JPH01321802A - Controller for electric rolling stock - Google Patents

Controller for electric rolling stock

Info

Publication number
JPH01321802A
JPH01321802A JP15476188A JP15476188A JPH01321802A JP H01321802 A JPH01321802 A JP H01321802A JP 15476188 A JP15476188 A JP 15476188A JP 15476188 A JP15476188 A JP 15476188A JP H01321802 A JPH01321802 A JP H01321802A
Authority
JP
Japan
Prior art keywords
control
current
field weakening
semiconductor switching
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15476188A
Other languages
Japanese (ja)
Inventor
Yoshie Hattori
服部 義衛
Wataru Miyake
亙 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP15476188A priority Critical patent/JPH01321802A/en
Publication of JPH01321802A publication Critical patent/JPH01321802A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

PURPOSE:To enable smooth transition from the constant current control zone to the current limit step control zone by transiting a motor to field weakening control when the control phase angle of each semiconductor switch element in a group of control rectifier goes to zero and the current of a DC motor drops below a set value. CONSTITUTION:A comparator 23 provides a difference signal between a current set value 1p corresponding to a notch signal fed from a trunk controller 20 and the current Ia of DC motors 5, 6 to a regulator 24. The regulator 24 controls semiconductor switching elements 13, 14 according to an input signal. When a field weakening command is provided, the current set value 1p exceeds over the current Ia and when all the control phase angle of all semiconductor switching elements 13, 14 in the control rectifier groups 1U-4U is commanded to zero, a signal is outputted from an AND gate 30. Consequently, the contact 33a of a contactor/controller 33 is closed and a field weakening resistor 34 is inserted.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電気車制御装置に係り、特に、制御整流器位相
制御式交流電気車の主電動機の定電流制御と限流値進段
制御とを併用するのに好適な電気車制御装置に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to an electric vehicle control device, and in particular, to a control device for controlling an electric vehicle, and particularly to a control device for controlling a main motor of a rectifier phase control type AC electric vehicle. The present invention relates to an electric vehicle control device suitable for combined use.

〔従来の技術〕[Conventional technology]

電気車、特に鉄道車両、では複数の動力装置を有するが
、中でも、交流電気車においては、架線に交流電圧を印
加し車両に制御整流器を搭載して。
Electric cars, especially railway cars, have multiple power units, and among them, AC electric cars apply an AC voltage to the overhead wires and are equipped with a control rectifier.

交流を直流に交換して直流電動機に加えて、駆動する方
式が多用されている。
A method that replaces alternating current with direct current and drives it in addition to a direct current motor is often used.

第2図にそのような従来技術の主回路ブロック構成図を
示す、交流電源1に主変圧器3の一次巻線を接続し、そ
の二次巻線を複数に分け、それぞれに半導体開閉素子(
サイリスタ)13.14とダイオード11.12とでブ
リッジ構成される制御整流器IU〜4Uを接続し、さら
にそれらの直流側に、平滑リアクトル1oと直流電動機
5.6と界磁巻線7,8から成る直流回路を接続して主
回路が構成される。このような主回路において、制御整
流器群IU〜4U内の半導体開閉素子13゜14の制御
位相角(α)を制御することによって、直流電動機5,
6を制御できることは周知である。
Fig. 2 shows a block diagram of the main circuit of such a conventional technology.The primary winding of the main transformer 3 is connected to the AC power supply 1, and the secondary winding is divided into a plurality of parts, each of which is equipped with a semiconductor switching element (
Control rectifiers IU to 4U configured as a bridge with thyristor) 13.14 and diodes 11.12 are connected, and on their DC side, smoothing reactor 1o, DC motor 5.6, and field windings 7, 8 are connected. The main circuit is constructed by connecting the DC circuits. In such a main circuit, by controlling the control phase angle (α) of the semiconductor switching elements 13°14 in the control rectifier groups IU to 4U,
It is well known that 6 can be controlled.

ところで、このような主回路を具何する交流式電気車に
おける加速制御は次のように行われていた。主幹制御器
2oからのノツチ指令を受信リレー回路21で受けて、
電流設定(パターン)回路22からノツチ指令に応じた
電流値が比較器23に与えられる。一方、直流電動機5
,6の電機子に流れる電流(工a)がDCCT (直流
交流器)9により検出され、その電流値が帰還器25を
介して比較器23に与えられる。両型流値の偏差に応じ
た信号が比較器23より調節器24に与えられ、調節器
24は移相器26を介して、半導体開閉素子13.14
の制御位相角をπから零度に向って徐々に開き、直流出
力電圧を大きくすると共に、加速電流が一定値になるよ
うに制御しながら、電気車は加速する訳である。ここで
、半導体開閉素子13.14が制御される順序は、まず
最初に第1段(IU)の半導体開閉素子13.14の制
御位相角がπから零度になるように制御され、次に第2
段(2U)の半導体開閉素子13.14の制御位相角が
πから零度になるように制御される。
Incidentally, acceleration control in an AC electric vehicle equipped with such a main circuit has been performed as follows. The receiving relay circuit 21 receives a notch command from the master controller 2o,
A current value corresponding to the notch command is supplied from the current setting (pattern) circuit 22 to the comparator 23. On the other hand, the DC motor 5
, 6 is detected by a DCCT (direct current alternating current converter) 9, and the current value is given to a comparator 23 via a feedback device 25. A signal corresponding to the deviation between the two types of flow values is given from the comparator 23 to the regulator 24, and the regulator 24 passes through the phase shifter 26 to the semiconductor switching elements 13 and 14.
The electric vehicle accelerates by gradually opening the control phase angle from π toward zero degrees, increasing the DC output voltage, and controlling the acceleration current to a constant value. Here, the order in which the semiconductor switching elements 13.14 are controlled is such that the control phase angle of the semiconductor switching elements 13.14 of the first stage (IU) changes from π to zero degrees, and then the 2
The control phase angle of the semiconductor switching elements 13 and 14 of stage (2U) is controlled from π to zero degrees.

以下順次、第3段(3U)、第4段(4U)の半導体開
閉素子13.14の位相角がπから零度になるように制
御される。以上の順序で、全ての半導体開閉素子13.
14の位相角が零度(全開)となる。
Thereafter, the phase angles of the semiconductor switching elements 13 and 14 of the third stage (3U) and fourth stage (4U) are sequentially controlled from π to 0 degrees. In the above order, all semiconductor switching elements 13.
The phase angle of 14 is zero degrees (fully open).

第3図に、従来技術による加速時の電流と速度との関係
特性図を示す。
FIG. 3 shows a characteristic diagram of the relationship between current and speed during acceleration according to the prior art.

なお、この種の制御装置に関連する文献としては、例え
ば、′電気車の科学′60年11月発行の20頁および
′電気車の科学’60年8月発行の32〜33頁がある
Literature related to this type of control device includes, for example, ``Science of Electric Vehicles,'' published in November 1960, page 20, and ``Science of Electric Vehicles'', published in August 1960, pages 32-33.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術は、直流電動機5,6を全界磁(100%
界磁)領域で使用するものとしている。
In the above conventional technology, the DC motors 5 and 6 are completely magnetized (100%
It is intended to be used in the field (magnetic field).

しかしながら、電気車の速度を高める手段の一つとして
、直流電動機を全界磁領域から限流値制御によるノツチ
進段制御に切換えて界磁弱め領域で使用する方式が考え
られる。
However, one possible means of increasing the speed of an electric vehicle is to switch the DC motor from the full field range to notch advance control using current limit value control and use it in the field weakening range.

しかし、上記従来技術では、全界磁領域の定電流制御か
ら、限流値制御に切換えて界磁弱め領域に移行させる機
能がなく、不便であった。
However, the above-mentioned conventional technology is inconvenient because it does not have a function to switch from constant current control in the entire field region to current limit value control to shift to the field weakening region.

本発明の目的は、従来技術での上記した不便を解消し、
定電流制御と限流値制御の両機能を備えた電気車制御装
置を堤供することにある。
The purpose of the present invention is to solve the above-mentioned inconveniences in the prior art,
The object of the present invention is to provide an electric vehicle control device having both constant current control and current limit value control functions.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、制御整流器群内の半導体開閉素子の制御位
相角が全て零度(全開)になったこと及び主電動機の電
機子に流れる電流が設定値より小さくなったことを検出
する回路手段と、これらの2つの条件が成立したことで
界磁弱め制御を開始させる指令信号を出力する回路手段
と、この指令信号により主電動機を界磁弱め制御に移行
させる回路手段とを備えた構成とすることにより、達成
される。
The above object is to provide circuit means for detecting that the control phase angles of the semiconductor switching elements in the control rectifier group have all reached zero degrees (fully open) and that the current flowing through the armature of the traction motor has become smaller than a set value; The configuration includes circuit means for outputting a command signal to start field weakening control when these two conditions are satisfied, and circuit means for shifting the main motor to field weakening control in response to this command signal. This is achieved by

〔作用〕[Effect]

上記制御整流器群内の各半導体開閉素子の制御位相角が
全て零度になったことを検出する信号と、直流電動機の
電機子に流れる電流が設定値より小さくなったことを検
出する信号とを論理積回路に入力し、この論理積回路の
出力信号で作動する継電器によって限流値制御用接触器
を開閉制御することにより、定電流制御領域から限流値
進段制御領域に円滑に移行させることができる。
A signal that detects that the control phase angles of each semiconductor switching element in the control rectifier group have all reached zero degrees and a signal that detects that the current flowing through the armature of the DC motor has become smaller than the set value are logically combined. By controlling the opening and closing of the contactor for current limit value control by a relay that is input to a product circuit and activated by the output signal of this AND circuit, a smooth transition from a constant current control area to a current limit value advancement control area is achieved. I can do it.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図及び第4図により説明
する。第1図に示す実施例ブロック図が第2図従来例と
異なるところは、直流電動機5゜6の界磁巻RIA7.
8と並列に界磁弱め用抵抗器34と、それを挿入制御す
るための界磁弱め用接触器群33a〜33cとが直流回
路にあり、これらの接触器群33a〜33cを開閉制御
する接触器制御器(制御コイル)33と、制御整流器群
IU〜4Uの半導体開閉素子13.14が全て零度にな
った条件と、直流電動機5.6の電機子に流れる電流が
ある設定値(限流値)より小さくなった条件の2つの条
件が入力する論理積回路30と、その出力で作動する継
電器31が追加されていることである。
An embodiment of the present invention will be described below with reference to FIGS. 1 and 4. The difference between the block diagram of the embodiment shown in FIG. 1 and the conventional example shown in FIG. 2 is that the field winding RIA7.
A field weakening resistor 34 and a field weakening contactor group 33a to 33c for controlling the insertion of the field weakening resistor 34 are located in the DC circuit in parallel with the field weakening resistor 8, and a contact for controlling the opening and closing of these contactor groups 33a to 33c. The condition is that the controller (control coil) 33 and the semiconductor switching elements 13.14 of the control rectifier groups IU to 4U are all at zero temperature, and the set value (current limit) of the current flowing through the armature of the DC motor 5.6 The two conditions of the smaller condition (value) are that an AND circuit 30 that receives input and a relay 31 that operates with its output are added.

次に、直流電動機の定電流制御から限流値制御へ移行す
る時の動作について説明する。第1図において、弱界磁
ノツチ信号は、主幹制御器20から、継電器31の常開
接点31aを介して、接触器制御器(制御コイル)33
に与えられる。
Next, an explanation will be given of the operation when the DC motor shifts from constant current control to current limit value control. In FIG. 1, the weak field notch signal is transmitted from the main controller 20 to the contactor controller (control coil) 33 via the normally open contact 31a of the relay 31.
given to.

一方、直流電動機5,6の電機子に流れる電流Iaが、
DCCT9により検出され、この電流値が帰還器25を
介して比較器23に与えられる。
On the other hand, the current Ia flowing through the armatures of the DC motors 5 and 6 is
The current value is detected by the DCCT 9 and given to the comparator 23 via the feedback device 25.

比較器23において、電流設定回路22からの設定値(
限流値)に相当するパターン値ニーと上記I&とが比較
され、Ia<Ipの条件が成立すると信号を論理積回路
30の一方の入力に送る。また、調節器24において、
制御整流器群IU〜4Uの半導体開閉素子13.14の
制御位相角を全て零度に指令したことを検出して、この
検出信号が論理積回路30の他方の入力に入っている。
In the comparator 23, the set value (
The pattern value knee corresponding to the current limit value) is compared with the above I&, and if the condition Ia<Ip is satisfied, a signal is sent to one input of the AND circuit 30. Further, in the regulator 24,
It is detected that the control phase angles of the semiconductor switching elements 13 and 14 of the control rectifier groups IU to 4U are all commanded to zero degrees, and this detection signal is input to the other input of the AND circuit 30.

これらの2つの条件が成立して入力すると論理積回路3
0の出力信号のレベルが“1″となり、継電器31が作
動し、その常開接点31aが閉路する。
When these two conditions are met and input, AND circuit 3
The level of the 0 output signal becomes "1", the relay 31 is activated, and its normally open contact 31a is closed.

この結界、接触器制御器(制御コイル)33が励磁し、
それに連動して界磁弱め用接触器33aが閉路し、界磁
弱め用抵抗器34が界磁巻線7,8に並列に挿入され、
限流値制御による界磁弱め運転の状態となる。
This barrier, the contactor controller (control coil) 33 is excited,
In conjunction with this, the field weakening contactor 33a is closed, and the field weakening resistor 34 is inserted in parallel to the field windings 7 and 8.
It enters a state of field weakening operation using current limit value control.

第4図に、本実施例による電流と速度との関係特性図を
示す。第4図において、特性線1〜4は従来技術と同じ
加速電流一定による定電流制御領域である。特性線5〜
7が、界磁弱め制御による限流値進段制御領域である。
FIG. 4 shows a characteristic diagram of the relationship between current and speed according to this embodiment. In FIG. 4, characteristic lines 1 to 4 are constant current control regions where the accelerating current is constant, which is the same as in the prior art. Characteristic line 5~
7 is the current limit value advancement control region by field weakening control.

上述のように、特性線4のところで半導体開閉素子13
.14の位相角が全て零度(全開)となり、さらに、電
機子電流が限流値(IP)の所まで下がると、継電器3
1(第1図)が作動し、その接点31aの閉路により接
触器制御器33の連動接触器33aが閉路して、界磁弱
め用抵抗器34が挿入される。この結果、第4図におい
て、特性i4から特性線5に進段することになる。以後
、同様に、電機子電流が限流値1pの所まで下がると、
接触器制御器33が動作してその接触器33b、33c
が順次閉路し、特性線5から特性線6.特性線7へと順
次進段することになる。
As mentioned above, at the characteristic line 4, the semiconductor switching element 13
.. When all the phase angles of 14 become zero degrees (fully open) and the armature current further drops to the current limit value (IP), relay 3
1 (FIG. 1) is activated, and the closing of the contact 31a closes the interlocking contactor 33a of the contactor controller 33, and the field weakening resistor 34 is inserted. As a result, in FIG. 4, the characteristic line progresses from characteristic i4 to characteristic line 5. Thereafter, similarly, when the armature current drops to the current limit value 1p,
The contactor controller 33 operates to control the contactors 33b and 33c.
are sequentially closed, and characteristic line 5 to characteristic line 6. It will progress to characteristic line 7 one after another.

なお、第1図実施例では、制御整流器が4個であり、各
制御整流器内の半導体開閉素子の数が2個の場合を示し
ているが、これらの数はさらに多い場合、または少ない
場合もあり得る。また、第1図実施例では、直流電動機
が2台で、その界磁制御回路は1回路の場合を示してい
るが、これらの数も、さらに多い場合、または少ない場
合もあり得る。本発明は、これらの種々の組合せの場に
適用して、実施例の場合と同様に作用させることにより
同様の効果を生じ得る。
In the embodiment shown in FIG. 1, the number of controlled rectifiers is four, and the number of semiconductor switching elements in each controlled rectifier is two. However, these numbers may be larger or smaller. could be. Further, although the embodiment shown in FIG. 1 shows a case where there are two DC motors and one field control circuit, the number may be larger or smaller. The present invention can produce similar effects when applied to these various combinations and operated in the same manner as in the embodiments.

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明によれば、直流電動機の定電流制
御領域から限流値進段制御領域へ円滑に移行できるので
、例えば高速化のために必要な直流電動機の界磁弱め運
転も容易に可能とし、この結果、従来技術の場合に必要
であった。高速化のために制御整流器の数を多くしたり
、主変圧器の二次電圧を高くするなどの手段が不要とな
り、低コストで電気車の高速化が実現できる。
As described above, according to the present invention, it is possible to smoothly transition from the constant current control region of the DC motor to the current limit step-up control region, so that field weakening operation of the DC motor, which is necessary for increasing speed, for example, can be easily performed. As a result, this was not necessary in the case of the prior art. There is no need to increase the number of control rectifiers or increase the secondary voltage of the main transformer to increase speed, making it possible to achieve higher speeds at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例のブロック構成図、第2図は
従来例のブロック構成図、第3図は従来例の場合の電流
と速度との関係特性図、第4図は第1図実施例の場合の
電流と速度との関係特性図である。 1・・・交流電源、3・・・主変圧器、5,6・・・直
流電動機、7,8・・・界磁巻線、9・・・DCCT、
11゜12・・・ダイオード、13.14・・・半導体
開閉素子、20・・・主幹制御器、21・・・受信リレ
ー回路、22・・・電流設定回路、23・・・比較器、
24・・・調節器。 25・・・帰還器、26・・・移相器、31・・・継電
器、躬1図 尾2−図
FIG. 1 is a block diagram of an embodiment of the present invention, FIG. 2 is a block diagram of a conventional example, FIG. 3 is a characteristic diagram of the relationship between current and speed in the conventional example, and FIG. FIG. 4 is a characteristic diagram of the relationship between current and speed in the case of the illustrated embodiment. 1... AC power supply, 3... Main transformer, 5, 6... DC motor, 7, 8... Field winding, 9... DCCT,
11゜12...Diode, 13.14...Semiconductor switching element, 20...Main controller, 21...Reception relay circuit, 22...Current setting circuit, 23...Comparator,
24...Adjuster. 25...Returner, 26...Phase shifter, 31...Relay, Figure 1 and Figure 2

Claims (1)

【特許請求の範囲】[Claims] 1、複数に分割された二次巻線を有する主変圧器と、各
二次巻線に接続された制御整流器内の半導体開閉素子の
位相制御により主電動機にかかる電圧を制御する回路と
、主電動機の加速電流を一定値に帰還制御する回路とを
具備する制御整流器位相制御式の交流電気車において、
上記制御整流器群内の半導体開閉素子の制御位相角が全
て零度(全開)になつたこと及び主電動機の電機子に流
れる電流が設定値より小さくなつたことを検出する回路
手段と、これらの2つの条件が成立したことで界磁弱め
制御を開始させる指令信号を出力する回路手段と、この
指令信号により主電動機を界磁弱め制御に移行させる回
路手段とを備えたことを特徴とする電気車制御装置。
1. A main transformer having a secondary winding divided into multiple parts, a circuit that controls the voltage applied to the main motor by controlling the phase of semiconductor switching elements in a control rectifier connected to each secondary winding, and In a controlled rectifier phase control type AC electric vehicle that is equipped with a circuit that feedback controls the accelerating current of the electric motor to a constant value,
circuit means for detecting that the control phase angles of the semiconductor switching elements in the control rectifier group have all reached zero degrees (fully open) and that the current flowing through the armature of the traction motor has become smaller than a set value; An electric vehicle comprising: circuit means for outputting a command signal to start field weakening control when two conditions are met; and circuit means for shifting the main motor to field weakening control in response to the command signal. Control device.
JP15476188A 1988-06-24 1988-06-24 Controller for electric rolling stock Pending JPH01321802A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15476188A JPH01321802A (en) 1988-06-24 1988-06-24 Controller for electric rolling stock

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15476188A JPH01321802A (en) 1988-06-24 1988-06-24 Controller for electric rolling stock

Publications (1)

Publication Number Publication Date
JPH01321802A true JPH01321802A (en) 1989-12-27

Family

ID=15591318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15476188A Pending JPH01321802A (en) 1988-06-24 1988-06-24 Controller for electric rolling stock

Country Status (1)

Country Link
JP (1) JPH01321802A (en)

Similar Documents

Publication Publication Date Title
CA2036026C (en) Electric motor controller with bypass contactor
US6411049B1 (en) Method and apparatus for operating a magnet vehicle
US4491197A (en) Speed control apparatus for A.C. elevator car drive motor
US4441584A (en) AC Elevator control system
JPH01321802A (en) Controller for electric rolling stock
US4661757A (en) Controller for AC elevator
US3805133A (en) Control system for induction motors
JPH08126400A (en) Vector controller for induction motor
JPH0556661A (en) Ac electric rolling stock controller
JPS6212304A (en) Controller of electric railcar
JPH02151205A (en) Current/voltage controller for ac electric car
KR850002699Y1 (en) Speed control device in ac elevator
KR850001398B1 (en) Speed control device in elevator
RU2076449C1 (en) Direct current electric drive
KR870000654B1 (en) Control device and method for electric train
JPS6218984A (en) Quick stopping device of induction motor
JPS5812504A (en) Controlling method for ac electric motor vehicle
JPS5980195A (en) Controller for elevator
JPS61122043A (en) Direct current feeding device
RU2130229C1 (en) Autonomous electric drive
SU1279036A1 (en) Control device for induction phase-wound rotor motor
JPH0246105A (en) Controller for ac electric vehicle
JPS59185102A (en) Controlling method of ac electric railcar
JPS60207402A (en) Controlling method of ac electric railcar
JPH04182288A (en) Control device for ac elevator