JPH01321370A - Fuel consumption level measuring apparatus for internal combustion engine - Google Patents

Fuel consumption level measuring apparatus for internal combustion engine

Info

Publication number
JPH01321370A
JPH01321370A JP63155723A JP15572388A JPH01321370A JP H01321370 A JPH01321370 A JP H01321370A JP 63155723 A JP63155723 A JP 63155723A JP 15572388 A JP15572388 A JP 15572388A JP H01321370 A JPH01321370 A JP H01321370A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
flow rate
delay time
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63155723A
Other languages
Japanese (ja)
Other versions
JPH0679030B2 (en
Inventor
Akinobu Moriyama
明信 森山
Takao Ito
隆夫 伊藤
Akira Shimozono
亮 下薗
Isao Murase
功 村瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP63155723A priority Critical patent/JPH0679030B2/en
Publication of JPH01321370A publication Critical patent/JPH01321370A/en
Publication of JPH0679030B2 publication Critical patent/JPH0679030B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PURPOSE:To enable indirect measurement from a flow rate of air intake and an air/fuel ratio by delaying a reading timing of a flow rate data according to a delay time of the detection of the air/fuel ratio from an exhaust composition from the detection of the flow rate of the intake air of an internal combustion engine. CONSTITUTION:A flow rate of an intake air is detected with an air flowmeter 27 disposed on the upstream side of an intake path 24 of an internal combustion engine 21. An air/fuel ratio is detected with an air/fuel ratio sensor 30 disposed on the downstream side of an exhaust path 24 of the engine 21. In a control unit 31, the current air/fuel ratio is determined from a detection signal of the sensor 30 with an air/fuel ratio computing section 32 and a fuel consumption per unit time is computed with a fuel consumption level computing section 33 based on the air/fuel ratio thus obtained and the flow rate of the intake air detected with the flowmeter 27. In addition, a time corresponding to a delay time of the detection of the air/fuel ratio from the detection of the flow rate of the intake air is applied to an arithmetic section 33 with a delay time setting section 35 to delay the reading of the intake air flow rate data accordingly thereby computing a fuel consumption level by the set delay time using previous data.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、内燃機関の燃料消費量を吸入空気流量およ
び空燃比から間接的に計測するようにし゛た燃料消費量
計測装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a fuel consumption measuring device that indirectly measures the fuel consumption of an internal combustion engine from an intake air flow rate and an air-fuel ratio.

従来の技術 例えば自動車の運転者に対する表示装置の一種として、
時々刻々変化する単位時間当たりの燃料消費量やこれに
基づいた残存燃料で走行可能な距離を表示するものがあ
る(例えば特開昭60−50420号公報、特開昭60
−143720号公報等)。
Conventional technology For example, as a type of display device for the driver of a car,
There are devices that display fuel consumption per unit time that changes from moment to moment and the distance that can be traveled with remaining fuel based on this (for example, Japanese Patent Application Laid-Open No. 60-50420, Japanese Patent Application Laid-Open No. 60-60
-143720, etc.).

このものでは、燃料消費量の計測のために、燃料配管の
途中に燃料流量計が介装されており、これによって燃料
消費量を直接的に計測するようにしている。
In this type, a fuel flow meter is interposed in the middle of the fuel pipe to measure the amount of fuel consumed, so that the amount of fuel consumed can be directly measured.

発明が解決しようとする課題 しかしなから、この従来の燃料消費量計測装置にあって
は、新たに燃料流量計を付加することから部品コストが
嵩む欠点がある。しかも燃料噴射弁を備えた内燃機関で
は、燃料噴射弁に供給された燃料の一部のみが実際に噴
射され、余剰燃料は燃料タンクに戻されるので、燃料流
量計による計測は困難である。
Problems to be Solved by the Invention However, this conventional fuel consumption measuring device has the disadvantage that the cost of parts increases due to the addition of a new fuel flow meter. Furthermore, in an internal combustion engine equipped with a fuel injection valve, only a portion of the fuel supplied to the fuel injection valve is actually injected, and excess fuel is returned to the fuel tank, making measurement using a fuel flowmeter difficult.

課題を解決するための手段 そこで、この発明は吸入空気流型と空燃比から間接的に
燃料消費量を求めるようにしたものである。すなわち、
この発明に係る内燃機関の燃料消費量計測装置は、第1
図に示すように、内燃機関の吸入空気流量を検出する手
段lと、排気組成から空燃比を検出する手段2と、空燃
比検出の吸入空気流量検出に対する遅れ時間に応じて、
吸入空気流量データの読み込み時期を遅延させる手段3
と、検出した空燃比と上記遅れ時間だけ以前に検出した
吸入空気流量とに基づいて燃料消費量を演算する手段4
とを備えて構成されている。
Means for Solving the Problems Therefore, in the present invention, the fuel consumption amount is determined indirectly from the intake air flow type and the air-fuel ratio. That is,
The fuel consumption measuring device for an internal combustion engine according to the present invention includes a first
As shown in the figure, there is a means 1 for detecting the intake air flow rate of an internal combustion engine, a means 2 for detecting the air-fuel ratio from the exhaust composition, and a delay time of the air-fuel ratio detection with respect to the intake air flow rate detection.
Means 3 for delaying the timing of reading intake air flow rate data
and means 4 for calculating the fuel consumption based on the detected air-fuel ratio and the intake air flow rate detected earlier by the delay time.
It is composed of:

作用 内燃機関の排気組成から検出される空燃比は、実際に燃
焼に関与した空気量と供給燃料量との重量比であるから
、これと単位時間当たりの吸入空気流量とがわかれば、
単位時間当たりの燃料消費量を知ることができる。つま
り、空燃比をR1吸入空気流量(g / sea )を
Aとすれば、燃料消費量F(g/5ec)は基本的に次
式で求められる。
The air-fuel ratio detected from the exhaust composition of an internal combustion engine is the weight ratio of the amount of air actually involved in combustion and the amount of supplied fuel, so if this and the intake air flow rate per unit time are known,
You can know the amount of fuel consumed per unit time. That is, assuming that the air-fuel ratio is R1 and the intake air flow rate (g/sea) is A, the fuel consumption amount F (g/5ec) is basically determined by the following equation.

F=A/R ここで、空燃比は機関の排気系で検出され、しかもセン
サ自体の応答性も吸入空気流量検出用センサに比して低
いので、その検出は吸入空気流量の検出に対し遅れ時間
を含んだものとなる。つまり燃焼する直前に吸入空気流
量が検出されるのに対し、燃焼してかなりの時間が経過
してから空燃比が検出される。
F=A/R Here, the air-fuel ratio is detected in the exhaust system of the engine, and the response of the sensor itself is also lower than that of the sensor for detecting the intake air flow rate, so its detection lags behind the detection of the intake air flow rate. It includes time. In other words, while the intake air flow rate is detected immediately before combustion, the air-fuel ratio is detected a considerable amount of time after combustion.

上記構成では、この遅れ時間を考慮して、ある瞬間に検
出した空燃比と、これよりも上記遅れ時間だけ以前に検
出した吸入空気流量とに基づいて燃料消費量が演算され
る。そのため、過゛渡運転時においてら、上記遅れ時間
による影響が排除される。
In the above configuration, the fuel consumption amount is calculated based on the air-fuel ratio detected at a certain moment and the intake air flow rate detected earlier by the delay time, taking this delay time into account. Therefore, even during transient operation, the influence of the delay time is eliminated.

実施例 第2図は、この発明の一実施例の機械的な構成を示して
いる。
Embodiment FIG. 2 shows the mechanical configuration of an embodiment of the present invention.

同図において、21は各吸気ポートに燃料噴射弁22を
備えた内燃機関、23はこの内燃機関21に接続された
吸気通路、24は同じく内燃機関2Iに接続された排気
通路である。
In the figure, 21 is an internal combustion engine equipped with a fuel injection valve 22 at each intake port, 23 is an intake passage connected to this internal combustion engine 21, and 24 is an exhaust passage similarly connected to the internal combustion engine 2I.

上記吸気通路23は絞弁25を有し、かつその上流にエ
アクリーナ26を備えている。そして、エアクリーナ2
6の更に上流側に、吸入空気流量を検出するための空気
流量計27が配設されている。この空気流量計27とじ
ては、熱線式流量計のような質量流量を計測し得るもの
が用いられている。
The intake passage 23 has a throttle valve 25 and an air cleaner 26 upstream thereof. And air cleaner 2
An air flow meter 27 for detecting the intake air flow rate is disposed further upstream of the air flowmeter 6 . As the air flow meter 27, one that can measure mass flow rate, such as a hot wire flow meter, is used.

また上記排気通路24には、触媒コンバータ28および
マフラ29が介装されている。そして、上記マフラ29
の下流に、空燃比センサ30が配設されている。上記空
燃比センサ30としては、排気組成によりボンピング電
流1pが空燃比に応じて変化(第3図参照)することを
利用した広域空燃比センサが用いられる。
Further, a catalytic converter 28 and a muffler 29 are interposed in the exhaust passage 24. And the above muffler 29
An air-fuel ratio sensor 30 is disposed downstream of the air-fuel ratio sensor 30 . As the air-fuel ratio sensor 30, a wide-range air-fuel ratio sensor is used that utilizes the fact that the pumping current 1p changes depending on the air-fuel ratio depending on the exhaust composition (see FIG. 3).

尚、空燃比センサ30の取付位置としては、上記のマフ
ラ29下流位置(位置D)のほかに、破線で示すように
、排気ボートの僅かに下流側(位置A)や、触媒コンバ
ータ28の僅かに上流側(位置B)、あるいは触媒コン
バータ28とマフラ29との間(位置C)を選択するこ
とも可能である。
In addition to the downstream position of the muffler 29 (position D), the air-fuel ratio sensor 30 can be installed slightly downstream of the exhaust boat (position A) or slightly downstream of the catalytic converter 28, as shown by the broken line. It is also possible to select the upstream side (position B) or between the catalytic converter 28 and the muffler 29 (position C).

31は、燃料消費量の演算ならびに燃料噴射弁22の噴
射量制御等を行うコントロールユニットを示している。
Reference numeral 31 indicates a control unit that calculates the amount of fuel consumed, controls the injection amount of the fuel injection valve 22, and the like.

このコントロールユニット3■は、CPU、ROM、R
AM、インターフェース等からなるマイクロコンピュー
タにて構成されており、機能的には図示するように、空
燃比演算部32、燃料消費量演算部33、運転条件検出
部34、遅れ時間設定部35、出力部36を含んでいる
This control unit 3■ includes CPU, ROM, R
It is composed of a microcomputer consisting of an AM, an interface, etc., and functionally includes an air-fuel ratio calculation section 32, a fuel consumption calculation section 33, an operating condition detection section 34, a delay time setting section 35, and an output as shown in the figure. 36.

すなわち、空燃比演算部32によって空燃比センサ30
の検出信号からそのときの空燃比が求められる。また燃
料消費量演算部33で、この空燃比と空気流量計27に
よって検出した吸入空気流量とに基づいて、前述した演
算式により単位時間当たりの燃料消費量が演算され、出
力部36から燃料消費量として出力される。ここで、上
記遅れ時間設定部35によって燃料消費量演算部33に
適宜な遅れ時間Tが与えられ、燃料消費量演算部33で
は吸入空気流量データの読み込みがそれだけ遅延される
。つまり、遅れ時間設定部35により設定された遅れ時
間Tだけ以前の吸入空気流量データを用いて燃料消費量
が演算される。
That is, the air-fuel ratio sensor 30 is
The air-fuel ratio at that time is determined from the detection signal. In addition, the fuel consumption calculation unit 33 calculates the fuel consumption per unit time based on this air-fuel ratio and the intake air flow rate detected by the air flow meter 27 using the above-mentioned calculation formula, and outputs the fuel consumption amount from the output unit 36. Output as a quantity. Here, an appropriate delay time T is given to the fuel consumption amount calculation section 33 by the delay time setting section 35, and the reading of the intake air flow rate data in the fuel consumption amount calculation section 33 is delayed by that amount. That is, the fuel consumption amount is calculated using the intake air flow rate data before the delay time T set by the delay time setting section 35.

上記の遅れ時間Tは、空燃比検出の吸入空気流量検出に
対する遅れ時間に相当するものであり、運転条件検出部
34が検出した運転条件に応じて可変的に設定される。
The delay time T described above corresponds to the delay time of air-fuel ratio detection with respect to intake air flow rate detection, and is variably set according to the operating conditions detected by the operating condition detection section 34.

すなわち、空気流量計27は内燃機関21の上流側に位
置し、燃焼室に流入する前の時点で吸入空気流量を検出
している。また、センサ自体としても、吸入空気流量の
変化に対する応答性は非常に高い。従って、検出の遅れ
としては通常1xs以下であり、殆ど無視できる。
That is, the air flow meter 27 is located upstream of the internal combustion engine 21 and detects the intake air flow rate before it flows into the combustion chamber. Furthermore, the sensor itself has very high responsiveness to changes in intake air flow rate. Therefore, the detection delay is usually less than 1xs and can be almost ignored.

これに対し、空燃比センサ30は、内燃機関2Iの下流
側に位置し、しかも燃焼後の排気組成で空燃比を検出し
ているので、吸入−圧縮一膨張一排気のサイクルに要す
る時間、更に燃焼室から空燃比センサ30まで排気が流
れるのに要する時間が機械的な遅れ時間Toとなって必
ず存在する(第4図参照)。尚、この第4図は、実際の
空燃比を急変させた場合の検出信号の変化状況を示して
いる。そして、この遅れ時間Toは、空燃比センサ30
の取付位置によって大きく異なり、第5図に前述した各
位置A−Dでの遅れ時間TD、〜’rodを示したよう
に、空燃比センサ30が下流側に位置するほど大となる
。またセンサ自体の特性としても、その検出信号レベル
が90%変化するまでに要する遅れ時間T9゜(第4図
参照)が一般に50わ以上あり、無視できない。
On the other hand, the air-fuel ratio sensor 30 is located downstream of the internal combustion engine 2I and detects the air-fuel ratio based on the composition of the exhaust after combustion. The time required for exhaust gas to flow from the combustion chamber to the air-fuel ratio sensor 30 always exists as a mechanical delay time To (see FIG. 4). Incidentally, FIG. 4 shows how the detection signal changes when the actual air-fuel ratio is suddenly changed. Then, this delay time To is determined by the air-fuel ratio sensor 30.
The delay time varies greatly depending on the mounting position of the air-fuel ratio sensor 30, and as shown in FIG. 5, the delay time TD, ~'rod at each position A-D described above becomes larger as the air-fuel ratio sensor 30 is located downstream. Further, as a characteristic of the sensor itself, the delay time T9° (see FIG. 4) required for the detection signal level to change by 90% is generally 50 degrees or more and cannot be ignored.

そこで、上記構成では、遅れ時間TをTo+T s。と
じて与えて、その影響を排除するようにしている。
Therefore, in the above configuration, the delay time T is To+T s. I am trying to eliminate that influence by giving it a close-up.

第6図は、具体的な遅れ時間T設定のための処理の流れ
を示したもので、先ず空気流量計27の検出信号Q、が
運転条件を示す信号として読み込まれる(ステップり。
FIG. 6 shows the flow of processing for setting a specific delay time T. First, the detection signal Q of the air flow meter 27 is read as a signal indicating the operating condition (step 1).

次いで、このQ、の値に基づき、機械的な遅れ時間TD
をテーブルルックアップする(ステップ2)。つまり上
記遅れ時間Toは排気流速に依存するので、空気流量と
一義的な関係にある。従って、第7図に示すような特性
に従って遅れ時間T。が決定される。尚、この特性は、
排気系のレイアウトが異なれば違ったものとなるが、そ
の変化は主に内燃機関21から空燃比センサ30までの
排気流路容積によるので、排気流路容積に対応した補正
係数を定めておけば、排気系レイアウトが変化した場合
でも、排気流路容積のデータを人力するだけで適切な遅
れ時間Toの決定が可能である。
Next, based on the value of Q, the mechanical delay time TD
Perform a table lookup (Step 2). In other words, since the delay time To depends on the exhaust flow velocity, it has a unique relationship with the air flow rate. Therefore, the delay time T follows the characteristics shown in FIG. is determined. Furthermore, this characteristic is
It will be different if the layout of the exhaust system is different, but since the change mainly depends on the volume of the exhaust flow path from the internal combustion engine 21 to the air-fuel ratio sensor 30, it is necessary to define a correction coefficient corresponding to the volume of the exhaust flow path. Even if the exhaust system layout changes, the appropriate delay time To can be determined simply by manually inputting data on the exhaust flow path volume.

そして次に、センサの特性による遅れ時間T、。Next, the delay time T, which depends on the characteristics of the sensor.

を、Q、の値に基づいてテーブルルックアップする(ス
テップ3)。この遅れ時間T、。も排気流速に影響され
るものであり、空気流量計27の検出信号Q、と第8図
のような関係がある。そして最後にT = T o +
T s。とじて遅れ時間Tを決定する(ステップ4)。
is looked up in a table based on the value of Q (step 3). This delay time T. It is also affected by the exhaust flow velocity, and has a relationship with the detection signal Q of the air flow meter 27 as shown in FIG. And finally T = T o +
Ts. Then, the delay time T is determined (step 4).

尚、機関運転条件としては、機関回転数、吸気管内圧力
、排気圧力等を用いることができ、あるいは排気流量(
流速)を直接に検出するようにしても良い。
In addition, engine speed, intake pipe pressure, exhaust pressure, etc. can be used as engine operating conditions, or exhaust flow rate (
(flow velocity) may be directly detected.

また、上記のように遅れ時間Tを機関運転条件によって
変化させずに、適宜な値に固定的に定めるようにしても
、十分に良好な燃料消費量の計測が可能である。
Further, even if the delay time T is fixedly set to an appropriate value without being changed depending on the engine operating conditions as described above, sufficiently good fuel consumption can be measured.

第9図は、上述した実施例装置を用いて燃料消費量計測
を行った実験結果を示すもので、破線の比較例はCVS
(Constant  Volume  Sampli
ng)装置による排気分析値(co、Co、、IC)か
ら求めた燃料消費量を示している。両者は良く一致して
おり、つまり本発明の装置によって過渡時においても十
分に高精度な計測が行われている。尚、両者の時間的な
ずれは比較例の応答速度が1秒程度遅いためである。
Figure 9 shows the results of an experiment in which fuel consumption was measured using the above-mentioned example device.
(Constant Volume Sample
ng) shows the fuel consumption determined from the exhaust gas analysis values (co, Co, IC) by the device. The two are in good agreement, which means that the device of the present invention performs measurements with sufficiently high accuracy even during transient times. Note that the time difference between the two is due to the response speed of the comparative example being about 1 second slower.

発明の効果 以上の説明で明らかなように、この発明に係る内燃機関
の燃料消費量計測装置によれば、吸入空気流量と空燃比
から間接的に燃料消費量を計測することができ、燃料配
管中に燃料流量計を設ける必要がない。従って、燃料噴
射弁を備えた内燃機関などにおいて配管の複雑化を招く
ことがなく、またLPG燃料を使用する機関にも容易に
適用できる。
Effects of the Invention As is clear from the above explanation, the fuel consumption measuring device for an internal combustion engine according to the present invention can indirectly measure the fuel consumption from the intake air flow rate and the air-fuel ratio. There is no need to provide a fuel flow meter inside. Therefore, the piping does not become complicated in an internal combustion engine equipped with a fuel injection valve, and it can be easily applied to an engine using LPG fuel.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の構成を示すクレーム対応図、第2図
はこの発明の一実施例を示す構成説明図、第3図は空燃
比センサの出力特性を示す特性図、第4図は空燃比セン
サの応答特性を示す特性図、第5図は空燃比センサの取
付位置を異ならせた場合の応答特性を示す特性図、第6
図は遅れ時間Tを設定する際の処理の流れを示すフロー
チャート、第7図は空気流量信号Q、と遅れ時間Toと
の関係を示す特性図、第8図は空気流量信号Q、と遅れ
時間T8゜との関係を示す特性図、第9図はこの発明に
係る計測装置によって計測した燃料消費量の変化を示す
特性図である。 1・・・吸入空気流量検出手段、2・・・空燃比検出手
段、3・・・遅延手段、4・・・演算手段。 第1図 第3図 空燃比 512図 第4図 を 第5図 1   = 第6図 第7図     第8図 aQa 時間(sec )
Fig. 1 is a claim correspondence diagram showing the configuration of the present invention, Fig. 2 is a configuration explanatory diagram showing an embodiment of the invention, Fig. 3 is a characteristic diagram showing the output characteristics of the air-fuel ratio sensor, and Fig. 4 is a diagram showing the air-fuel ratio sensor. Figure 5 is a characteristic diagram showing the response characteristics of the fuel ratio sensor; Figure 5 is a characteristic diagram showing the response characteristics when the air-fuel ratio sensor is installed at different positions;
The figure is a flowchart showing the flow of processing when setting the delay time T, Figure 7 is a characteristic diagram showing the relationship between the air flow rate signal Q and the delay time To, and Figure 8 is the air flow rate signal Q and the delay time. FIG. 9 is a characteristic diagram showing the relationship with T8°, and FIG. 9 is a characteristic diagram showing changes in fuel consumption measured by the measuring device according to the present invention. DESCRIPTION OF SYMBOLS 1... Intake air flow rate detection means, 2... Air-fuel ratio detection means, 3... Delay means, 4... Calculation means. Figure 1 Figure 3 Air-fuel ratio 512 Figure 4 Figure 5 Figure 1 = Figure 6 Figure 7 Figure 8 aQa Time (sec)

Claims (1)

【特許請求の範囲】[Claims] (1)内燃機関の吸入空気流量を検出する手段と、排気
組成から空燃比を検出する手段と、空燃比検出の吸入空
気流量検出に対する遅れ時間に応じて、吸入空気流量デ
ータの読み込み時期を遅延させる手段と、検出した空燃
比と上記遅れ時間だけ以前に検出した吸入空気流量とに
基づいて燃料消費量を演算する手段とを備えてなる内燃
機関の燃料消費量計測装置。
(1) A means for detecting the intake air flow rate of the internal combustion engine, a means for detecting the air-fuel ratio from the exhaust composition, and a delay in the reading timing of the intake air flow rate data according to the delay time of the air-fuel ratio detection with respect to the intake air flow rate detection. and means for calculating fuel consumption based on the detected air-fuel ratio and the intake air flow rate detected earlier by the delay time.
JP63155723A 1988-06-23 1988-06-23 Fuel consumption measuring device for internal combustion engine Expired - Fee Related JPH0679030B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63155723A JPH0679030B2 (en) 1988-06-23 1988-06-23 Fuel consumption measuring device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63155723A JPH0679030B2 (en) 1988-06-23 1988-06-23 Fuel consumption measuring device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH01321370A true JPH01321370A (en) 1989-12-27
JPH0679030B2 JPH0679030B2 (en) 1994-10-05

Family

ID=15612063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63155723A Expired - Fee Related JPH0679030B2 (en) 1988-06-23 1988-06-23 Fuel consumption measuring device for internal combustion engine

Country Status (1)

Country Link
JP (1) JPH0679030B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001092697A1 (en) * 2000-06-02 2001-12-06 Emitec Gesellschaft Für Emissionstechnologie Mbh Exhaust-gas purification system comprising a deferred measured value recording

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001092697A1 (en) * 2000-06-02 2001-12-06 Emitec Gesellschaft Für Emissionstechnologie Mbh Exhaust-gas purification system comprising a deferred measured value recording
US6701706B2 (en) 2000-06-02 2004-03-09 Emitec Gesellschaft Fuer Emissionstechnologie Mbh Exhaust-gas purification system with delayed recording of measured values and method for determining pollutant concentration in exhaust gas

Also Published As

Publication number Publication date
JPH0679030B2 (en) 1994-10-05

Similar Documents

Publication Publication Date Title
US4502325A (en) Measurement of mass airflow into an engine
JPS597017B2 (en) Electronically controlled fuel injection internal combustion engine
US6711490B2 (en) Intake air amount computing apparatus and method for the same, and intake pressure computing apparatus and method for the same
JP2901613B2 (en) Fuel injection control device for automotive engine
KR19990029707A (en) Heating resistance air flow measuring device, counter flow determination method and error correction method
US7178388B2 (en) Intake air flow detecting device for internal combustion engine
JPH02163443A (en) Controller for engine equipped with supercharger
JPS59103930A (en) Control method of internal-combustion engine
JPH0421809B2 (en)
KR100423377B1 (en) Flow amount calculation controller and flow amount calculation control method
JPH01321370A (en) Fuel consumption level measuring apparatus for internal combustion engine
JP2004170357A (en) Exhaust gas flow rate measuring device and exhaust gas flow rate measuring method
JPH06265385A (en) Air flow rate measuring instrument
KR0163456B1 (en) Intake air flow rate detector of internal combustion engine
JP4030166B2 (en) Intake air amount detection device for internal combustion engine
JPH06186182A (en) Method for measuring hydrogen gas concentration in city gas with known calorific value
JPH0988711A (en) Intake air flow detector for internal combustion engine
JP4023084B2 (en) Intake air amount prediction apparatus and intake pressure prediction apparatus
JPH10153465A (en) Method for correcting measurement error of air flow rate measuring device, and measurement error correcting device
JPS59188042A (en) Controller for internal-combustion engine
JPS63173831A (en) Atmospheric pressure correcting method for volume flow meter in internal combustion engine
JPH04187842A (en) Fuel injection quantity controller for internal combustion engine
KR0171324B1 (en) Apparatus and method for measuring engine injection air quantity
KR960012144B1 (en) Method for calibrating fuel film
JP2627826B2 (en) Fuel supply control device for internal combustion engine

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees