 and becomes the reflux liquid of the upper column 13.

一方、前記管16に分岐した精製低温空気の第
2の流れ2000Nm3/hは、管16を経てリバーシ
ング熱交換器5の再熱通路5eに導入され、昇温
して−130℃、5.6ataとなつて導出し、管17を
経て膨脹タービン18に入り、ここで断熱膨脹し
て−170℃、1.3ataの状態で管19より上部塔1
3に導入される。
On the other hand, the second flow of 2000 Nm 3 /h of purified low-temperature air branched into the pipe 16 is introduced into the reheat passage 5e of the reversing heat exchanger 5 through the pipe 16, and is heated to -130°C, 5.6 It enters the expansion turbine 18 through the pipe 17, where it is adiabatically expanded and then passed through the pipe 19 to the upper tower 1 at -170°C and 1.3 ata.
3 will be introduced.

この様にして上部塔13に導入された各液及び
ガスは、精溜によつて分離され、上部塔13下部
の凝縮器11には製品液体酸素が、上部塔13上
部には窒素ガスが集まる。
The liquids and gases introduced into the upper column 13 in this way are separated by rectification, and product liquid oxygen is collected in the condenser 11 at the bottom of the upper column 13, and nitrogen gas is collected in the upper part of the upper column 13. .

凝縮器11に溜つた液体酸素は、従来は前記の
如く、液酸ポンプ20により循環し、循環吸着器
21による吸着除去、そして管22よりの放出に
よつて、濃縮された炭化水素類を除いていたが、
本発明方法によれば、この様な装置及び操作は必
要ない。
Conventionally, as described above, the liquid oxygen accumulated in the condenser 11 is circulated by the liquid acid pump 20, adsorbed and removed by the circulation adsorber 21, and then discharged from the pipe 22 to remove concentrated hydrocarbons. was, but
According to the method of the invention, such equipment and operations are not required.

この様にして分離された空気の各成分は、管2
3より酸素ガス1500Nm3/hが、管24より純窒
素ガス3500Nm3/hが、また管25より不純窒素
ガス、即ち廃ガス5000Nm3/hが導出される。
Each component of the air separated in this way is
3, 1500 Nm 3 /h of oxygen gas is led out, 3500 Nm 3 /h of pure nitrogen gas is led out from pipe 24, and 5000 Nm 3 /h of impure nitrogen gas, that is, waste gas, is led out from pipe 25.

この廃ガスは、弁26により1.3ataから
0.95ataに膨脹し、管27、戻止弁7bを経て吸
着器33bに導入され、該吸着器33b内のシリ
カゲル等の吸着剤に吸着されているメタン、アセ
チレン等の炭化水素類を脱着同伴してこれを再生
し、さらに管6bを経てリバーシング熱交換器の
冷ブロツク5の切換通路5b及び温ブロツク4の
切換通路4bを通り、切換通路5b,4bの伝熱
面に前周期において凝結し析出している炭酸ガス
及び水分を気化し同伴してこれら切換通路5b,
4bを再生し、自身は常温迄昇温して導出し、こ
れらの吸着器33bの炭化水素類の脱着及びリバ
ーシング熱交換器の炭酸ガス、水分の気化からな
る再生工程を終えた廃ガスは、管3b、切換弁2
bを経て管28に至る。この廃ガスは管28より
さらに膨脹タービン18の制動用ブロワー29に
入り0.85ataから1ataまで圧縮されて管30より
装置外へ排出される。
This waste gas is removed from 1.3 ata by valve 26.
It expands to 0.95 ata and is introduced into the adsorber 33b through the pipe 27 and the return valve 7b, where it desorbs and entrains hydrocarbons such as methane and acetylene adsorbed on the adsorbent such as silica gel in the adsorber 33b. This is regenerated, and further passes through the switching passage 5b of the cold block 5 and the switching passage 4b of the hot block 4 of the reversing heat exchanger via the pipe 6b, and condenses on the heat transfer surfaces of the switching passages 5b and 4b in the previous cycle. The precipitated carbon dioxide and moisture are vaporized and entrained to these switching passages 5b,
4b is regenerated, the waste gas itself is heated to room temperature and extracted, and the waste gas that has completed the regeneration process consisting of desorption of hydrocarbons in the adsorber 33b and vaporization of carbon dioxide and moisture in the reversing heat exchanger is , pipe 3b, switching valve 2
It reaches the pipe 28 via b. This waste gas further enters the brake blower 29 of the expansion turbine 18 through the pipe 28, is compressed from 0.85 ata to 1 ata, and is discharged from the apparatus through the pipe 30.

上記制動用ブロワー29は、排ガスを吸引して
弁26から下流、即ち管27、戻止弁7b、吸着
器33b、リバーシング熱交換器の切換通路5
b,4b、切換弁2b、管28に至る経路を減圧
状態とするもので、制動用ブロワー29の代りに
通常の真空ポンプを使用することにより、管2
7、戻止弁7b、吸着器33b、リバーシング熱
交換器の切換通路5b,4b、切換弁2b、管2
8に至る経路を減圧しても良いことは勿論であ
る。
The brake blower 29 sucks the exhaust gas and operates downstream from the valve 26, that is, the pipe 27, the return valve 7b, the adsorber 33b, and the switching passage 5 of the reversing heat exchanger.
b, 4b, the switching valve 2b, and the pipe 28 are reduced in pressure, and by using a normal vacuum pump instead of the brake blower 29, the pipe 2
7, return valve 7b, adsorber 33b, reversing heat exchanger switching passages 5b, 4b, switching valve 2b, pipe 2
Of course, the pressure may be reduced on the path leading to No. 8.

一方、管23より導出された酸素ガスは、リバ
ーシング熱交換器の酸素ガス通路5c,4cを通
り、向流する原料空気を冷却し、自身は常温迄昇
温して管31より製品として取出される。また管
24より導出した純窒素ガスは、リバーシング熱
交換器の窒素ガス通路5d,4dを通り、同様に
向流する原料空気を冷却し、自身は常温迄昇温し
て管32より製品として取り出される。
On the other hand, the oxygen gas led out from the pipe 23 passes through the oxygen gas passages 5c and 4c of the reversing heat exchanger, cools the countercurrent raw material air, heats itself to room temperature, and takes it out as a product from the pipe 31. be done. In addition, the pure nitrogen gas led out from the pipe 24 passes through the nitrogen gas passages 5d and 4d of the reversing heat exchanger, cools the raw material air flowing countercurrently, and heats itself to room temperature, and then passes through the pipe 32 as a product. taken out.

そして、前記切換弁2a,2b及び戻止弁7
a,7bが所定の時間間隔で切換作動し、これに
よりリバーシング熱交換器の各切換通路4a,4
b,5a,5b及び各吸着器33a,33bを流
れる原料空気と廃ガスが交替して、即ち上記説明
とは逆に、それぞれ符号にaを付した通路に帰還
した廃ガスが流れて再生工程を行い、同じくbを
付した通路に原料空気が流れ、含有する水分、炭
酸ガス、炭化水素類を除去される精製工程を行う
状態に切換えられる。これにより、吸着器33
a,33bの切換とリバーシング熱交換器の切換
通路4a,4b,5a,5bの切換が同周期に行
われることになる。
Then, the switching valves 2a, 2b and the return valve 7
a, 7b are switched at predetermined time intervals, thereby each switching passage 4a, 4 of the reversing heat exchanger
b, 5a, 5b and the respective adsorbers 33a, 33b, the raw material air and waste gas are exchanged, that is, contrary to the above explanation, the returned waste gas flows into the passages marked with a, respectively, and a regeneration process is performed. Then, the feed air flows through the passage marked b, and the state is switched to a state in which a purification process is performed in which the contained moisture, carbon dioxide gas, and hydrocarbons are removed. As a result, the adsorber 33
Switching of channels a and 33b and switching of switching passages 4a, 4b, 5a and 5b of the reversing heat exchanger are performed in the same period.

したがつて、吸着器33a,33bは、低温高
圧の原料空気が流れる精製工程と、低温低圧の廃
ガスが流れる再生工程とを、リバーシング熱交換
器の切換通路4a,4b,5a,5bの切換を行
う切換弁2a,2b及び戻止弁7a,7bの作動
で行うことができるので、加熱再生ガスの供給及
び切換弁等の再生用の設備を用意する必要がな
く、吸着設備の付加のみで良い。
Therefore, the adsorbers 33a and 33b perform a purification process in which low-temperature, high-pressure raw material air flows and a regeneration process in which low-temperature, low-pressure waste gas flows through switching passages 4a, 4b, 5a, and 5b of the reversing heat exchanger. Since switching can be performed by operating the switching valves 2a, 2b and check valves 7a, 7b, there is no need to supply heated regeneration gas or prepare regeneration equipment such as switching valves, and only add adsorption equipment. That's fine.

〔発明の効果〕〔Effect of the invention〕

本発明は以上の如く実施されるが、これによる
効果は次の通りである。
The present invention is carried out as described above, and the effects thereof are as follows.

従来、液相において除去していたメタン、アセ
チレン等の炭化水素類をリバーシング熱交換器で
水分及び炭酸ガスを除去された精製空気を直ちに
吸着器に導入して気相において吸着除去するよう
にしたから、液相において吸着除去し得なかつた
メタンも吸着除去し得る様になり、従来必要とし
た液相での炭化水素吸着器や循環吸着器が不要に
なつただけでなく、酸素と共存すると極めて危険
な挙動を起こす上記物質が凝縮器の液体酸素中に
濃縮されることが無くなつたので、保安上非常に
好ましい結果が得られる様になつた。また、酸素
中に炭化水素が濃縮されるのを防ぐための、定常
的な液体酸素の放出が不要になつたから、製品の
ロス及びそれによる寒冷のロスが防止できる様に
なり、経済的にもメリツトが生じる様になつた。
Hydrocarbons such as methane and acetylene, which were conventionally removed in the liquid phase, are removed by adsorption in the gas phase by immediately introducing purified air from which water and carbon dioxide have been removed in a reversing heat exchanger into an adsorbent. As a result, methane, which could not be adsorbed and removed in the liquid phase, can now be adsorbed and removed, which not only eliminates the need for hydrocarbon adsorbers and circulation adsorbers in the liquid phase that were previously required, but also eliminates the need for methane that coexists with oxygen. As a result, the above-mentioned substances that cause extremely dangerous behavior are no longer concentrated in the liquid oxygen in the condenser, so very favorable results can be obtained in terms of safety. In addition, since there is no longer a need for constant discharge of liquid oxygen to prevent hydrocarbons from concentrating in oxygen, product loss and resulting loss of cooling can be prevented, making it economically viable. Benefits began to emerge.

さらに、吸着器の再生をリバーシング熱交換器
の再生と同周期に行い、リバーシング熱交換器の
再生に使用される低温低圧の廃ガスを、そのまま
用いているので、別途再生用ガス等を用意する必
要がなく、再生用ガスの供給源や加熱源を必要と
せず、しかも液相での炭化水素吸着器、循環吸着
器が不要となつたので、これらの加熱再生に要す
る費用も不要となる。
Furthermore, the adsorber is regenerated in the same cycle as the reversing heat exchanger, and the low-temperature, low-pressure waste gas used to regenerate the reversing heat exchanger is used as is, so a separate regeneration gas, etc. is used. There is no need to prepare a regeneration gas supply source or heating source, and there is no need for a liquid phase hydrocarbon adsorption device or circulation adsorption device, so there is no need to pay for these heating regeneration costs. Become.

また、リバーシング熱交換器を導出した低温原
料空気に極微量含まれる雪状のドライアイスも、
本発明方法による吸着器により捕集除去し得る副
次的効果もある。
In addition, the snow-like dry ice contained in extremely small amounts in the low-temperature raw air from which the reversing heat exchanger was derived,
There are also side effects that can be collected and removed by the adsorber according to the method of the invention.

加えて、本発明は、リバーシング熱交換器と戻
止弁との間に吸着器を配置するだけで実施するこ
とができ、建設コストも掛らず、従来装置にも容
易に適用することが可能である。
In addition, the present invention can be implemented by simply arranging an adsorber between the reversing heat exchanger and the check valve, requires no construction cost, and can be easily applied to conventional equipment. It is possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の空気分離装置の系統図、第2図
は本発明の除去方法を適用した空気分離装置の系
統図である。 2a,2b……切換弁、4……リバーシング熱
交換器の温ブロツク、5……リバーシング熱交換
器の冷ブロツク、7a,7b……戻止弁、10…
…複式精溜塔の下部塔、11……凝縮器、13…
…複式精溜塔の上部塔、18……膨脹タービン、
29……制動用ブロワー、33a,33b……吸
着器。
FIG. 1 is a system diagram of a conventional air separation device, and FIG. 2 is a system diagram of an air separation device to which the removal method of the present invention is applied. 2a, 2b...Switching valve, 4...Hot block of reversing heat exchanger, 5...Cold block of reversing heat exchanger, 7a, 7b...Return valve, 10...
...Lower column of double rectification column, 11... Condenser, 13...
...upper column of a double rectification column, 18...expansion turbine,
29... Braking blower, 33a, 33b... Adsorption device.

Claims (1)

【特許請求の範囲】 1 リバーシング熱交換器を使用して原料空気を
冷却及び精製した後、精溜塔に導いて酸素・窒素
を採取する空気液化分離装置において、原料空気
を上記リバーシング熱交換器に導入して冷却し、
同時に含有する水分及び炭酸ガスを析出させて除
去した後、吸着剤を充填し切換使用する吸着器に
導入して、該低温原料空気中に含有する炭化水素
類を吸着除去する精製工程と、精溜塔より帰還す
る廃ガスを前記吸着器に導入して上記精製工程で
前記吸着剤中に吸着された炭化水素類を脱着した
後、上記リバーシング熱交換器に導入して上記精
製工程で析出した水分及び炭酸ガスを同伴して該
リバーシング熱交換器を再生する再生工程とを有
し、前記精製工程と再生工程を、リバーシング熱
交換器の切換周期と同周期に切換えることを特徴
とする空気分離装置における炭化水素の除去方
法。 2 上記廃ガスによる前記吸着剤の再生工程を減
圧下で行なうことを特徴とする特許請求の範囲第
1項記載の空気分離装置における炭化水素の除去
方法。 3 上記減圧下で行う再生工程の減圧を、膨張タ
ービンの制動用ブロワーにより行なうことを特徴
とする特許請求の範囲第2項記載の空気分離装置
における炭化水素の除去方法。
[Claims] 1. In an air liquefaction separation device that cools and refines feed air using a reversing heat exchanger and then leads it to a rectification column to extract oxygen and nitrogen, the feed air is heated by the reversing heat. Introduced into the exchanger and cooled,
At the same time, the water and carbon dioxide contained in the air are precipitated and removed, and then an adsorbent is filled and introduced into a switchable adsorption device to adsorb and remove hydrocarbons contained in the low-temperature raw material air. The waste gas returned from the distillation column is introduced into the adsorber to desorb the hydrocarbons adsorbed in the adsorbent in the purification process, and then introduced into the reversing heat exchanger to be precipitated in the purification process. and a regeneration step of regenerating the reversing heat exchanger by entraining the water and carbon dioxide gas, and the purification step and the regeneration step are switched at the same cycle as the switching cycle of the reversing heat exchanger. A method for removing hydrocarbons in air separation equipment. 2. The method for removing hydrocarbons in an air separation apparatus according to claim 1, wherein the step of regenerating the adsorbent using the waste gas is performed under reduced pressure. 3. The method for removing hydrocarbons in an air separation apparatus according to claim 2, wherein the pressure reduction in the regeneration step performed under reduced pressure is performed by a brake blower of an expansion turbine.
JP7944680A 1980-06-12 1980-06-12 Carbon dioxide removal of air separator Granted JPS576281A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7944680A JPS576281A (en) 1980-06-12 1980-06-12 Carbon dioxide removal of air separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7944680A JPS576281A (en) 1980-06-12 1980-06-12 Carbon dioxide removal of air separator

Publications (2)

Publication Number Publication Date
JPS576281A JPS576281A (en) 1982-01-13
JPH0132435B2 true JPH0132435B2 (en) 1989-06-30

Family

ID=13690100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7944680A Granted JPS576281A (en) 1980-06-12 1980-06-12 Carbon dioxide removal of air separator

Country Status (1)

Country Link
JP (1) JPS576281A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5337585A (en) * 1976-09-21 1978-04-06 Nippon Oxygen Co Ltd Air separation method by adsorption

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5337585A (en) * 1976-09-21 1978-04-06 Nippon Oxygen Co Ltd Air separation method by adsorption

Also Published As

Publication number Publication date
JPS576281A (en) 1982-01-13

Similar Documents

Publication Publication Date Title
US5125934A (en) Argon recovery from argon-oxygen-decarburization process waste gases
US5220797A (en) Argon recovery from argon-oxygen-decarburization process waste gases
CN110420536B (en) System and method for recycling VOCs (volatile organic compounds) on tank top and recycling nitrogen
US20030037672A1 (en) Rapid thermal swing adsorption
JPS63501549A (en) Ammonia treatment method and equipment
AU2009296689A1 (en) Multi-stage process for purifying carbon dioxide and producing sulfuric acid and nitric acid
JPS5939671B2 (en) Air separation method and device
JPS59190207A (en) Method and apparatus for collecting pure co gas
CN116600878A (en) Purification of landfill biogas by combined membrane and cryogenic distillation, plant for producing gaseous methane by purifying biogas from landfill
JPH0459926B2 (en)
US9708188B1 (en) Method for argon production via cold pressure swing adsorption
JPH07280432A (en) Plant for distilling air and method thereof
JP2579261B2 (en) Method and apparatus for producing crude neon
GB2171927A (en) Method and apparatus for separating a gaseous mixture
JPH0789012B2 (en) Carbon monoxide separation and purification equipment
US2615312A (en) Process and apparatus for eliminating impurities during the separation of gas mixtures
US3884661A (en) Method of and installation for fractionation by adsorption
JPH0132435B2 (en)
JP3544860B2 (en) Pretreatment device in air separation unit
JP3532465B2 (en) Air separation device
JPH01266831A (en) Device for purifying light gas
JPS61127609A (en) Purification device for helium
JPS6129768B2 (en)
JP2773858B2 (en) Method and apparatus for separating air
US11945716B2 (en) Adsorption-based Claus tail gas treatment