JPS6233213A - Combustion unit - Google Patents

Combustion unit

Info

Publication number
JPS6233213A
JPS6233213A JP60171016A JP17101685A JPS6233213A JP S6233213 A JPS6233213 A JP S6233213A JP 60171016 A JP60171016 A JP 60171016A JP 17101685 A JP17101685 A JP 17101685A JP S6233213 A JPS6233213 A JP S6233213A
Authority
JP
Japan
Prior art keywords
air
stage
combustion
fuel
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60171016A
Other languages
Japanese (ja)
Other versions
JPH0220890B2 (en
Inventor
Saburo Maruko
三郎 丸子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemical Plant Consultant Co Ltd
Original Assignee
Nippon Chemical Plant Consultant Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemical Plant Consultant Co Ltd filed Critical Nippon Chemical Plant Consultant Co Ltd
Priority to JP60171016A priority Critical patent/JPS6233213A/en
Publication of JPS6233213A publication Critical patent/JPS6233213A/en
Publication of JPH0220890B2 publication Critical patent/JPH0220890B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Abstract

PURPOSE:To accelerate the normal operation of a major combustion unit by a method wherein an air preheater for a start-up is installed at the upstream side of a first-stage catalyst combustion unit, fuel is mixed with the preheating air and passed through a catalyst layer to perform combustion, an amount of mixing air is controlled to mix the fuel with air and passed through a second-stage catalyst layer to perform combustion. CONSTITUTION:Air divided to flow from an air major pipe 1 is heated by a start-up air heater 5 to a temperature higher than an ignition temperature of a catalyst and enters a first-stage fuel mixing unit 6, is mixed with fuel in the first-stage fuel supplying pipe 7, flowed to a first-stage combustion cylinder 9 and then ignited in a first-stage combustion catalyst 8. The combustion generated gas having entered the second-stage catalyst combustion cylinder 12 is mixed with the air in the supplying pipe 11 and an amount of mixed air is adjusted in such a way as its temperature is more than a catalyst combustion temperature and less than a combustion temperature of fuel mixture. Fuel from the second-stage fuel mixing unit 14 is mixed in the mixed gas with the second-stage fuel mixing unit 14, ignited with the second-stage catalyst 15, enters the third-stage catalyst combustion cylinder 16 mixed with the air in the air pipe 1, the fuel in the third-stage fuel supplying pipe 17 is mixed by the third-stage fuel mixing unit 18 and then the fuel is ignited with the third catalyst.

Description

【発明の詳細な説明】 従来の触媒の燃焼器は予混合気体を触媒燃焼の着火温度
以上に予熱する場合に燃焼器に流す空気の全量を何等か
の手段で予熱していたが、スタートアップの場合に空気
予熱器の熱容量が大きく所定の温度に予熱するまでに時
間がかかり過ぎる不便があった。
[Detailed Description of the Invention] Conventional catalytic combustors use some means to preheat the entire amount of air flowing into the combustor when preheating the premixed gas to a temperature higher than the ignition temperature for catalytic combustion. In some cases, the heat capacity of the air preheater is large and it takes too much time to preheat the air to a predetermined temperature.

又、従来のバーナーで高温の燃焼ガスを作り燃焼用空気
に混合して触媒の着火温度以上の予熱空気を得ようとす
るとパーナル燃焼機構上一部の未燃物が発生し、これが
触媒の表面に付着した後に正常な触媒燃焼に成ったとき
に燃焼する。触媒の表面に付着した未燃物が燃焼する場
合に部分的な高温を発生し触媒の劣化が早くなり不都合
であった。この現象は燃焼運転の断続が激しい場合と加
圧下の燃焼をする場合に特に顕著に現れる。又。
In addition, when trying to obtain preheated air above the ignition temperature of the catalyst by producing high-temperature combustion gas using a conventional burner and mixing it with the combustion air, some unburned material is generated in the Parnall combustion mechanism, and this is heated to the surface of the catalyst. It burns when normal catalytic combustion occurs after adhering to the fuel. When the unburnt substances adhering to the surface of the catalyst are combusted, a localized high temperature is generated, which leads to rapid deterioration of the catalyst, which is inconvenient. This phenomenon is particularly noticeable when combustion operation is frequently intermittent or when combustion is performed under pressure. or.

バーナーを使用した場合に着火の失敗等もあり安全上か
なりの配慮をしなくてはならない。以上の点を改良した
のが本発明の触媒燃焼器である。
If a burner is used, it may fail to ignite, so considerable safety considerations must be taken. The catalytic combustor of the present invention has been improved in the above points.

以下本発明の実施例を図面に基いて説明する。Embodiments of the present invention will be described below based on the drawings.

第1図において1.は燃焼用空気全量を供給する空気の
主管である。2.は第1段触媒燃焼用空気の供給管で、
3.は第1段触媒燃焼器用筒9.内に設けた第1段触媒
燃焼生成ガスと第1段燃焼用空気との熱交換器即ち空気
予熱器である。4.は予熱空気出口管で第1段燃料温合
器6.どの間にスタートアップ用空気加熱器5.が設置
されている。8.は第1段触媒燃焼生成ガス、の第1段
燃焼触媒である。1.の空気主管から分岐した空気は第
1段触媒燃焼用空気の供給管2.がら空気予熱器3.を
通り、予熱空気出口管4.を経てスタートアップ用空気
加熱器5.にて触媒の着火温度以上に加熱されて第1段
燃料温合器6.に入り、第1段燃料供給管7からの燃料
と混合されて第1段燃焼器用筒9.に流れ9.の中に保
持された第1段燃焼触媒8.で燃焼して第1段触媒燃焼
用空気2、に流れる。この場合の燃焼温度は1100℃
〜1200℃が一般的な温度で第1段燃焼器合器6.に
入る予熱空気の温度は300℃〜450℃位となる。
In Figure 1, 1. is the main air pipe that supplies the entire amount of combustion air. 2. is the air supply pipe for the first stage catalytic combustion,
3. is the first stage catalytic combustor cylinder 9. This is a heat exchanger between the first stage catalytic combustion generated gas and the first stage combustion air provided in the combustion chamber, that is, an air preheater. 4. 6. is the preheated air outlet pipe of the first stage fuel warmer. Start-up air heater 5. is installed. 8. is the first stage combustion catalyst of the first stage catalyst combustion generated gas. 1. The air branched from the main air pipe of 2. is the first stage catalytic combustion air supply pipe. Air preheater 3. through the preheated air outlet pipe 4. Start-up air heater through 5. The fuel is heated to a temperature higher than the ignition temperature of the catalyst in the first stage fuel mixer 6. The fuel enters the first stage combustor tube 9, where it is mixed with the fuel from the first stage fuel supply pipe 7. Flow 9. a first stage combustion catalyst held within8. is combusted and flows to the first stage catalyst combustion air 2. The combustion temperature in this case is 1100℃
6. The first stage combustor combiner at a typical temperature of ~1200°C. The temperature of the preheated air that enters is about 300°C to 450°C.

燃焼が開始されると空気予熱器3.から出てくる空気の
温度は上昇し300℃〜450℃となった時にスタート
アップ用の空気加熱器5.の運転は停止する。スタート
アップ用の空気加熱器5゜は通常電気ヒーターを使用す
るが燃焼ガスによる間接型の空気加熱器を使用しても良
い。この場合に重要な事は第1段燃焼器を出来る限り小
さくし、スタートアップ用の空気加熱器の熱容量も小さ
くしてスタートアップに要する時間を出来るだけ短くす
ることである。第1段触媒燃焼器量口の燃焼生成ガス温
度は燃焼温度よりも約400℃位低くなる。これは燃焼
用空気を予熱する為に熱量を消費される為である。例え
ば燃焼温度1200℃で空気予熱温度400℃であれば
燃焼生成ガス出口温度は約850°Cとなる。
When combustion starts, the air preheater 3. When the temperature of the air coming out of the air rises to 300℃~450℃, start-up air heater 5. operation will be stopped. An electric heater is normally used as the air heater 5° for startup, but an indirect type air heater using combustion gas may also be used. In this case, what is important is to make the first stage combustor as small as possible and the heat capacity of the startup air heater to be as small as possible to shorten the time required for startup as much as possible. The combustion generated gas temperature at the first stage catalytic combustor intake is about 400° C. lower than the combustion temperature. This is because heat is consumed to preheat the combustion air. For example, if the combustion temperature is 1200°C and the air preheating temperature is 400°C, the combustion product gas outlet temperature will be about 850°C.

第1段燃焼器用筒9.から第2段触媒燃焼器用筒12.
に入った燃焼生成ガスと第2段燃焼器用空気の供給管1
1.からの空気と混合して触媒着火温度以上で燃料混合
物の燃焼温度以下となるように混合空気量を調節する。
First stage combustor tube9. to the second stage catalytic combustor cylinder 12.
Supply pipe 1 for the combustion product gas entering the combustion chamber and air for the second stage combustor
1. The amount of mixed air is adjusted so that the temperature is higher than the catalyst ignition temperature and lower than the combustion temperature of the fuel mixture.

第1段の燃焼生成ガスを主燃焼器用空気に混合せず第2
段の燃焼器を用いる意味はスタートアップ用燃焼器を小
さくする目的で第1段目は自己の空気を予熱する為に出
口ガスの温度が低くなり混合空気量が減少する為であり
、例を上げると次の如くなる。
The first stage combustion gas is not mixed with the main combustor air, and the second stage
The purpose of using a staged combustor is to make the startup combustor smaller, and the first stage preheats its own air, which lowers the temperature of the outlet gas and reduces the amount of mixed air.I will give an example. It becomes as follows.

触媒の着火温度が300℃以下の場合、予熱空気の温度
300℃で触媒燃焼温度1200℃とすると第1段目の
燃焼量を1に対し第2段目は3゜3第3段目は15.7
となる。一方空気の供給量は第1段目を1とすると第2
段目は2.3第3段目は12.1となる。
When the ignition temperature of the catalyst is 300°C or lower, and the preheated air temperature is 300°C and the catalyst combustion temperature is 1200°C, the combustion amount in the first stage is 1, while the combustion amount in the second stage is 3°3, and the third stage is 15. .7
becomes. On the other hand, if the air supply amount is 1 for the first stage, then the second stage is
The tier is 2.3 and the third tier is 12.1.

第2段燃焼器用筒12.内に燃焼生成ガスと空気とを混
合する燃焼ガス/空気混合器10.が設置されており充
分に混合されたガス中に第1段燃焼器合器14.で第2
段燃料供給管13.からの燃料を混合し第2段触媒15
.で燃焼し第3段触媒燃焼器用@if 6.に入り空気
の主管1.からの空気と混合し第3段燃料供給管17.
からの燃料を第1段燃焼器合器18.にて混合し第3段
触媒にて燃焼する。
Second stage combustor cylinder 12. 10. Combustion gas/air mixer for mixing combustion product gas and air in the combustion chamber. The first stage combustor combiner 14. is installed and the gas is sufficiently mixed. And the second
Stage fuel supply pipe 13. Mix the fuel from the second stage catalyst 15
.. For the third stage catalytic combustor @if 6. Main pipe for air entering 1. It mixes with air from the third stage fuel supply pipe 17.
The fuel from the first stage combustor combiner 18. The mixture is mixed at the 3rd stage catalyst and combusted at the 3rd stage catalyst.

以上の様な方法の燃焼器とするとスタートアップに要す
る時間は10〜20分間位で主燃焼器の正常運転に入る
事が可能である。第1段燃焼器の後流側に取付ける燃焼
生成ガスと第1段燃焼用空気との熱交換器即ち空気予熱
器3.は第2図に示す如く熱の移動を多くする為に二重
管内の外側に粒子を充填したものが最適である。空気の
加熱温度が高くなる程粒子を充填する事が有効で空気と
粒子の接触面積を増大させ空気への熱移動量を多くする
。燃焼生成ガスから二重管の外管21.の管壁への熱移
動は第1段燃焼器用筒9.の内部に張付けられた耐火材
20.の表面が燃焼生成ガスの温度となっているので、
耐火材表面からの熱放射が大きくなりこれが燃焼生成ガ
スからの対流伝熱に加算されるので燃焼生成ガス側の受
熱面積はかなり小さくする事が出来る。−カニ重管内部
の伝熱は空気と二重管外管の内面の面積での伝熱で対流
伝熱のみとなる。この為に空気予熱器3.を小さくし燃
焼器全体を小型にする為には空気との接触面積を増大さ
せる必要がある。この目的で二重管内部のドーナツリン
グ状の場所に全屈又はセラミックの粒子を充填し空気と
の接触面積を大きくするのが有効である。二重管外管の
内面から粒子への熱移動と粒子間の熱移動は接触してい
る面積の熱伝導と放射伝熱による。特に放射伝熱に関係
する粒子の表面積が非常に大きく空気予熱器3゜を小型
化する事が可能である。
When the combustor is constructed using the method described above, the main combustor can be brought into normal operation in about 10 to 20 minutes for startup. A heat exchanger between the combustion generated gas and the first stage combustion air, that is, an air preheater installed on the downstream side of the first stage combustor.3. As shown in FIG. 2, it is best to fill the outside of the double tube with particles in order to increase the transfer of heat. The higher the heating temperature of the air, the more effective it is to fill the air with particles, increasing the contact area between the air and the particles and increasing the amount of heat transferred to the air. A double outer tube 21. Heat transfer to the tube wall of the first stage combustor tube 9. Refractory material pasted inside 20. Since the surface of is at the temperature of the combustion gas,
The heat radiation from the surface of the refractory material increases and is added to the convective heat transfer from the combustion gas, so the heat receiving area on the combustion gas side can be made considerably smaller. - Heat transfer inside the crab double tube is only through convective heat transfer between the air and the inner surface of the double outer tube. For this purpose, air preheater 3. In order to reduce the size of the combustor and the overall size of the combustor, it is necessary to increase the contact area with air. For this purpose, it is effective to fill the donut ring-shaped area inside the double pipe with full-length or ceramic particles to increase the contact area with air. Heat transfer from the inner surface of the double outer tube to the particles and between the particles is due to heat conduction and radiant heat transfer in the contact area. In particular, the surface area of particles involved in radiant heat transfer is very large, making it possible to downsize the air preheater by 3 degrees.

第2図において第1段燃焼用空気の供給管2゜から入っ
た常温の空気は二重管外管21.と二重管内管22.と
で形成されるドーナツリング状の空間に流れる。この空
間には粒子23.が充填されていて、空気は粒子の間隙
を上昇し受熱し金網24、の場所を通過し二重管内管2
2.の内部を流れ熱風函28.に入り予熱空気出口管4
.に出ていく。25.は粒子を受ける金網で、2G、は
常温空気入口面で27.は蓋である。
In FIG. 2, room temperature air entering from the first stage combustion air supply pipe 2° is transferred to the double outer pipe 21. and double inner tube 22. It flows into a donut ring-shaped space formed by In this space there are 23 particles. The air rises through the gaps between the particles, receives heat, passes through the wire mesh 24, and enters the double-pipe inner tube 2.
2. Hot air flows through the inside of the box28. Input preheated air outlet pipe 4
.. going out to 25. 2G is the wire mesh that receives the particles, 2G is the room temperature air inlet surface, and 27. is the lid.

予熱空気並びに燃焼生成ガスと空気との混合物に燃料を
混合する場合に流路の長さを出来るだけ短くして充分な
混合を得る為には第3図に示した如く、多管式熱交換器
の伝熱管に相当するパイプに多孔質材料、即ち焼結金属
製のパイプを使用してこのパイプの肉厚部に燃料ガスを
浸透させて予熱空気に混合するのが良い。この事は部分
的な燃料濃度の高い場所を作らない為であり燃料濃度の
高い場合に触媒によらずに燃焼が始まり装置に不具合を
生ずる事がある為である。
When mixing fuel with preheated air or a mixture of combustion gas and air, in order to shorten the length of the flow path as much as possible and obtain sufficient mixing, a multi-tube heat exchanger is used as shown in Figure 3. It is preferable to use a porous material, ie, a pipe made of sintered metal, as the pipe corresponding to the heat transfer tube of the vessel, and to allow the fuel gas to permeate into the thick part of the pipe and mix it with the preheated air. This is to avoid creating areas where the fuel concentration is partially high, and if the fuel concentration is high, combustion may start without the aid of a catalyst, which may cause a malfunction in the device.

第3図において予熱空気管29.から入った予熱空気は
焼結金属管32.内を流れ燃料は燃料供給管33.から
入り缶板30.と胴34.にて形成された空間を経て焼
結金属管32.の肉厚部を浸透して予熱空気中に分散混
合された後に燃料空気混合物管31.に流れる。多管式
にする意味は混合を早く完了させる為であり、これによ
り混合完了する流路の長さが短くなる。
In FIG. 3, preheating air pipe 29. The preheated air entering from the sintered metal tube 32. Fuel flows through the fuel supply pipe 33. Can plate containing 30. and torso 34. The sintered metal tube 32. After penetrating the thick wall of the fuel air mixture pipe 31. flows to The purpose of using a multi-tube system is to complete the mixing quickly, which shortens the length of the flow path where the mixing is completed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本考案の構成図、第2図は空気予熱器の説明図
、第3図は第2段燃料混合器の説明図である。 第1図の図面の説明 1、空気の主管 2、第1段燃焼用空気の供給管 3、空気予熱器 4、予熱空気出口管 5、空気加熱器 6、第1段燃料混合器 7、第1段燃料供給管 8、第1段燃焼触媒 9、第1段燃焼器用筒 10、燃焼ガス/空気混合器 11、第2段燃焼用空気の供給管 12、第2段燃焼器用筒 13、第2段燃料供給管 14、第2段燃料混合器 15、第2段触媒 16、第3段燃焼器用筒 17、第3段燃料供給管 18、第3段燃料混合器 19、第3段触媒 第2図の図面の説明 20、耐火材   2.第1段燃焼用空気の供給管21
、二重管外管 4.予熱空気出口管22、二重管内管 
9.第2段燃焼器用筒23、粒子   10.燃焼ガス
/空気混合器24、金網   11.第2段燃焼用空気
の供給管25、粒子受金4!lq 12.第1段燃焼器
用筒26、常温空気入口面 27、蓋    13.第2段燃料供給管28、熱風函
  14.第2段燃料混自器第3図の図面の説明 29.予熱空気主管 30、缶板 31、燃料空気混合物管 32、焼結全屈管 33、燃料供給管 出願人 株式会社 日本ケミカル・プラント・コンサル
タント
FIG. 1 is a block diagram of the present invention, FIG. 2 is an explanatory diagram of an air preheater, and FIG. 3 is an explanatory diagram of a second stage fuel mixer. Explanation of the drawing in FIG. 1 1, main air pipe 2, first stage combustion air supply pipe 3, air preheater 4, preheated air outlet pipe 5, air heater 6, first stage fuel mixer 7, 1st stage fuel supply pipe 8, 1st stage combustion catalyst 9, 1st stage combustor cylinder 10, combustion gas/air mixer 11, 2nd stage combustion air supply pipe 12, 2nd stage combustor cylinder 13, 2nd stage fuel supply pipe 14, 2nd stage fuel mixer 15, 2nd stage catalyst 16, 3rd stage combustor tube 17, 3rd stage fuel supply pipe 18, 3rd stage fuel mixer 19, 3rd stage catalyst Explanation of the drawings in Figure 2 20, Refractory material 2. First stage combustion air supply pipe 21
, double outer tube 4. Preheated air outlet pipe 22, double inner pipe
9. Second stage combustor cylinder 23, particles 10. Combustion gas/air mixer 24, wire mesh 11. Second stage combustion air supply pipe 25, particle receiver 4! lq 12. First stage combustor tube 26, room temperature air inlet surface 27, lid 13. 2nd stage fuel supply pipe 28, hot air box 14. Explanation of the drawing of the second stage fuel blender Fig. 3 29. Preheating air main pipe 30, can plate 31, fuel air mixture pipe 32, sintered fully bent pipe 33, fuel supply pipe Applicant: Nippon Chemical Plant Consultant Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] (1)第一段目の触媒燃焼器の上流側にスタートアップ
用の空気予熱器を設置し、予熱空気中に燃料を混合し触
媒層を通過させて燃焼を行い触媒層の下流側に燃焼生成
ガスと燃焼用空気との熱交換器を設置し熱交換を行い燃
焼用空気を触媒燃焼開始温度以上に加熱し、燃焼開始後
はスタートアップ用空気加熱器を停止することと、第一
段目の燃焼生成ガス中に酸素含有ガスを増量する目的で
空気を混合する場合に燃焼生成ガスと空気の混合物が触
媒燃焼開始温度よりも高く燃料を混合した場合の発火温
度よりも低い温度に保つ様混合空気量を制御した後に燃
料を混合し第二段目の触媒層を通過させ燃焼する事を特
徴とする燃焼器。
(1) An air preheater for startup is installed upstream of the first stage catalytic combustor, and fuel is mixed in the preheated air, passed through the catalyst layer and combusted, and combustion is generated downstream of the catalyst layer. A heat exchanger between the gas and combustion air is installed to perform heat exchange and heat the combustion air to a temperature higher than the catalytic combustion start temperature.After combustion starts, the startup air heater is stopped and the first stage When mixing air to increase the amount of oxygen-containing gas in the combustion gas, the mixture is kept at a temperature higher than the catalytic combustion start temperature and lower than the ignition temperature when fuel is mixed. A combustor that is characterized by controlling the amount of air, mixing fuel, passing it through a second stage catalyst layer, and combusting it.
(2)特許請求範囲第1の第1段燃焼器の下流側に設置
する燃焼ガスと空気の熱交換器において空気の流路を形
成する二重管内の外側のドーナツリング状の空間に粒子
を充填し空気との接触面積を増加させた空気予熱器を使
用することを特徴とする特許請求範囲第1項の燃焼器。
(2) Claims: In a heat exchanger for combustion gas and air installed on the downstream side of the first stage combustor, particles are deposited in a donut ring-shaped space outside the double pipe that forms the air flow path. The combustor according to claim 1, characterized in that it uses an air preheater filled with air to increase its contact area with air.
(3)特許請求範囲第1項の燃焼器に使用する燃料混合
器において多孔質材料製の管を複数使用し、混合する燃
料を多孔質材料製の管の肉厚部を浸透させて空気と混合
する燃料混合器を使用する事を特徴とする特許請求範囲
第1項の燃焼器。
(3) A plurality of tubes made of porous material are used in the fuel mixer used in the combustor according to claim 1, and the fuel to be mixed is permeated through the thick part of the tube made of porous material and mixed with air. The combustor according to claim 1, characterized in that it uses a fuel mixer for mixing.
JP60171016A 1985-08-05 1985-08-05 Combustion unit Granted JPS6233213A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60171016A JPS6233213A (en) 1985-08-05 1985-08-05 Combustion unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60171016A JPS6233213A (en) 1985-08-05 1985-08-05 Combustion unit

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP12394087A Division JPS62294805A (en) 1987-05-22 1987-05-22 Fuel mixer in combustion device

Publications (2)

Publication Number Publication Date
JPS6233213A true JPS6233213A (en) 1987-02-13
JPH0220890B2 JPH0220890B2 (en) 1990-05-11

Family

ID=15915532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60171016A Granted JPS6233213A (en) 1985-08-05 1985-08-05 Combustion unit

Country Status (1)

Country Link
JP (1) JPS6233213A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0350032A2 (en) * 1988-07-08 1990-01-10 Nippon Chemical Plant Consultant Co., Ltd. Combustion apparatus
FR2661481A1 (en) * 1990-04-27 1991-10-31 Ca Atomic Energy Ltd CATALYTIC HEATING DEVICE.
US5203690A (en) * 1988-07-08 1993-04-20 Nippon Chemical Plant Consultant Co., Ltd. Combustion apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57210205A (en) * 1981-06-22 1982-12-23 Central Res Inst Of Electric Power Ind Manufacture of inert gas through catalytic combustion

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57210205A (en) * 1981-06-22 1982-12-23 Central Res Inst Of Electric Power Ind Manufacture of inert gas through catalytic combustion

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0350032A2 (en) * 1988-07-08 1990-01-10 Nippon Chemical Plant Consultant Co., Ltd. Combustion apparatus
US5203690A (en) * 1988-07-08 1993-04-20 Nippon Chemical Plant Consultant Co., Ltd. Combustion apparatus
FR2661481A1 (en) * 1990-04-27 1991-10-31 Ca Atomic Energy Ltd CATALYTIC HEATING DEVICE.

Also Published As

Publication number Publication date
JPH0220890B2 (en) 1990-05-11

Similar Documents

Publication Publication Date Title
US5375999A (en) Catalyst combustor
RU2400669C2 (en) Start-up method of direct heating system (versions), start-up method of direct heating device (versions)
TWI308628B (en) Method and apparatus to facilitate flameless combustion absent catalyst or high temperature oxident
US4730599A (en) Radiant tube heating system
JPH1055815A (en) Method for driving device having fuel cell
JP2006118854A (en) Method and system for rich-lean catalytic combustion
JPH07503788A (en) Water heater
RU2007137496A (en) MULTI-TUBE HEAT TRANSFER SYSTEM FOR FUEL BURNING AND HEATING OF TECHNOLOGICAL FLUID AND ITS USE
CZ279359B6 (en) Apparatus for the preparation of hot water
JPS6233213A (en) Combustion unit
EP2023040A1 (en) Combustor
JP4901054B2 (en) Overpressure combustor for burning lean concentration of combustible gas
JP2577037B2 (en) Two-stage catalytic combustion reformer
KR100519747B1 (en) Sequential catalytic combustion system and its method
JPS5892703A (en) Combustion apparatus
JPH01247902A (en) Catalytic combustion device and control of combustion therein
JPH01296003A (en) Tube burner
JPS62294805A (en) Fuel mixer in combustion device
RU2148217C1 (en) Gaseous-fuel fired boiler
JP3726381B2 (en) Steam boiler
JPH07110101A (en) Monotube boiler
JPH0356853Y2 (en)
JPH06288510A (en) Catalyst combustion type boiler system
JPS61228207A (en) Starting method of contact combustor provided with catalyst
JPS591918A (en) Heating device for promoting radiation