EP0493376B1 - Combustion apparatus - Google Patents

Combustion apparatus Download PDF

Info

Publication number
EP0493376B1
EP0493376B1 EP92105621A EP92105621A EP0493376B1 EP 0493376 B1 EP0493376 B1 EP 0493376B1 EP 92105621 A EP92105621 A EP 92105621A EP 92105621 A EP92105621 A EP 92105621A EP 0493376 B1 EP0493376 B1 EP 0493376B1
Authority
EP
European Patent Office
Prior art keywords
combustion
gas
fuel
combustion apparatus
passage member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92105621A
Other languages
German (de)
French (fr)
Other versions
EP0493376A2 (en
EP0493376A3 (en
Inventor
Saburo Maruko
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemical Plant Consultant Co Ltd
Original Assignee
Nippon Chemical Plant Consultant Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP63170429A external-priority patent/JP2681802B2/en
Priority claimed from JP63170430A external-priority patent/JP2772955B2/en
Application filed by Nippon Chemical Plant Consultant Co Ltd filed Critical Nippon Chemical Plant Consultant Co Ltd
Publication of EP0493376A2 publication Critical patent/EP0493376A2/en
Publication of EP0493376A3 publication Critical patent/EP0493376A3/en
Application granted granted Critical
Publication of EP0493376B1 publication Critical patent/EP0493376B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C13/00Apparatus in which combustion takes place in the presence of catalytic material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C3/00Combustion apparatus characterised by the shape of the combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C7/00Combustion apparatus characterised by arrangements for air supply
    • F23C7/008Flow control devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C99/00Subject-matter not provided for in other groups of this subclass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D11/00Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
    • F23D11/36Details, e.g. burner cooling means, noise reduction means

Definitions

  • the present invention refers to a combustion apparatus according to the preamble of claim 1.
  • the present invention relates to a combustion apparatus for supplying a high-temperature combustion gas to a suitable machine or plant, for example such as gas turbines, heating furnaces, boilers and the like, and more particularly to a combustion apparatus for supplying a high-temperature combustion gas to multistage combustion-gas utilization systems connected to each other in series, in which combustion apparatus an air/fuel mixture gas is brought into contact with a number of high-temperature heating surfaces to attain a complete combustion thereof so as to produce the high-temperature combustion gas which is substantially free from oxygen.
  • the combustion gas produced in this type of combustion apparatus is preferably produced through a complete combustion so as to be free from any of pollutants such as nitrogen oxides (NO x ), unburned hydrocarbons and carbon monoxide, and to be sufficiently low in its residual oxygen content.
  • pollutants such as nitrogen oxides (NO x ), unburned hydrocarbons and carbon monoxide, and to be sufficiently low in its residual oxygen content.
  • the combustion apparatus described in the item (1) suffers from the fact that the combustion gas is partially kept at a high temperature in order to keep the flame alight, which high temperature makes it impossible to prevent nitrogen oxides (NO x ) from occurring in the combustion gas.
  • NO x nitrogen oxides
  • the combustion gas produced in the combustion apparatus of the item (1) suffers from pollutants such as unburned hydrocarbons and the like together with a considerable amount of residual oxygen therein;
  • the combustion apparatus described in the item (2) enables the air/fuel mixture gas to burst into flame at a relatively low temperature.
  • an oxygen-containing gas such as air is mixed with fuel at a predetermined ratio to prepare an air/fuel mixture gas which is supplied under a predetermined pressure to the combustion unit of the apparatus.
  • the air/fuel mixing unit is provided with a venturi tube having a venturi throat portion in which a fuel discharge nozzle is provided.
  • a preheated air flows through the throat portion of the venturi tube of the air/fuel mixing unit, a-partial vacuum is produced at the venturi throat portion. This vacuum then causes the fuel discharge nozzle to deliver a spray of fuel into the passing preheated air stream in the venturi throat portion.
  • the fuel in case that the combustion is conducted at a temperature of from 1200 to 1400 °C, the fuel is mixed with the oxygen-containing preheated gas or air in the air/fuel mixing unit, which air has been preheated to a temperature of from 500 to 900 °C.
  • the fuel discharge nozzle provided in the throat portion of the venturi tube is also heated to a temperature of from 500 to 900 °C together with a fuel feed pipe connected with the fuel discharge nozzle.
  • the fuel is often pyrolyzed or thermally decomposed to precipitate carbon particles in the fuel discharge nozzle and the fuel feed pipe. The thus precipitated carbon particles often clog these nozzle and pipe.
  • the combustion apparatus for supplying a high-temperature combustion gas (the temperature of which is about 1400 °C) to each of a plurality of boilers connected to each other in series is provided in a front portion of each of the boilers: the combustion gas discharged from the first one of the combustion apparatuses is supplied to the first one of the boilers; the combustion gas having passed through such first boiler is then supplied to the second one of the combustion apparatuses; the combustion gas having passed through such second combustion apparatus is supplied to the second one of the boilers; and operations similar to the above are sequentially conducted through the remaining boilers and combustion apparatuses until the combustion gas passes through the last one of the boilers; whereby multistage utilization of the combustion gas is realized.
  • a high-temperature combustion gas the temperature of which is about 1400 °C
  • the combustion gas is supplied at a temperature of about 1400 °C to each of the boilers, while discharged at a temperature of about 700 °C from each of the boilers after it passes through each of the boilers.
  • the thus discharged combustion gas is supplied to an air/fuel mixing unit of a subsequent combustion apparatus so as to be mixed with fuel and burned to be heated again to a temperature of about 1400 °C.
  • the venturi tube of the air/fuel mixing unit has been heated to a considerably high temperature in a portion in the vicinity of the fuel discharge nozzle, the fuel in the nozzle is often pyrolyzed or thermally decomposed to precipitate carbon particles which disadvantageously clog the fuel discharge nozzle in the venturi tube of the air/fuel mixing unit.
  • the present invention is made under such circumstances.
  • the present invention provides a combustion apparatus which may attain a complete combustion of a mixture gas consisting of an oxygen-containing gas or air and fuel, the mixture gas being brought into contact with a large number of high-temperature surfaces, and the combustion apparatus being provided in multistage combustion-gas utilization systems connected to each other in series so as to effectively use the combustion gas, whereby a considerable energy saving is accomplished.
  • the present invention provides an air/fuel mixing unit for the combustion apparatus, which mixing unit is substantially free from a fear that a fuel discharge nozzle and a fuel feed pipe connected to the fuel discharge nozzle of the mixing unit are clogged with carbon particles produced through pyrolysis or thermal decomposition of the fuel supplied to the nozzle and the pipe.
  • Figs. 1 and 2 show the combustion apparatus of the present invention, in which: the reference numeral 41 denotes a heat-insulating material; and 31 a sleeve-like casing made of ceramic material, which sleeve-like casing 31 has a circular cross section and extends vertically.
  • the sleeve-like casing 31 is concentrically and rotatably mounted an annular honeycomb passage member 32 which is made of ceramic materials while rotatably supported on a supporting shaft 31a an axis of which is aligned with that of the sleeve-like casing 31.
  • a pair of chambers 34a, 34b which are oppositely disposed from an upper-end surface of the honeycomb passage member 32. These chambers 34a, 34b are adjacent to each other through a partition wall 33 which is so integrally formed with the sleeve-like casing 31 as to extend in a diametrical direction of the casing 31.
  • One 34a of the chamber 34a, 34b serves as an air/fuel mixture gas inlet chamber 34a, while the other 34b serves as a combustion-gas outlet chamber 34b.
  • An air/fuel mixture gas inlet port 35 opens into a side portion of the mixture gas inlet chamber 34a.
  • a combustion-gas outlet port 37 opens into the a side portion of the combustion-gas outlet chamber 34b.
  • a combustion-gas chamber 38 which is oppositely disposed from a lower-end surface of the honeycomb passage member 32.
  • a lower-end portion of the supporting shaft 31a of the honeycomb passage member 32 is rotatably mounted in a supporting frame 39, while connected to a suitable driving unit 40 for rotatably driving the supporting shaft 31a.
  • the honeycomb passage member 32 there are provided a plurality of fine passages which extend in parallel with the axis of the honeycomb passage member 32 over the whole axial length of the passage member 32 and are adjacent to each other.
  • An upper-end portion of each of the above fine passages of the honeycomb passage member 32 opens into the mixture gas inlet chamber 34a and the combustion-gas outlet chamber 34b, while a lower-end portion of each of such fine passages opens into the combustion-gas chamber 38, as shown in Fig. 6.
  • the fine passages of the honeycomb passage member 32 alternately serve as the incoming passage and the outgoing passage.
  • the pilot burner 12 provided with the auxiliary incoming port 36 is connected to the mixture gas inlet chamber 34a at a position oppositely disposed diametrically from that of the mixture gas inlet port 35 which also opens into the mixture gas inlet chamber 34a.
  • the sleeve-like casing 31 is surrounded with a heat-insulating material 41, while fixedly mounted in an outer casing 42 through the heat-insulating material 41.
  • the honeycomb passage member 32 is constantly rotated at a predetermined rotational speed.
  • the pilot burner 12 is operated to issue a combustion gas to the mixture gas inlet chamber 34a through the auxiliary incoming port 36, so that both of the mixture gas inlet chamber 34a and the upper-end portion of the honeycomb passage member 32 are heated together by the combustion gas.
  • the honeycomb passage member 32 is rotated constantly, the whole area of the upper-end portion of the honeycomb passage member 32 is sequentially heated to a predetermined temperature of about 900 °C.
  • the combustion gas entered the combustion-gas chamber 38 then flows into the other part of the honeycomb passage member 32 serving as the outgoing passage which is partially constructed of the fine passages of honeycomb passage member 32 located in a position corresponding to that of the combustion-gas outlet chamber 34b. Combustion of the mixture gas continues in the outgoing passage so that the combustion gas reaches the combustion-gas outlet chamber 34b from which the combustion gas is discharged through the combustion-gas outlet port 37. At this time, the outgoing passage 32 oppositely disposed from the combustion-gas outlet chamber 34b is heated by the combustion gas issued from the combustion-gas chamber 38.
  • the thus heated outgoing passage or some of the fine passages of the honeycomb passage member 32 is sequentially transferred to a position oppositely disposed from the mixture gas inlet chamber 34a so as to serve as the incoming passage. Consequently, since the thus sequentially transferred outgoing passage has been sufficiently heated by the combustion gas and serves as the incoming passage, the mixture gas entered the thus heated incoming passage is brought into contact with the sufficiently heated wall surfaces of the incoming passage constructed of the honeycomb passage member 32, to enable the mixture gas to continuously burst into flame.
  • the combustion apparatus of the present invention shown in Figs. 1 and 2 may be modified to form an embodiment of the combustion apparatus of the present invention in which each of the wall surfaces of the fine passages of the honeycomb passage member 32 are coated with catalysts to attain a catalytic combustion of the mixture gas.
  • the catalysts employed in the present invention comprise platinum, palladium and the like. Coating of the wall surfaces of the honeycomb passage member 32 with the catalysts is conducted by dipping the honeycomb passage member 32 in solutions of the catalysts.
  • the above embodiment of the combustion apparatus of the present invention enables the mixture gas supplied from the mixture gas inlet port 35 to burst into flame to attain a catalytic combustion thereof even when the temperatures of the wall surfaces of the upstream side of the incoming passage are less than 900 °C, which wall surfaces are heated by the combustion gas which is produced by the pilot burner 12 and issued from the auxiliary incoming port 36.
  • the fuel is mixed with a preheated air to prepare the mixture gas.
  • a gaseous fuel it is possible to eliminate the preheating operation of the air.
  • a liquid fuel it is possible to extremely lower the temperature of the preheated air, provided that the temperature of the fuel in the air is slightly higher than dew point.
  • sulfur-containing fuels can not be employed because sulfur has poisoning effects on the catalysts employed in the above embodiment.
  • the ceramic materials constituting each of the components may be silicon carbide which is excellent in mechanical strength, heat-resisting properties and thermal shock resistance.
  • these components are made of any other suitable ceramic materials such as zirconia-base ceramics and cordierite-base ceramics.
  • each of the outer sleeve and the sleeve-like casing 31 may be made of alumina-fiber ceramics.
  • the reference numeral 50 denotes a venturi tube comprising an inlet reducer portion 51, an outlet diffuser portion 52 and a venturi throat portion 53 sandwiched between these portions 50 and 51.
  • a performance-control rod 54 provided with a tapered front portion is threadably engaged with a supporting member 55 so as to be axially displaceable relative to the supporting member 55 which is fixedly mounted in the venturi tube 50.
  • a preheated-air inlet pipe 13 is connected to an air-inlet opening of the venturi tube 50 an air/fuel mixture gas outlet opening of which is connected to the combustion apparatus of the present invention.
  • a plurality of fuel discharge openings 56 are so provided in an inner peripheral surface of the throat portion 53 of the venturi tube 50 as to be spaced apart from each other in a circumferential direction of the of the inner peripheral surface of the throat portion 53, to which openings 56 a fuel feed pipe 14 is connected.
  • an annular water jacket 57 is placed around the venturi throat portion 53 to keep this portion 53 cool.
  • a cooling-water inlet pipe 58 To the water jacket 57 are connected: a cooling-water inlet pipe 58; and a cooling-water outlet pipe 59.
  • an incoming gas comprising the preheated air and the oxygen-containing gas such as the combustion gas is supplied from the preheated-air inlet pipe 13 to the venturi throat portion 53 in which the incoming gas is accelerated to cause the fuel discharge openings 56 to deliver the fuel in spraying manner so that the air/fuel mixture gas is produced.
  • the thus produced air/fuel mixture gas is then supplied to the combustion apparatus of the present invention, while agitated in the subsequent outlet diffuser portion 52 of the venturi tube 50.
  • the performance-control rod 54 is disposed in the axially central portion of the venturi throat portion 53, an axially central passage of the incoming gas in the venturi throat portion 53 is decreased in its cross-sectional area to keep a thickness of a stream of the incoming gas thin in the venturi throat portion 53. Consequently, even when the venturi throat portion 53 is relatively large in its cross-sectional area, it is possible to sufficiently accelerate the incoming gas and cause the resultant air/fuel mixture gas to rapidly agitated in the subsequent outlet diffuser portion 52 of the venturi tube 50.
  • the cross-sectional area of the venturi throat portion 53 is so controlled by axially displacing the performance-control rod 54 as to keep a flow rate of the incoming gas constant in the venturi throat portion 53 even when a quantity of the incoming gas varies, whereby it is possible to supply the air/fuel mixture gas having a constant mixing ratio to the combustion apparatus of the present invention.
  • a cooling water is supplied to the water jacket 57 to cool the venturi throat portion 53. Since the venturi throat portion 53 is adequately cooled in the above manner, the fuel discharge openings 56 and a front-end portion of the fuel feed pipe 14 connected thereto are also adequately cooled to prevent the fuel from being thermally decomposed in the fuel discharge openings 56. When the fuel is thermally decomposed to produce carbon particles, the fuel discharge openings 56 are clogged with the thus produced carbon particles. Consequently, it is possible to prevent the fuel discharge openings 56 from being clogged with the carbon particles by adequately cooling the venturi throat portion 53.
  • Fig. 4 shows a second embodiment of the air/fuel mixing unit employed in the combustion apparatus of the present invention, which second embodiment represents a constant-performance type air/fuel mixing unit.
  • the fuel discharge nozzle 56 is so disposed in the throat portion 53 of the venturi tube 50a as to be oriented toward a downstream side of the venturi tube 50a.
  • the fuel discharge nozzle 56 is formed in a front-end portion of the fuel feed pipe 14 around which is placed the water jacket 57 to which are connected the cooling-water inlet pipe 58 and the cooling-water outlet pipe 59.
  • a cooling water is supplied to the water jacket 57 to adequately cool both the fuel discharge nozzle 56 and the fuel feed pipe 14 so that the fuel is prevented from being thermally decomposed and from producing the carbon particles in the fuel discharge nozzle 56 and the fuel feed pipe 14, whereby these components 56, 14 are prevented from being clogged with the resultant carbon particles.
  • the reference numeral 61 denotes a heat-insulating material.
  • the venturi throat portion 53 is made of a suitable heat-resisting alloy such as Inconel alloys and Hastelloy alloys, while each of the inlet reducer portion 51, outlet diffuser portion 52 and other inner components of the venturi tube 50 is made of a suitable ceramic material such as silicon carbide, zirconia, cordierite and the like.

Description

  • The present invention refers to a combustion apparatus according to the preamble of claim 1.
  • An apparatus of this kind is disclosed by the US-A-4 089 088.
  • The present invention relates to a combustion apparatus for supplying a high-temperature combustion gas to a suitable machine or plant, for example such as gas turbines, heating furnaces, boilers and the like, and more particularly to a combustion apparatus for supplying a high-temperature combustion gas to multistage combustion-gas utilization systems connected to each other in series, in which combustion apparatus an air/fuel mixture gas is brought into contact with a number of high-temperature heating surfaces to attain a complete combustion thereof so as to produce the high-temperature combustion gas which is substantially free from oxygen.
  • The combustion gas produced in this type of combustion apparatus is preferably produced through a complete combustion so as to be free from any of pollutants such as nitrogen oxides (NOx), unburned hydrocarbons and carbon monoxide, and to be sufficiently low in its residual oxygen content.
  • Heretofore, in this type of combustion apparatus, the following three combustion apparatuses have been proposed:
    • (1) A combustion apparatus in which: fuel is mixed with air to prepare an air/fuel mixture gas an air/fuel ratio of which is within a flammable limit range; an electric spark from an igniter plug of the apparatus initiates combustion of the mixture gas; and thereby the air/fuel mixture gas is continuously burned;
    • (2) A combustion apparatus disclosed in Japanese published patent application No. 62-33213 filed by inventors of the present invention, in which combustion apparatus: fuel is mixed with a preheated air to prepare a preheated air/fuel mixture gas which reacts with catalysts to attain its catalytic combustion; and
    • (3) A combustion apparatus disclosed in Japanese published patent application No. 62-116808 filed by the inventors of the present invention, in which combustion apparatus: an outer peripheral surface of a heating tube of a main combustion unit is constantly heated to temperatures of ignition points of fuels by means of an auxiliary combustion unit; and the fuels are brought into contact with the thus heated heating tube of the main combustion unit so as to be burned continuously.
  • Of the conventional combustion apparatuses described in the above items (1) to (3):
       The combustion apparatus described in the item (1) suffers from the fact that the combustion gas is partially kept at a high temperature in order to keep the flame alight, which high temperature makes it impossible to prevent nitrogen oxides (NOx) from occurring in the combustion gas. In this combustion apparatus, since the time taken for fuel to mix with air is very short and the time taken for the thus prepared air/fuel mixture gas to be burned is also very short, the combustion gas produced in the combustion apparatus of the item (1) suffers from pollutants such as unburned hydrocarbons and the like together with a considerable amount of residual oxygen therein;
       The combustion apparatus described in the item (2) enables the air/fuel mixture gas to burst into flame at a relatively low temperature. However, when the mixture gas is burned at a temperature of more than 1300 °C, such high-temperature combustion of the mixture gas shortens the service life of the catalysts employed in the combustion apparatus, which makes it impossible to operate the combustion apparatus over an extended period of time. In addition, in this combustion apparatus, it is impossible to use sulfur-containing fuels because the sulfur has poisoning effects on the catalysts; and
       The combustion apparatus described in the item (3) suffers from the fact that the auxiliary combustion unit is also constantly kept in operation together with the main combustion unit, which disturbs the operator of the apparatus in control of both units. In addition, in this combustion apparatus, it is not possible to substantially completely prevent nitrogen oxides (NOx) from occurring in the combustion gas.
  • In an air/fuel mixing unit employed in this type of combustion apparatus, an oxygen-containing gas such as air is mixed with fuel at a predetermined ratio to prepare an air/fuel mixture gas which is supplied under a predetermined pressure to the combustion unit of the apparatus. The air/fuel mixing unit is provided with a venturi tube having a venturi throat portion in which a fuel discharge nozzle is provided. As a preheated air flows through the throat portion of the venturi tube of the air/fuel mixing unit, a-partial vacuum is produced at the venturi throat portion. This vacuum then causes the fuel discharge nozzle to deliver a spray of fuel into the passing preheated air stream in the venturi throat portion.
  • In the above combustion apparatus, in case that the combustion is conducted at a temperature of from 1200 to 1400 °C, the fuel is mixed with the oxygen-containing preheated gas or air in the air/fuel mixing unit, which air has been preheated to a temperature of from 500 to 900 °C. In this case, the fuel discharge nozzle provided in the throat portion of the venturi tube is also heated to a temperature of from 500 to 900 °C together with a fuel feed pipe connected with the fuel discharge nozzle. As a result, the fuel is often pyrolyzed or thermally decomposed to precipitate carbon particles in the fuel discharge nozzle and the fuel feed pipe. The thus precipitated carbon particles often clog these nozzle and pipe.
  • Particularly, in case that the combustion apparatus for supplying a high-temperature combustion gas (the temperature of which is about 1400 °C) to each of a plurality of boilers connected to each other in series is provided in a front portion of each of the boilers: the combustion gas discharged from the first one of the combustion apparatuses is supplied to the first one of the boilers; the combustion gas having passed through such first boiler is then supplied to the second one of the combustion apparatuses; the combustion gas having passed through such second combustion apparatus is supplied to the second one of the boilers; and operations similar to the above are sequentially conducted through the remaining boilers and combustion apparatuses until the combustion gas passes through the last one of the boilers; whereby multistage utilization of the combustion gas is realized. In this case, the combustion gas is supplied at a temperature of about 1400 °C to each of the boilers, while discharged at a temperature of about 700 °C from each of the boilers after it passes through each of the boilers. The thus discharged combustion gas is supplied to an air/fuel mixing unit of a subsequent combustion apparatus so as to be mixed with fuel and burned to be heated again to a temperature of about 1400 °C. At this time, since the venturi tube of the air/fuel mixing unit has been heated to a considerably high temperature in a portion in the vicinity of the fuel discharge nozzle, the fuel in the nozzle is often pyrolyzed or thermally decomposed to precipitate carbon particles which disadvantageously clog the fuel discharge nozzle in the venturi tube of the air/fuel mixing unit.
  • The present invention is made under such circumstances.
  • Consequently, it is an object of the present invention to provide a combustion apparatus which may produce a combustion gas substantially completely free from any of pollutants such as nitrogen oxides (NOx), unburned hydrocarbons, carbon monoxide and the like.
  • The present invention provides a combustion apparatus which may attain a complete combustion of a mixture gas consisting of an oxygen-containing gas or air and fuel, the mixture gas being brought into contact with a large number of high-temperature surfaces, and the combustion apparatus being provided in multistage combustion-gas utilization systems connected to each other in series so as to effectively use the combustion gas, whereby a considerable energy saving is accomplished.
  • Furthermore the present invention provides an air/fuel mixing unit for the combustion apparatus, which mixing unit is substantially free from a fear that a fuel discharge nozzle and a fuel feed pipe connected to the fuel discharge nozzle of the mixing unit are clogged with carbon particles produced through pyrolysis or thermal decomposition of the fuel supplied to the nozzle and the pipe.
  • According to the present invention, the above objects of the present invention are accomplished by the features of claim 1.
  • The following detailed description of the preferred embodiments of the present invention, will be made with reference to the accompanying drawings.
    • Fig. 1 is a longitudinal sectional view of the combustion apparatus of the present invention;
    • Fig. 2 is a cross-sectional view of the combustion apparatus of the present invention, take along the line V11-V11 of Fig. 1;
    • Fig. 3 is a longitudinal sectional view of a first embodiment of an oxygen-containing gas/fuel mixing unit employing in the combustion apparatus of the present invention; and
    • Fig. 4 is a longitudinal sectional view of a second embodiment of an oxygen-containing gas/fuel mixing unit employing in the combustion apparatus of the present invention.
  • Now, the combustion apparatus of the present invention and those of an oxygen-containing gas/fuel mixing unit employed in the combustion apparatus will be described in detail with reference to the accompanying drawings.
  • Figs. 1 and 2 show the combustion apparatus of the present invention, in which: the reference numeral 41 denotes a heat-insulating material; and 31 a sleeve-like casing made of ceramic material, which sleeve-like casing 31 has a circular cross section and extends vertically. In the sleeve-like casing 31 is concentrically and rotatably mounted an annular honeycomb passage member 32 which is made of ceramic materials while rotatably supported on a supporting shaft 31a an axis of which is aligned with that of the sleeve-like casing 31. In an upper portion of the sleeve-like casing 31 are provided a pair of chambers 34a, 34b which are oppositely disposed from an upper-end surface of the honeycomb passage member 32. These chambers 34a, 34b are adjacent to each other through a partition wall 33 which is so integrally formed with the sleeve-like casing 31 as to extend in a diametrical direction of the casing 31. One 34a of the chamber 34a, 34b serves as an air/fuel mixture gas inlet chamber 34a, while the other 34b serves as a combustion-gas outlet chamber 34b. An air/fuel mixture gas inlet port 35 opens into a side portion of the mixture gas inlet chamber 34a. On the other hand, a combustion-gas outlet port 37 opens into the a side portion of the combustion-gas outlet chamber 34b. In a lower portion of the sleeve-like casing 31 is formed a combustion-gas chamber 38 which is oppositely disposed from a lower-end surface of the honeycomb passage member 32.
  • A lower-end portion of the supporting shaft 31a of the honeycomb passage member 32 is rotatably mounted in a supporting frame 39, while connected to a suitable driving unit 40 for rotatably driving the supporting shaft 31a. In the honeycomb passage member 32, there are provided a plurality of fine passages which extend in parallel with the axis of the honeycomb passage member 32 over the whole axial length of the passage member 32 and are adjacent to each other. An upper-end portion of each of the above fine passages of the honeycomb passage member 32 opens into the mixture gas inlet chamber 34a and the combustion-gas outlet chamber 34b, while a lower-end portion of each of such fine passages opens into the combustion-gas chamber 38, as shown in Fig. 6. Namely, as the honeycomb passage member 32 rotates, the fine passages of the honeycomb passage member 32 alternately serve as the incoming passage and the outgoing passage.
  • As shown in Fig. 1, the pilot burner 12 provided with the auxiliary incoming port 36 is connected to the mixture gas inlet chamber 34a at a position oppositely disposed diametrically from that of the mixture gas inlet port 35 which also opens into the mixture gas inlet chamber 34a. The sleeve-like casing 31 is surrounded with a heat-insulating material 41, while fixedly mounted in an outer casing 42 through the heat-insulating material 41.
  • In operation of the combustion apparatus of the present invention having the above construction, the honeycomb passage member 32 is constantly rotated at a predetermined rotational speed. Under such circumstances, first of all, the pilot burner 12 is operated to issue a combustion gas to the mixture gas inlet chamber 34a through the auxiliary incoming port 36, so that both of the mixture gas inlet chamber 34a and the upper-end portion of the honeycomb passage member 32 are heated together by the combustion gas. During such heating, since the honeycomb passage member 32 is rotated constantly, the whole area of the upper-end portion of the honeycomb passage member 32 is sequentially heated to a predetermined temperature of about 900 °C. When the temperature of the upper-end portion of the honeycomb passage member 32 reaches about 900 C, operation of the pilot burner 12 is stopped to stop the heating of the honeycomb passage member 32, while a preheated air/fuel mixture gas is supplied to the mixture gas inlet chamber 34a through the mixture gas inlet port 35. The thus supplied mixture gas is then brought into contact with a preheated wall surface of the chamber 34a to burst into flame, and flows downward through a part of the honeycomb passage member 32 serving as the incoming passage so that the combustion of the mixture gas conducted in the incoming passage is completed when the gas reaches the combustion-gas chamber 38. The combustion gas entered the combustion-gas chamber 38 then flows into the other part of the honeycomb passage member 32 serving as the outgoing passage which is partially constructed of the fine passages of honeycomb passage member 32 located in a position corresponding to that of the combustion-gas outlet chamber 34b. Combustion of the mixture gas continues in the outgoing passage so that the combustion gas reaches the combustion-gas outlet chamber 34b from which the combustion gas is discharged through the combustion-gas outlet port 37. At this time, the outgoing passage 32 oppositely disposed from the combustion-gas outlet chamber 34b is heated by the combustion gas issued from the combustion-gas chamber 38. As the honeycomb passage member 32 rotates, the thus heated outgoing passage or some of the fine passages of the honeycomb passage member 32 is sequentially transferred to a position oppositely disposed from the mixture gas inlet chamber 34a so as to serve as the incoming passage. Consequently, since the thus sequentially transferred outgoing passage has been sufficiently heated by the combustion gas and serves as the incoming passage, the mixture gas entered the thus heated incoming passage is brought into contact with the sufficiently heated wall surfaces of the incoming passage constructed of the honeycomb passage member 32, to enable the mixture gas to continuously burst into flame.
  • The combustion apparatus of the present invention shown in Figs. 1 and 2 may be modified to form an embodiment of the combustion apparatus of the present invention in which each of the wall surfaces of the fine passages of the honeycomb passage member 32 are coated with catalysts to attain a catalytic combustion of the mixture gas. The catalysts employed in the present invention comprise platinum, palladium and the like. Coating of the wall surfaces of the honeycomb passage member 32 with the catalysts is conducted by dipping the honeycomb passage member 32 in solutions of the catalysts.
  • The above embodiment of the combustion apparatus of the present invention enables the mixture gas supplied from the mixture gas inlet port 35 to burst into flame to attain a catalytic combustion thereof even when the temperatures of the wall surfaces of the upstream side of the incoming passage are less than 900 °C, which wall surfaces are heated by the combustion gas which is produced by the pilot burner 12 and issued from the auxiliary incoming port 36.
  • Namely, in the embodiment of the combustion apparatus of the present invention, the fuel is mixed with a preheated air to prepare the mixture gas. In case that a gaseous fuel is employed, it is possible to eliminate the preheating operation of the air. In case that a liquid fuel is employed, it is possible to extremely lower the temperature of the preheated air, provided that the temperature of the fuel in the air is slightly higher than dew point.
  • Incidentally, in the above embodiment of the combustion apparatus of the present invention, sulfur-containing fuels can not be employed because sulfur has poisoning effects on the catalysts employed in the above embodiment.
  • In each of the above embodiments of the combustion apparatus of the present invention, the ceramic materials constituting each of the components such as the outer sleeve, inner sleeve, sleeve-like casing 31 and the honeycomb passage member 32 may be silicon carbide which is excellent in mechanical strength, heat-resisting properties and thermal shock resistance. However, it is also possible that these components are made of any other suitable ceramic materials such as zirconia-base ceramics and cordierite-base ceramics.
  • In addition, each of the outer sleeve and the sleeve-like casing 31 may be made of alumina-fiber ceramics. In this case, it is preferable to firmly coat, by a suitable applying process such as spraying and the like, the inner surfaces of the outer sleeve and the sleeve-like casing 31 with a paint a main component of which is a suitable oxide such as SiZrO₄, MnO₂.Cr₂O₃ and the like excellent in infrared-absorption properties.
  • Now, two different embodiments of the oxygen-containing gas/fuel mixing unit (hereinafter referred to as the air/fuel mixing unit) employed in the combustion apparatus of the present invention having the above construction will be described in detail with reference to Figs. 3 and 4.
  • In a first embodiment of the air/fuel mixing unit of the present invention shown in Fig. 3: the reference numeral 50 denotes a venturi tube comprising an inlet reducer portion 51, an outlet diffuser portion 52 and a venturi throat portion 53 sandwiched between these portions 50 and 51. A performance-control rod 54 provided with a tapered front portion is threadably engaged with a supporting member 55 so as to be axially displaceable relative to the supporting member 55 which is fixedly mounted in the venturi tube 50. A preheated-air inlet pipe 13 is connected to an air-inlet opening of the venturi tube 50 an air/fuel mixture gas outlet opening of which is connected to the combustion apparatus of the present invention.
  • A plurality of fuel discharge openings 56 are so provided in an inner peripheral surface of the throat portion 53 of the venturi tube 50 as to be spaced apart from each other in a circumferential direction of the of the inner peripheral surface of the throat portion 53, to which openings 56 a fuel feed pipe 14 is connected. As is clear from Fig. 3, an annular water jacket 57 is placed around the venturi throat portion 53 to keep this portion 53 cool. To the water jacket 57 are connected: a cooling-water inlet pipe 58; and a cooling-water outlet pipe 59.
  • As shown in Fig. 3, in this first embodiment of the air/fuel mixing unit employed in the combustion apparatus of the present invention, an incoming gas comprising the preheated air and the oxygen-containing gas such as the combustion gas is supplied from the preheated-air inlet pipe 13 to the venturi throat portion 53 in which the incoming gas is accelerated to cause the fuel discharge openings 56 to deliver the fuel in spraying manner so that the air/fuel mixture gas is produced. The thus produced air/fuel mixture gas is then supplied to the combustion apparatus of the present invention, while agitated in the subsequent outlet diffuser portion 52 of the venturi tube 50.
  • In the air/fuel mixing unit described above, when the fuel is sprayed into the heated incoming gas to produce the air/fuel mixture gas, a part of the thus produced mixture gas reaches a flammable limit range. In order to prevent the air/fuel mixture from burning in the venturi tube 50, the thus produced air/fuel mixture gas must be rapidly agitated in the venturi tube 50. Consequently, in the air/fuel mixing unit employed in the present invention, it is necessary to accelerate the incoming gas to a velocity of at least 100 m/second in the venturi throat portion 53 so as to make it possible to rapidly agitate the thus produced air/fuel mixture gas.
  • Since the performance-control rod 54 is disposed in the axially central portion of the venturi throat portion 53, an axially central passage of the incoming gas in the venturi throat portion 53 is decreased in its cross-sectional area to keep a thickness of a stream of the incoming gas thin in the venturi throat portion 53. Consequently, even when the venturi throat portion 53 is relatively large in its cross-sectional area, it is possible to sufficiently accelerate the incoming gas and cause the resultant air/fuel mixture gas to rapidly agitated in the subsequent outlet diffuser portion 52 of the venturi tube 50.
  • The cross-sectional area of the venturi throat portion 53 is so controlled by axially displacing the performance-control rod 54 as to keep a flow rate of the incoming gas constant in the venturi throat portion 53 even when a quantity of the incoming gas varies, whereby it is possible to supply the air/fuel mixture gas having a constant mixing ratio to the combustion apparatus of the present invention.
  • In the above first embodiment of the air/fuel mixing unit shown in Fig. 3, a cooling water is supplied to the water jacket 57 to cool the venturi throat portion 53. Since the venturi throat portion 53 is adequately cooled in the above manner, the fuel discharge openings 56 and a front-end portion of the fuel feed pipe 14 connected thereto are also adequately cooled to prevent the fuel from being thermally decomposed in the fuel discharge openings 56. When the fuel is thermally decomposed to produce carbon particles, the fuel discharge openings 56 are clogged with the thus produced carbon particles. Consequently, it is possible to prevent the fuel discharge openings 56 from being clogged with the carbon particles by adequately cooling the venturi throat portion 53.
  • Fig. 4 shows a second embodiment of the air/fuel mixing unit employed in the combustion apparatus of the present invention, which second embodiment represents a constant-performance type air/fuel mixing unit. As shown in Fig. 4, the fuel discharge nozzle 56 is so disposed in the throat portion 53 of the venturi tube 50a as to be oriented toward a downstream side of the venturi tube 50a. The fuel discharge nozzle 56 is formed in a front-end portion of the fuel feed pipe 14 around which is placed the water jacket 57 to which are connected the cooling-water inlet pipe 58 and the cooling-water outlet pipe 59.
  • In this second embodiment of the air/fuel mixing unit shown in Fig. 4, a cooling water is supplied to the water jacket 57 to adequately cool both the fuel discharge nozzle 56 and the fuel feed pipe 14 so that the fuel is prevented from being thermally decomposed and from producing the carbon particles in the fuel discharge nozzle 56 and the fuel feed pipe 14, whereby these components 56, 14 are prevented from being clogged with the resultant carbon particles.
  • Incidentally, in the first embodiment of the air/fuel mixing unit shown in Fig. 3, it is also possible to control the performance-control rod 54 automatically according to a quantity of the preheated incoming gas or air.
  • In Figs. 3 and 4, the reference numeral 61 denotes a heat-insulating material.
  • In the above air/fuel mixing unit shown in Figs. 3 and 4, preferably, the venturi throat portion 53 is made of a suitable heat-resisting alloy such as Inconel alloys and Hastelloy alloys, while each of the inlet reducer portion 51, outlet diffuser portion 52 and other inner components of the venturi tube 50 is made of a suitable ceramic material such as silicon carbide, zirconia, cordierite and the like.

Claims (9)

  1. Combustion apparatus comprising
    (a) a sleeve-like casing (31), having a circular cross section and surrounded by a heat-insulating material (41);
    (b) a cylindrical combustion-gas passage member (32) provided with a plurality of combustion-gas passages adjacent each other for providing a plurality of honeycomb-like passage wall surfaces so as to assume a honeycomb-like cross section as a whole, through which a combustion gas flows axially, said cylindrical combustion-gas passage member being rotatably mounted in said sleeve-like casing so as to be rotated on a supporting shaft (31a) which is mounted in said sleeve-like casing (31), an axis of said supporting shaft being aligned with an axis of said sleeve-like casing, a driving unit (40) being connected to said supporting shaft (31a).
    (c) a mixture-gas inlet means (35) provided with a mixture gas inlet port opened to said cylindrical combustion-gas passage member (32);
    (d) an auxiliary incoming means (36) provided with a pilot burner (12), said auxiliary incoming means being provided with an auxiliary incoming port of said mixture gas, which opens into said combustion-gas passage member (32);
    (e) combustion-gas outlet means being provided with a combustion-gas outlet port which opens into one side of said combustion-gas passage member,
    characterized by
    (f) a pair of chambers (34a,34b), one of which (34a) serves as an inlet and outlet chamber of an oxygen-containing gas/fuel mixture gas, the other one (34b) serves as an inlet and an outlet chamber of said combustion gas, said pair of chambers (34a,34b) being formed in one axial end portion of said sleeve-like casing (31) adjacent to each other on opposite sides of a diametrical partition wall (33) being integrally formed with said sleeve-like casing (31), the mixture gas inlet port opening into one side portion of the inlet chamber (34a) the auxiliary incoming port opening into the inlet chamber (34a) spaced apart from said mixture gas inlet port and at right angles to it, a combustion-gas outlet port (37) opening into one side portion of the outlet chamber (34b) of the combustion-gas.
    (g) a combustion-gas chamber (38) formed in the axial end portion of the sleeve-like casing (31) opposite to the combustion gas inlet (34a) and outlet chamber (34b) respectively.
  2. The combustion apparatus as set forth in claim 1, characterized in that said combustion apparatus further comprises an oxygen-containing gas/fuel mixing unit which is provided with:
    a venturi tube (50), provided with a venturi throat (53) portion and surrounded by a heat-insulating material (61);
    a fuel feed pipe having its fuel discharge nozzle (56) opened into said venturi throat portion of said venturi pipe, said fuel discharge nozzle being provided in a front-end portion of said fuel feed pipe; and
    a cooling unit (57,58,59) for cooling suitable portion of said fuel discharge nozzle and said fuel feed pipe communicating with said fuel discharge nozzle.
  3. The combustion apparatus as set forth in claim 1 or 2, characterized in that said honeycomb-like passage wall surfaces of said cylindrical combustion-gas passage member (32) are coated with catalysts to attain a catalytic combustion of said mixture gas.
  4. The combustion apparatus as set forth in claim 3, characterized in that said catalysts comprises platinum or palladium.
  5. The combustion apparatus as set forth in one of claims 1 to 4, characterized in that each of said incoming passage means (31) and said outgoing means (31) is made of at least one of ceramic materials selected from the group consisting of silicon carbide, zirconia and cordierite.
  6. The combustion apparatus as set forth in one of claims 1 to 5, characterized in that said honeycomb passage member (32) is made of at least one of ceramic materials selected from the group consisting of silicon carbide, zirconia and cordierite.
  7. The combustion apparatus as set forth in one of claims 1 to 6, characterized in that said venturi tube (50) is made of at least one of ceramic materials selected from the group consisting of silicon carbide, zirconia and cordierite.
  8. The combustion apparatus as set forth in one of claims 1 to 7, characterized in that each of said sleeve-like casing (31) and said cylindrical combustion-gas passage member (32) is made of at least one of ceramic materials selected from the group consisting of silicon carbide, zirconia and cordierite.
  9. The combustion apparatus as set forth in one of claims 2 to 8, characterized in that said venturi tube (50) is made of at least one of ceramic materials selected from the group consisting of silicon carbide, zirconia and cordierite.
EP92105621A 1988-07-08 1989-07-06 Combustion apparatus Expired - Lifetime EP0493376B1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP170430/88 1988-07-08
JP63170429A JP2681802B2 (en) 1988-07-08 1988-07-08 Combustor
JP63170430A JP2772955B2 (en) 1988-07-08 1988-07-08 Fuel mixer for combustor
JP170429/88 1988-07-08
EP89112363A EP0350032B1 (en) 1988-07-08 1989-07-06 Combustion apparatus

Related Parent Applications (3)

Application Number Title Priority Date Filing Date
EP89112363A Division EP0350032B1 (en) 1988-07-08 1989-07-06 Combustion apparatus
EP89112363A Division-Into EP0350032B1 (en) 1988-07-08 1989-07-06 Combustion apparatus
EP89112363.0 Division 1989-07-06

Publications (3)

Publication Number Publication Date
EP0493376A2 EP0493376A2 (en) 1992-07-01
EP0493376A3 EP0493376A3 (en) 1992-08-19
EP0493376B1 true EP0493376B1 (en) 1995-10-11

Family

ID=26493423

Family Applications (2)

Application Number Title Priority Date Filing Date
EP92105621A Expired - Lifetime EP0493376B1 (en) 1988-07-08 1989-07-06 Combustion apparatus
EP89112363A Expired - Lifetime EP0350032B1 (en) 1988-07-08 1989-07-06 Combustion apparatus

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP89112363A Expired - Lifetime EP0350032B1 (en) 1988-07-08 1989-07-06 Combustion apparatus

Country Status (2)

Country Link
EP (2) EP0493376B1 (en)
DE (2) DE68909851T2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2269764A (en) * 1992-08-18 1994-02-23 Rolls Royce Plc A catalytic combustion chamber
US6517341B1 (en) 1999-02-26 2003-02-11 General Electric Company Method to prevent recession loss of silica and silicon-containing materials in combustion gas environments

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2074756A6 (en) * 1969-07-04 1971-10-08 Faure & Cie Sa Ets
US4126419A (en) * 1974-04-02 1978-11-21 Keichi Katabuchi Combustion device for burning waste gases containing combustible and noxious matters
US4089088A (en) * 1976-07-14 1978-05-16 Michigan Oven Company Thermal regeneration and decontamination apparatus and industrial oven
GB2027609A (en) * 1978-08-02 1980-02-27 Johnson Matthey Co Ltd Catalytic waste heat recovery
JPS5723706A (en) * 1980-07-21 1982-02-08 Hitachi Ltd Combustor for thin gas fuel
DE3502661A1 (en) * 1985-01-26 1986-07-31 Kurt 7520 Bruchsal Heim Heating boiler for compressed gas or compressed oil with a pot-shaped combustion chamber provided in an inner ribbed pipe
JPS6233213A (en) * 1985-08-05 1987-02-13 Nippon Chem Plant Consultant:Kk Combustion unit
JPS6373005A (en) * 1986-09-12 1988-04-02 Hitachi Heating Appliance Co Ltd Low nox fan heater

Also Published As

Publication number Publication date
DE68924539D1 (en) 1995-11-16
DE68924539T2 (en) 1996-04-18
EP0350032A2 (en) 1990-01-10
EP0350032A3 (en) 1990-11-07
EP0350032B1 (en) 1993-10-13
EP0493376A2 (en) 1992-07-01
EP0493376A3 (en) 1992-08-19
DE68909851T2 (en) 1994-05-05
DE68909851D1 (en) 1993-11-18

Similar Documents

Publication Publication Date Title
US5203690A (en) Combustion apparatus
US4047877A (en) Combustion method and apparatus
CA1159356A (en) Method and device for producing microdroplets of fluid
US5570679A (en) Industrial burner with low NOx emissions
US5618173A (en) Apparatus for burning oxygenic constituents in process gas
JP2588355B2 (en) Oxy-fuel combustion equipment
US4245980A (en) Burner for reduced NOx emission and control of flame spread and length
US4380429A (en) Recirculating burner
US5676536A (en) Raw gas burner and process for burning oxygenic constituents in process gas
CA1053012A (en) Gas turbine combustor arrangement
EP0887589B9 (en) Device and method for combustion of fuel
JPS6217507A (en) Fuel combustion equipment
US20110229649A1 (en) Supersonic material flame spray method and apparatus
US5022849A (en) Low NOx burning method and low NOx burner apparatus
US4481889A (en) Method and apparatus for afterburning flue gases
US20020006591A1 (en) Method and apparatus for mixing combustion gases
US5232358A (en) Combustion apparatus
EP0493376B1 (en) Combustion apparatus
US4764105A (en) Waste combustion system
EP0734782B1 (en) Shock-stabilized supersonic flame-jet method and apparatus
US4854853A (en) Waste combustion system
JPH0221118A (en) Fuel mixer for burner
US3994131A (en) Vortical flow afterburner device
RU215785U1 (en) DOUBLE FLOW GAS BURNER
US4474554A (en) Process and an apparatus for evening out the temperatures within the preheating zone of a kiln

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19920401

AC Divisional application: reference to earlier application

Ref document number: 350032

Country of ref document: EP

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB IT

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB IT

17Q First examination report despatched

Effective date: 19930608

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AC Divisional application: reference to earlier application

Ref document number: 350032

Country of ref document: EP

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19951011

REF Corresponds to:

Ref document number: 68924539

Country of ref document: DE

Date of ref document: 19951116

ET Fr: translation filed
RIN2 Information on inventor provided after grant (corrected)

Free format text: MARUKO, SABURO

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20020703

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20020717

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20020726

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030706

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040203

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20030706

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040331

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST