JPH0132404B2 - - Google Patents

Info

Publication number
JPH0132404B2
JPH0132404B2 JP55098753A JP9875380A JPH0132404B2 JP H0132404 B2 JPH0132404 B2 JP H0132404B2 JP 55098753 A JP55098753 A JP 55098753A JP 9875380 A JP9875380 A JP 9875380A JP H0132404 B2 JPH0132404 B2 JP H0132404B2
Authority
JP
Japan
Prior art keywords
combustion
passage
primary
lean
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55098753A
Other languages
Japanese (ja)
Other versions
JPS5723706A (en
Inventor
Takashi Hashimoto
Shigeyuki Yamazaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP9875380A priority Critical patent/JPS5723706A/en
Priority to GB8121978A priority patent/GB2080934B/en
Priority to US06/284,792 priority patent/US4435153A/en
Publication of JPS5723706A publication Critical patent/JPS5723706A/en
Publication of JPH0132404B2 publication Critical patent/JPH0132404B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は希薄気体燃料を安定に燃焼させるよう
にした希薄気体燃料燃焼装置に関し、特に希薄気
体燃料の濃度(当量比)が変化するような場合に
好都合なものである。
[Detailed Description of the Invention] The present invention relates to a lean gas fuel combustion device that stably burns lean gas fuel, and is particularly advantageous when the concentration (equivalence ratio) of the lean gas fuel changes. .

一般に、気体燃料には可燃限界が存在する。空
気や酸素に対する気体燃料の割合がある固有の一
定値(可燃限界)以上になると、燃焼させること
が不可能になつたりあるいは安定な燃焼を継続す
ることは不可能となる。この可燃限界以下の予混
合気(あらかじめ空気や酸素と気体燃料とを混合
した混合気)を希薄気体燃料と称するが、従来こ
の希薄気体燃料を燃焼させることは前述したよう
に困難であつた。ところが、近年、希薄気体燃料
であつてもこれをある一定温度以上に予熱すれば
可燃限界は事実上存在しなくなるという研究報告
がなされている。例えば、メタンと空気の予混合
気の場合、1400K近傍まで予熱すれば希薄気体燃
料であつても完全燃焼させることが可能になる。
Generally, gaseous fuels have flammability limits. When the ratio of gaseous fuel to air or oxygen exceeds a certain specific value (flammability limit), it becomes impossible to combust or to continue stable combustion. This premixture (mixture in which air or oxygen is mixed with gaseous fuel in advance) below the flammability limit is called lean gaseous fuel, but as mentioned above, it has been difficult to burn this lean gaseous fuel in the past. However, in recent years, there have been research reports showing that even if the fuel is a diluted gas, if it is preheated to a certain temperature or higher, the flammability limit virtually disappears. For example, in the case of a premixture of methane and air, if it is preheated to around 1400K, complete combustion can be achieved even with a lean gaseous fuel.

上述のことにもとづき、希薄気体燃料を燃焼さ
せるための燃焼を実用化できれば、従来大気中に
捨てていた可燃限界以上の希薄気体燃料からエネ
ルギを回収することが可能となり、省エネルギに
大きく貢献する。さらに、希薄気体燃料を大気中
に放出するために生じる大気汚染の原因を排除す
ることにもなり、大いに注目されている。
Based on the above, if combustion for burning lean gaseous fuel can be put to practical use, it will be possible to recover energy from the lean gaseous fuel that is above the flammability limit, which was previously discarded into the atmosphere, and this will greatly contribute to energy conservation. . Furthermore, it is attracting a lot of attention because it eliminates the cause of air pollution caused by releasing dilute gaseous fuel into the atmosphere.

このように、省エネルギ、環境保全などの立場
からも、希薄気体燃料を安定に燃焼させるための
技術の開発が望まれている。これまでにも希薄気
体燃料を燃焼させるための装置は種々提案されて
はいるものの、いづれも装置の構造が複雑で使用
しにくく、かつ装置自体も高価なものとなつてし
まい、さらに希薄気体燃料を高温に予熱するのに
外部から別のエネルギを与える必要があり、かえ
つて経済的に不利になつてしまうことも多く、し
たがつて実用化に十分成功した例はない。
Thus, from the viewpoint of energy saving and environmental protection, it is desired to develop a technology for stably burning diluted gas fuel. Various devices have been proposed to burn lean gaseous fuel, but all of them have complex structures that make them difficult to use, and the devices themselves are expensive. In order to preheat the heat to a high temperature, it is necessary to apply additional energy from the outside, which is often economically disadvantageous, and therefore, there have been no examples of sufficient success in putting it into practical use.

本発明は、希薄気体燃料を構造の簡単な装置で
安定に燃焼させることができ、しかも定常燃焼時
には外部から別のエネルギーを与えることなく希
薄気体燃料を高温に予熱できるようにした希薄気
体燃料燃焼装置を提供することを目的とする。
The present invention is a lean gas fuel combustor that can stably burn a lean gas fuel with a device with a simple structure, and can preheat the lean gas fuel to a high temperature without applying additional energy from the outside during steady combustion. The purpose is to provide equipment.

本発明の希薄気体燃料燃焼装置は、一次通路と
この一次通路に燃焼器壁を隔てて形成された二次
通路を備える燃焼容器と、この燃焼容器の各通路
に設けられた複数の細孔群と、この細孔群の下流
側に設けられた複数の燃焼室を備え、かつ各通路
の一端部を互いに導通すると共に、一次通路の他
端部を希薄気体燃料の取入口に連通させ、二次通
路の他端部を燃焼ガスの取出口に連通させるよう
に構成したものである。
The lean gas fuel combustion device of the present invention includes a combustion vessel including a primary passage and a secondary passage formed in the primary passage across a combustor wall, and a plurality of pore groups provided in each passage of the combustion vessel. and a plurality of combustion chambers provided on the downstream side of the group of pores, one end of each passage is in communication with each other, and the other end of the primary passage is in communication with the intake port for the lean gas fuel. The other end of the next passage is configured to communicate with the combustion gas outlet.

一次通路内に供給された予混合気は細孔群によ
つて予熱され、その下流に設けられた燃焼室に入
つて混合される。この予熱、混合を一次通路およ
び二次通路に設けられた複数の細孔群と燃焼室を
通過するたびに繰返して予混合気は徐徐に昇温さ
れ、高温となつて最下流の燃焼室までには完全燃
焼するもので、熱交換が効率よく行なわれ、希薄
気体燃料の燃焼を安定して継続することができ
る。
The premixed gas supplied into the primary passage is preheated by the group of fine holes, enters the combustion chamber provided downstream thereof, and is mixed. This preheating and mixing process is repeated each time it passes through multiple pore groups provided in the primary and secondary passages and the combustion chamber, and the temperature of the premixture is gradually raised until it reaches a high temperature until it reaches the combustion chamber at the most downstream position. Complete combustion occurs, heat exchange is performed efficiently, and the combustion of lean gaseous fuel can be continued stably.

以下、本発明の希薄気体燃料燃焼装置の一実施
例を第1図および第2図により説明する。
EMBODIMENT OF THE INVENTION Hereinafter, one embodiment of the lean gas fuel combustion apparatus of the present invention will be described with reference to FIGS. 1 and 2.

図において、1は燃焼装置の燃焼容器で、この
燃焼容器1の中心部には貫通する二次通路2が形
成されており、この二次通路2の周囲には燃焼器
壁3を隔てて貫通する一次通路4が形成されてい
る。一次通路4は第2図に示すように、二次通路
2を囲むように複数個設けられている。それぞれ
の一次通路4にはそれぞれ3個の細孔群5が設け
られ、細孔群5と細孔群5の間には燃焼室6が設
けられている。同様に二次通路2にも3個の細孔
群7が設けられ、その細孔群7の間には燃焼室8
が設けられている。この実施例では細孔群5,7
はそれぞれ多数の細管により構成されている。一
次通路4と二次通路2の一端部は互いに連通する
ようにフランジ9が燃焼容器1の一端部に取付け
られており、また一次通路4の他端部はフランジ
10によつて形成された予混合気の取入口10a
に連通され、さらに二次通路2の他端部はフラン
ジ11によつて形成された燃焼ガスの取出口11
aに連通されている。第2図において、12はこ
の燃焼装置の起動時に細孔群5,7および燃焼室
6,8を高温に加熱するためのヒータで、図に示
すように一次通路4と二次通路2との間の燃焼器
壁3に数個埋設されている。
In the figure, reference numeral 1 denotes a combustion vessel of a combustion device, and a secondary passage 2 that penetrates is formed in the center of this combustion vessel 1, and a penetrating passage 2 is formed around the secondary passage 2 with a combustor wall 3 in between. A primary passage 4 is formed. As shown in FIG. 2, a plurality of primary passages 4 are provided so as to surround the secondary passage 2. Each primary passage 4 is provided with three pore groups 5, and a combustion chamber 6 is provided between the pore groups 5. Similarly, three pore groups 7 are provided in the secondary passage 2, and a combustion chamber 8 is located between the pore groups 7.
is provided. In this example, pore groups 5 and 7
Each is composed of a large number of tubules. A flange 9 is attached to one end of the combustion vessel 1 so that one end of the primary passage 4 and one end of the secondary passage 2 communicate with each other. Air-fuel mixture intake 10a
The other end of the secondary passage 2 is connected to a combustion gas outlet 11 formed by a flange 11.
It is connected to a. In FIG. 2, 12 is a heater for heating the pore groups 5, 7 and the combustion chambers 6, 8 to a high temperature when starting up this combustion device, and as shown in the figure, a heater 12 is used to heat the pore groups 5, 7 and the combustion chambers 6, 8 to a high temperature. Several pieces are buried in the combustor wall 3 between them.

次に、以上述べた本発明装置の作用を説明す
る。ここでは、メタンと空気の希薄気体燃料を燃
焼させる場合を例にとり説明する。燃焼装置の起
動時にはまず、ヒータ12に通電することによ
り、細孔群5,7および燃焼室6,8を1400K近
傍あるいは少なくとも反応開始温度である900K
以上にまで加熱する。その後、通常の燃焼装置に
おいては可燃限界以下のメタンと空気の予混合気
(希薄気体燃料)を取入口10aから一次通路4
内に供給する。一次通路4内に供給された予混合
気はまず最も上流にある細孔群5によつて予熱さ
れ、その後その細孔群5の下流に設けられた燃焼
室6に流れてさらに混合され、次の細孔群5に入
る。このようにして予混合気は一次通路4内を予
熱、混合を繰返されながら流れ、一次通路4の一
端部まで達するとフランジ9により形成された通
路9aを通つて二次通路2内へ入る。二次通路2
に入つた予混合気は交互に設けられた細孔群7と
燃焼室8により、一次通路4内を通過したときと
同様に予熱と混合を繰返されて下流側に流れる。
このように、本発明装置においては、交互に設け
られた細孔群5,7と燃焼室6,8により予混合
気が予熱と混合を繰返されて下流側に流れる。細
孔群5,7および燃焼室6,8は十分高温に加熱
されており、かつ細孔群5,7は通路面積に比べ
伝熱面積が極めて大きいので、予混合気は細孔群
5,7で極めて効率よく予熱されて下流側に流
れ、ある細孔群5,7において900K程度まで予
熱されると徐々に燃焼反応が開始され、燃焼反応
を開始した予混合気はその下流に設けられた燃焼
室6,8および細孔群5,7を通過しながら完全
燃焼し、その燃焼ガス温度は1300〜1500K程度ま
で上昇する。この燃焼ガスはその後一次通路4あ
るいは二次通路2を通過しながら燃焼器壁3を加
熱する。特に燃焼ガスが下流側に設けられた細孔
群5,7を通過するとき熱交換が効率よく行われ
て燃焼器壁3を高温に加熱し、したがつて細孔群
5,7および燃焼室6,8は燃焼開始後1400K近
傍まで加熱され、ヒータ12への通電を止めても
燃焼を安定に継続することができる。このよう
に、燃焼装置の定常燃焼時においては外部から別
のエネルギを与えることなく希薄気体燃料を高温
に予熱し、かつ燃焼させることが可能である。な
お、本発明装置においては希薄気体燃料(予混合
気)の濃度(当量比)によりその燃焼する位置が
変わつてくる。すなわち、濃い燃料の場合、反応
開始温度が低いから一次通路4の上流側の燃焼室
6で燃焼し、また、薄い燃料の場合は反応開始温
度が高くなるから二次通路2の下流側の燃焼室8
で燃焼する。また、フランジ9によつて形成され
た通路9aやフランジ11によつて形成された取
出口11aが燃焼室6,8と同程度まで高温に保
持されるならば、この通路9aや取出口11aに
おいて燃焼することもあり得る。したがつて、本
発明装置においては希薄気体燃料の濃いものから
薄いものまで広い範囲のものをそれぞれ最適な燃
焼位置にある燃焼室6,8において燃焼させるこ
とができ、特に細孔群5,7が複数あり、熱交換
面積が大であるからより薄い範囲の燃料まで燃焼
させることができる。また、燃焼ガスは細孔群
5,7を通過するとき効率よく燃焼器壁3と熱交
換されるから、仮に二次通路2内の燃焼室8で燃
焼した場合でも、全ての細孔群5,7および燃焼
室6,8を高温に保持することができる。本発明
装置は特に希薄気体燃料の濃度(当量比)が頻繁
に変化するような場合に有効である。すなわち、
濃い燃料の場合には燃焼温度が高く、しかも一次
通路4の上流側で燃焼するから、燃焼ガスは燃焼
器壁3との熱交換が十分に行われ、取出口11a
から取出される燃焼ガス温度はかなり低下し、ま
た薄い燃料の場合には燃焼温度は低くなるが、二
次通路2の下流側で燃焼するから燃焼器壁3との
熱交換量は少なく、取出口11aから取出される
燃焼ガス温度はあまり低下しない。したがつて、
燃料の温度が変化しても常時ほぼ一定温度の燃焼
ガスを得ることができ、この燃焼ガスの温度は
1300〜1400K程度であるから、その用途としてガ
スタービンなどに利用する場合に好都合である。
また、任意の濃度の燃料を燃焼させることができ
るから、用途に応じた最適な温度の燃焼ガスを得
ることもできる。
Next, the operation of the apparatus of the present invention described above will be explained. Here, an example will be explained in which a lean gaseous fuel of methane and air is burned. When starting up the combustion device, first, by energizing the heater 12, the pore groups 5, 7 and the combustion chambers 6, 8 are heated to around 1400K or at least 900K, which is the reaction starting temperature.
Heat to above temperature. After that, in a normal combustion device, a premixture of methane and air (lean gaseous fuel) below the flammability limit is introduced into the primary passage 4 from the inlet 10a.
supply within. The premixed gas supplied into the primary passage 4 is first preheated by the most upstream pore group 5, and then flows into the combustion chamber 6 provided downstream of the pore group 5, where it is further mixed. into pore group 5. In this way, the premixed gas flows through the primary passage 4 while being repeatedly preheated and mixed, and when it reaches one end of the primary passage 4, it enters the secondary passage 2 through the passage 9a formed by the flange 9. Secondary passage 2
The premixed gas that has entered is repeatedly preheated and mixed by the alternatingly provided pore groups 7 and combustion chambers 8 in the same way as when it passed through the primary passage 4, and then flows downstream.
In this manner, in the apparatus of the present invention, the premixed air is repeatedly preheated and mixed by the alternatingly provided pore groups 5 and 7 and the combustion chambers 6 and 8, and then flows downstream. The pore groups 5 and 7 and the combustion chambers 6 and 8 are heated to a sufficiently high temperature, and the heat transfer area of the pore groups 5 and 7 is extremely large compared to the passage area, so the premixture flows through the pore groups 5 and 7. The mixture is preheated very efficiently in 7 and flows downstream, and when it is preheated to about 900K in certain pore groups 5 and 7, a combustion reaction gradually starts, and the premixture that has started the combustion reaction is provided downstream. Complete combustion occurs while passing through the combustion chambers 6 and 8 and the pore groups 5 and 7, and the temperature of the combustion gas rises to about 1300 to 1500K. This combustion gas then heats the combustor wall 3 while passing through the primary passage 4 or the secondary passage 2. Particularly, when the combustion gas passes through the pore groups 5 and 7 provided on the downstream side, heat exchange is performed efficiently and the combustor wall 3 is heated to a high temperature, thereby reducing the pore groups 5 and 7 and the combustion chamber. 6 and 8 are heated to around 1400 K after the start of combustion, and even if the power to the heater 12 is stopped, the combustion can be continued stably. In this way, during steady combustion in the combustion device, it is possible to preheat the lean gaseous fuel to a high temperature and combust it without applying any other energy from the outside. In the device of the present invention, the position where the lean gaseous fuel (premixture) is combusted changes depending on the concentration (equivalence ratio) of the gaseous fuel (premixture). That is, in the case of rich fuel, the reaction initiation temperature is low, so it is combusted in the combustion chamber 6 on the upstream side of the primary passage 4, and in the case of thin fuel, the reaction initiation temperature is high, so combustion is carried out on the downstream side of the secondary passage 2. room 8
burns with Further, if the passage 9a formed by the flange 9 and the outlet 11a formed by the flange 11 are maintained at a high temperature to the same level as the combustion chambers 6 and 8, the passage 9a and the outlet 11a are It may also burn. Therefore, in the apparatus of the present invention, a wide range of lean gaseous fuels, from rich to thin, can be combusted in the combustion chambers 6 and 8, which are located at optimal combustion positions, and in particular, in the combustion chambers 6 and 8, which are located at the optimum combustion positions. Since there are multiple heat exchange areas and a large heat exchange area, it is possible to burn even thinner fuels. In addition, since the combustion gas efficiently exchanges heat with the combustor wall 3 when passing through the pore groups 5 and 7, even if combustion occurs in the combustion chamber 8 in the secondary passage 2, all the pore groups 5 , 7 and the combustion chambers 6, 8 can be maintained at high temperatures. The device of the present invention is particularly effective when the concentration (equivalence ratio) of dilute gaseous fuel changes frequently. That is,
In the case of rich fuel, the combustion temperature is high and it is combusted on the upstream side of the primary passage 4, so that the combustion gas is sufficiently exchanged with the combustor wall 3, and the combustion gas is removed from the outlet 11a.
The temperature of the combustion gas taken out from the combustor wall 3 decreases considerably, and if the fuel is thin, the combustion temperature decreases, but since it is combusted downstream of the secondary passage 2, the amount of heat exchange with the combustor wall 3 is small, making it difficult to remove the fuel. The temperature of the combustion gas taken out from the outlet 11a does not decrease much. Therefore,
Even if the temperature of the fuel changes, it is possible to obtain combustion gas that is at a nearly constant temperature at all times, and the temperature of this combustion gas is
Since it is about 1300 to 1400K, it is convenient for use in gas turbines and the like.
Furthermore, since fuel of any concentration can be combusted, combustion gas can be obtained at an optimal temperature depending on the application.

なお、前述した実施例においては特に述べなか
つたが、燃焼室6,8を形成している燃焼器壁3
や細孔群5,7を構成している細管などの材質は
高温の腐食性雰囲気におかれてもそれに十分耐え
うる材質、例えば、耐熱鋼やセラミツクなどを選
定する必要がある。また、この実施例では多数の
細管により細孔群5,7を構成しているが、これ
に限るものではなく、通気性がありかつ通路面積
に比較して伝熱面積が大きく、耐熱性の材質のも
のであればよい。さらに、この実施例においては
燃焼容器1の中心部に二次通路2を形成し、この
二次通路2の周囲に一次通路4を形成している
が、この逆、すなわち燃焼容器1の中心部に一次
通路を形成し、この一次通路の周囲に二次通路を
形成するようにしてもよく、これも他の実施例と
して本発明に含まれるものである。ただし、高温
の燃焼ガスが燃焼容器1の中心部を通るように構
成された第1図に示す実施例の方が熱の漏洩を少
なくできる効果がある。また、容器1の中心部に
設けられた通路2の周囲には通路4が複数個設け
られているが、容器1を二重円筒状に構成して通
路2,4を形成したり、あるいは通路2の片側に
通路4を並べるように配置してもよく、この場合
通路4は1個の場合もあり得る。一次通路4と二
次通路2にそれぞれ設ける細孔群5,7と燃焼室
6,8も必らずしも複数づつ設ける必要はなく、
それぞれに細孔群と燃焼室を1個づつ設けるよう
にしてもよい。
Although not specifically mentioned in the above embodiment, the combustor wall 3 forming the combustion chambers 6 and 8
The material of the thin tubes constituting the pore groups 5 and 7 must be selected from materials that can withstand a high temperature corrosive atmosphere, such as heat-resistant steel or ceramic. In addition, in this embodiment, the pore groups 5 and 7 are composed of a large number of thin tubes, but the pore groups 5 and 7 are not limited to this. Any material is fine. Furthermore, in this embodiment, the secondary passage 2 is formed in the center of the combustion vessel 1, and the primary passage 4 is formed around this secondary passage 2, but the reverse is true, that is, the secondary passage 2 is formed in the center of the combustion vessel 1. A primary passage may be formed in the primary passage, and a secondary passage may be formed around the primary passage, and this is also included in the present invention as another embodiment. However, the embodiment shown in FIG. 1 in which the high-temperature combustion gas is configured to pass through the center of the combustion vessel 1 is more effective in reducing heat leakage. Further, a plurality of passages 4 are provided around a passage 2 provided in the center of the container 1, but the passages 2 and 4 may be formed by configuring the container 1 in a double cylindrical shape, or The passages 4 may be arranged side by side on one side of the passage 2, and in this case, there may be only one passage 4. It is not necessarily necessary to provide a plurality of pore groups 5, 7 and combustion chambers 6, 8 provided in the primary passage 4 and secondary passage 2, respectively.
One pore group and one combustion chamber may be provided in each.

以上詳述したように、本発明の希薄気体燃料燃
焼装置は、一次通路に燃焼器壁を隔てて二次通路
を設け、その各通路に細孔群を設け、この細孔群
の下流側に燃焼室を設けるように構成しているの
で、希薄気体燃料の濃いものから薄いものまで広
範囲のものを安定に燃焼させることができると共
に、定常燃焼時には外部から別のエネルギを与え
ることなく希薄気体燃料を高温に予熱しかつ燃焼
させることができる。また、本発明装置は構造も
簡単であり、実用性が大きい。したがつて、希薄
気体燃料からエネルギを回収することが可能とな
り、省エネルギに大きく貢献すると共に大気汚染
の原因も排除できるから環境保全にも役立つとい
う効果がある。さらに、希薄気体燃料の燃焼は低
温燃焼となるから、燃焼ガス中に生成する公害成
分のNOxを大幅に減少させることもできるとい
う効果がある。
As described in detail above, the lean gas fuel combustion device of the present invention includes a secondary passage provided in the primary passage across the combustor wall, a group of pores provided in each passage, and a group of pores provided on the downstream side of the group of pores. Since it is configured with a combustion chamber, it is possible to stably burn a wide range of lean gaseous fuels, from rich to thin, and during steady combustion, it is possible to burn lean gaseous fuel without applying any external energy. can be preheated to a high temperature and combusted. Furthermore, the device of the present invention has a simple structure and is highly practical. Therefore, it becomes possible to recover energy from diluted gaseous fuel, which greatly contributes to energy saving and also eliminates the cause of air pollution, thereby contributing to environmental conservation. Furthermore, since the combustion of lean gaseous fuel results in low-temperature combustion, it has the effect of significantly reducing NOx , a pollutant component, generated in the combustion gas.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の希薄気体燃料燃焼装置の一実
施例を示す簡略縦断面図、第2図は第1図の−
線矢視図である。 1……燃焼容器、2……二次通路、3……燃焼
器壁、4……一次通路、5,7……細孔群、6,
8……燃焼室、10a……取入口、11a……取
出口。
FIG. 1 is a simplified vertical sectional view showing an embodiment of the lean gas fuel combustion apparatus of the present invention, and FIG. 2 is a -
It is a line arrow view. 1... Combustion vessel, 2... Secondary passage, 3... Combustor wall, 4... Primary passage, 5, 7... Pore group, 6,
8... Combustion chamber, 10a... Intake port, 11a... Outlet port.

Claims (1)

【特許請求の範囲】 1 一次通路とこの一次通路に燃焼器壁を隔てて
形成された二次通路を備える燃焼容器と、この燃
焼容器の各通路に設けられた複数の細孔群と、こ
の細孔群の下流側に設けられた複数の燃焼室を備
え、かつ各通路の一端部を互いに連通すると共
に、一次通路の他端部を希薄気体燃料の取入口に
連通させ、二次通路の他端部を燃焼ガスの取出口
に連通させるように構成したことを特徴とする希
薄気体燃料燃焼装置。 2 燃焼容器の中心部に二次通路を形成し、この
二次通路の周囲に燃焼器壁を隔てて一次通路を形
成するようにしたことを特徴とする特許請求の範
囲第1項記載の希薄気体燃料燃焼装置。 3 二次通路を囲むように複数個の一次通路を形
成するようにしたことを特徴とする特許請求の範
囲第2項記載の希薄気体燃料燃焼装置。 4 多数の細管により細孔群を構成したことを特
徴とする特許請求の範囲第1項〜第3項のうちい
ずれか1つ記載の希薄気体燃料燃焼装置。
[Scope of Claims] 1. A combustion vessel comprising a primary passage and a secondary passage formed in the primary passage with a combustor wall in between, a plurality of pore groups provided in each passage of the combustion vessel, and It has a plurality of combustion chambers provided downstream of the group of pores, and one end of each passage communicates with each other, the other end of the primary passage communicates with the lean gas fuel intake, and the secondary passage communicates with the other end of the primary passage. A lean gas fuel combustion device characterized in that the other end is configured to communicate with a combustion gas outlet. 2. The lean system according to claim 1, characterized in that a secondary passage is formed in the center of the combustion vessel, and a primary passage is formed around the secondary passage with a combustor wall in between. Gaseous fuel combustion equipment. 3. The lean gas fuel combustion apparatus according to claim 2, wherein a plurality of primary passages are formed to surround the secondary passage. 4. The lean gas fuel combustion device according to any one of claims 1 to 3, wherein the pore group is constituted by a large number of thin tubes.
JP9875380A 1980-07-21 1980-07-21 Combustor for thin gas fuel Granted JPS5723706A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP9875380A JPS5723706A (en) 1980-07-21 1980-07-21 Combustor for thin gas fuel
GB8121978A GB2080934B (en) 1980-07-21 1981-07-16 Low btu gas burner
US06/284,792 US4435153A (en) 1980-07-21 1981-07-20 Low Btu gas burner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9875380A JPS5723706A (en) 1980-07-21 1980-07-21 Combustor for thin gas fuel

Publications (2)

Publication Number Publication Date
JPS5723706A JPS5723706A (en) 1982-02-08
JPH0132404B2 true JPH0132404B2 (en) 1989-06-30

Family

ID=14228203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9875380A Granted JPS5723706A (en) 1980-07-21 1980-07-21 Combustor for thin gas fuel

Country Status (1)

Country Link
JP (1) JPS5723706A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0493376B1 (en) * 1988-07-08 1995-10-11 Nippon Chemical Plant Consultant Co., Ltd. Combustion apparatus
US5232358A (en) * 1988-07-08 1993-08-03 Nippon Chemical Plant Consultant Co., Ltd. Combustion apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55137407A (en) * 1979-04-14 1980-10-27 Tadao Takeno Combustion method of ultra-thin mixture gas
JPS5916163A (en) * 1982-07-20 1984-01-27 Nec Corp Magnetic disc device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55137407A (en) * 1979-04-14 1980-10-27 Tadao Takeno Combustion method of ultra-thin mixture gas
JPS5916163A (en) * 1982-07-20 1984-01-27 Nec Corp Magnetic disc device

Also Published As

Publication number Publication date
JPS5723706A (en) 1982-02-08

Similar Documents

Publication Publication Date Title
US4435153A (en) Low Btu gas burner
TWI450439B (en) A combustion apparatus appliable to high temperature fuel cells
US4087962A (en) Direct heating surface combustor
JPH0132404B2 (en)
JP2002031307A (en) Fluid-heating apparatus provided with premixing burner
CN201666574U (en) Reverse flow heat-exchanging catalytic combustor without ignition device
JP2015517076A (en) Slow oxidation using heat transfer
JPS63213723A (en) Catalyst combustion device
CN207648854U (en) A kind of soft homogeneous catalysis burner
JPS61168713A (en) Thine gas fuel combustion device
CN108105801A (en) A kind of soft combustion method of new catalysis
JPS5644515A (en) Burner
CN101706102A (en) Counter flow heat exchange catalytic burner without ignition device
JPS59167621A (en) Catalyst burner
CN219264299U (en) Methane direct type air preheater suitable for garbage incinerator
JPH0435690Y2 (en)
JPS603422A (en) Catalytic burner
Tamir A swirling-flame combustor for lean mixtures
JPS5523317A (en) Method of restoring power or energy from exhaust gas discharged in process of oxidizing reaction
CN101319783A (en) Energy-saving apparatus and method by utilizing catalyst combustion
JPS5723718A (en) Energy saving combustor
JPS6373005A (en) Low nox fan heater
JPH033775Y2 (en)
JPS62297615A (en) Burning device
JPS6298121A (en) Catalytic combustion equipment