JPH04187842A - Fuel injection quantity controller for internal combustion engine - Google Patents

Fuel injection quantity controller for internal combustion engine

Info

Publication number
JPH04187842A
JPH04187842A JP31579990A JP31579990A JPH04187842A JP H04187842 A JPH04187842 A JP H04187842A JP 31579990 A JP31579990 A JP 31579990A JP 31579990 A JP31579990 A JP 31579990A JP H04187842 A JPH04187842 A JP H04187842A
Authority
JP
Japan
Prior art keywords
fuel injection
fuel
air
injection amount
fuel ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31579990A
Other languages
Japanese (ja)
Other versions
JP2712821B2 (en
Inventor
Hiroshi Inagaki
浩 稲垣
Akira Ohata
明 大畠
Masahiro Nasu
那須 昌博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP31579990A priority Critical patent/JP2712821B2/en
Publication of JPH04187842A publication Critical patent/JPH04187842A/en
Application granted granted Critical
Publication of JP2712821B2 publication Critical patent/JP2712821B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To improve the fuel injection control performance by compensating for a stationary deviation attributable to the flow delay of the exhaust gas and the detection delay of an air-fuel ratio sensor itself. CONSTITUTION:A flow delay correction means 106 corrects the relation between the fuel injection quantity determined by a fuel injection quantity calculation means 103 and the output of an air-fuel ratio sensor 100 in corresponding relation to the flow delay of an exhaust gas while a sensor detection delay correction means 107 corrects the relation between the fuel injection quantity determined by the means 103 and the output of the sensor 100 in corresponding relation to the detection delay of the sensor itself. A parameter estimation means 105 estimates the parameters of a simulation model in the fuel injection quantity calculation means 103, on the basis of that relation between the fuel injection quantity determined by this means 103 and the output of the sensor 100 which has been corrected by the correction means 106 and 107. By this, it is possible to estimate precisely the parameters of a dynamic characteristics model of fuel, thereby improving the fuel injection control performance.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は内燃機関の燃料噴射量の制御装置に係リ、さら
に詳しくは内燃機関の吸気管に取り付けられたインジェ
クタ近傍の燃料の動的挙動を表す燃料挙動モデルに基づ
いて燃料噴射量を決定する制御装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a fuel injection amount control device for an internal combustion engine, and more particularly to a control device for controlling the dynamic behavior of fuel near an injector attached to an intake pipe of an internal combustion engine. The present invention relates to a control device that determines a fuel injection amount based on a fuel behavior model representing.

[従来の技術] 内燃機関のインジェクタから噴射されるべき燃料量を制
御する方法として、本出願人は内燃機関の吸気管に設置
されたインジェクタ近傍の燃料の動特性を表す精密なシ
ミュレーションモデルを使用した噴射燃料制御装置を提
案している(特開平2−193806)。
[Prior Art] As a method for controlling the amount of fuel to be injected from an injector of an internal combustion engine, the applicant uses a precise simulation model representing the dynamic characteristics of fuel in the vicinity of the injector installed in the intake pipe of the internal combustion engine. proposed an injection fuel control device (Japanese Patent Application Laid-Open No. 2-193806).

この方式においては、インジェクタ近傍の仮想的な閉空
間(コントロールボリューム)内の吸気管内壁面に付着
している燃料量fwを状態変数とするシミュレーション
モデルに基づきインジェクタからの燃料噴射量を決定す
るとともに、排気ガスの空燃比から測定された筒内に実
際に流入した燃料量とシミュレーションモデルにより演
算された筒内流人燃料量との偏差から前記シミュレーシ
ョンモデルのパラメータを同定しているため、高い精度
で所定の空燃比を維持することが可能となる。
In this method, the amount of fuel injected from the injector is determined based on a simulation model whose state variable is the amount of fuel fw adhering to the inner wall surface of the intake pipe in a virtual closed space (control volume) near the injector. The parameters of the simulation model are identified from the deviation between the amount of fuel actually flowing into the cylinder measured from the air-fuel ratio of exhaust gas and the amount of fuel flowing into the cylinder calculated by the simulation model. It becomes possible to maintain a predetermined air-fuel ratio.

[発明が解決しようとする課題] しかしながら、実際には排気ガスの空燃比を検出する空
燃比センサは固有の検出時定数を有するだけでなく排気
弁がら空燃比センサ取り付は位置までの排気ガスの流動
遅れが存在するため、または空燃比センサもしくはアク
チュエータに特性の変化があると定常偏差が生しるため
、燃料のシミュレーションモデルのパラメータを正確に
同定することができなくなる。
[Problems to be Solved by the Invention] However, in reality, the air-fuel ratio sensor that detects the air-fuel ratio of exhaust gas not only has a unique detection time constant, but also the air-fuel ratio sensor attached to the exhaust valve has a The parameters of the fuel simulation model cannot be accurately identified due to the presence of a flow delay or due to steady state deviations due to changes in the characteristics of the air-fuel ratio sensor or actuator.

本発明は上記問題点に鑑みなされたものであって、シミ
ュレーションモデルのパラメータヲ同定する際に空燃比
センサの検出遅れおよび排気ガスの流動遅れを補償する
ためのデータ処理部、および/または空燃比センサある
いはアクチュエータの特性の変動を検出するためのデー
タ処理部を含む燃料噴射量制御装置を提供することを目
的とする。
The present invention has been made in view of the above problems, and includes a data processing unit for compensating for the detection delay of the air-fuel ratio sensor and the flow delay of the exhaust gas when identifying the parameters of the simulation model, and/or the air-fuel ratio. It is an object of the present invention to provide a fuel injection amount control device including a data processing section for detecting changes in characteristics of a sensor or an actuator.

[課題を解決するための手段] このような内燃機関の燃料噴射量制御装置の基本構成は
第1図に示されるが、以下のように構成される。
[Means for Solving the Problems] The basic configuration of such a fuel injection amount control device for an internal combustion engine is shown in FIG. 1, and is configured as follows.

即ち内燃機関の排気管に設置され排気ガスの空燃比を検
出する空燃比センサ100と、空燃比以外の内燃機関の
運転状態量を検出する運転状態検出手段101と、運転
状態検出手段101で検出された運転状態量から各気筒
に吸入される吸気量を演算する吸入空気量演算手段10
2と、吸入空気量演算手段102との演算結果に基づい
て各気筒のインジェクタ近傍における燃料の動的挙動を
表すシミュレーションモデルを使用して噴射するべき燃
料量を決定する燃料噴射量演算手段103と、燃料噴射
量演算手段103により決定された燃料噴射量と空燃比
センサ100の出力との関係を排気ガスの流動遅れ分補
正する流動遅れ補正手段104と、燃料噴射量演算手段
103により決定された燃料噴射量と空燃比センサ10
0の出力との関係を空燃比センサ自体の検出遅れ分補正
するセンサ検出遅れ補正手段105と、流動遅れ補正手
段(104)とセンサ検出遅れ補正手段(106)によ
り補正された燃料噴射量演算手段103により決定され
た燃料噴射量と空燃比センサ100の出力との関係に基
づいて燃料噴射量演算手段103内のシミュレーション
モデルのパラメータを推定するパラメータ推定手段10
6と、から構成される。
That is, the air-fuel ratio sensor 100 installed in the exhaust pipe of the internal combustion engine detects the air-fuel ratio of exhaust gas, the operating state detecting means 101 detecting operating state quantities of the internal combustion engine other than the air-fuel ratio, and the operating state detecting means 101 detects the air-fuel ratio. Intake air amount calculation means 10 that calculates the amount of intake air taken into each cylinder from the calculated operating state quantity.
2, and a fuel injection amount calculation means 103 that determines the amount of fuel to be injected using a simulation model representing the dynamic behavior of fuel in the vicinity of the injector of each cylinder based on the calculation result of the intake air amount calculation means 102; , flow delay correction means 104 for correcting the relationship between the fuel injection amount determined by the fuel injection amount calculation means 103 and the output of the air-fuel ratio sensor 100 by the amount of flow delay of exhaust gas; Fuel injection amount and air-fuel ratio sensor 10
Sensor detection delay correction means 105 corrects the relationship with the output of 0 by the detection delay of the air-fuel ratio sensor itself, and fuel injection amount calculation means corrected by the flow delay correction means (104) and the sensor detection delay correction means (106). Parameter estimating means 10 for estimating the parameters of the simulation model in the fuel injection amount calculation means 103 based on the relationship between the fuel injection amount determined by 103 and the output of the air-fuel ratio sensor 100
It consists of 6 and.

第2の発明においては、センサ検出遅れ補正手段105
の代わりにセンサおよび/あるいはアクチュエータの定
常偏差を除去する定常偏差除去手段107を設ける。
In the second invention, the sensor detection delay correction means 105
Instead, a steady deviation removing means 107 is provided to remove the steady deviation of the sensor and/or actuator.

[作用] このように構成された内燃機関の燃料噴射量制御装置に
おいては、空燃比センサの排気ガスの流動遅れに起因す
るおよび空燃比センサの検出遅れとセンサおよび/また
はアクチュエータの特性変化に起因する定常偏差を補償
することによって、燃料の動特性モデルのパラメータを
正確に推定可能となる。
[Function] In the fuel injection amount control device for an internal combustion engine configured as described above, there are problems caused by a delay in the flow of exhaust gas in the air-fuel ratio sensor and a detection delay in the air-fuel ratio sensor and changes in the characteristics of the sensor and/or actuator. By compensating for the steady-state deviation, it becomes possible to accurately estimate the parameters of the fuel dynamic characteristic model.

[実施例] (1)実施例の構成 第2図は本発明に係る内燃機関の燃料噴射量制御装置の
1つの実施例を示す図である。第2図において内燃機関
1の吸気通路2にはエアフローメータ3が設置されてい
る。エアフローメータ3は内燃機関が吸入する空気量を
計測するだめの機器であって吸入空気の体積流量に比例
した電気信号を出力する。
[Example] (1) Configuration of Example FIG. 2 is a diagram showing one example of the fuel injection amount control device for an internal combustion engine according to the present invention. In FIG. 2, an air flow meter 3 is installed in an intake passage 2 of an internal combustion engine 1. The air flow meter 3 is a device for measuring the amount of air taken into the internal combustion engine, and outputs an electrical signal proportional to the volumetric flow rate of the intake air.

また吸気管には吸気圧力を計測するために圧力検出器1
7が取り付けられ、吸気圧力に比例した電気信号を出力
する。
In addition, there is a pressure detector 1 in the intake pipe to measure the intake pressure.
7 is attached and outputs an electrical signal proportional to the intake pressure.

これらの電気信号は制御回路10のA/Dコンバータ1
001に供給される。
These electrical signals are sent to the A/D converter 1 of the control circuit 10.
001.

ディストリビュータ4には、例えばクランク角度に換算
して720°毎にパルス信号を出力するクランク角度セ
ンサ5およびクランク角度に換算して30°毎にパルス
を出力するクランク角度センサ6が取り付けられている
。クランク角度センサのパルス出力は制御回路10の入
出力インターフェース1002に供給される。
The distributor 4 is attached with a crank angle sensor 5 that outputs a pulse signal every 720 degrees in terms of crank angle, and a crank angle sensor 6 that outputs a pulse signal every 30 degrees in terms of crank angle. The pulse output of the crank angle sensor is supplied to the input/output interface 1002 of the control circuit 10.

また排気マニホールド11より下流の排気管13には空
燃比センサ14が設置され、排気ガス中の酸素濃度に応
じた電圧を出力し、A/Dコンバータ1001に供給さ
れる。
Further, an air-fuel ratio sensor 14 is installed in the exhaust pipe 13 downstream of the exhaust manifold 11, and outputs a voltage according to the oxygen concentration in the exhaust gas, which is supplied to the A/D converter 1001.

制御回路10は例えばマイクロコンピュータシステムで
構成され、A/Dコンハーク1001、入出力インター
フェース1002、CPU1003、ROM1004、
RAM1005、ハシクアソプRAM1006、クロッ
ク発生回路1007等を含む。
The control circuit 10 is composed of, for example, a microcomputer system, and includes an A/D converter 1001, an input/output interface 1002, a CPU 1003, a ROM 1004,
It includes a RAM 1005, an integrated RAM 1006, a clock generation circuit 1007, and the like.

また吸気通路2に設置されているスロットル弁15には
スロットル弁15が全開か否かを検出するだめのアイド
ルスイッチ16が設けられ、この出力は入出力インター
フェース1002を介して制御装置10に入力される。
Further, the throttle valve 15 installed in the intake passage 2 is provided with an idle switch 16 for detecting whether the throttle valve 15 is fully open or not, and the output of this switch is input to the control device 10 via the input/output interface 1002. Ru.

また制御回路10において、ダウンカウンタ1008、
フリップフロップ1009および駆動回路1010はイ
ンジェクタ7を制御するためのものである。即ち燃料噴
射量が演算されると、その演算結果がダウンカウンタ1
008に設定され同時にフリップフロップ1009もセ
ット状態とされる。
Further, in the control circuit 10, a down counter 1008,
Flip-flop 1009 and drive circuit 1010 are for controlling injector 7. That is, when the fuel injection amount is calculated, the calculation result is stored in the down counter 1.
008, and at the same time, the flip-flop 1009 is also set.

この結果駆動回路1010がインジェクタ7を付勢する
As a result, drive circuit 1010 energizes injector 7.

ダウンカウンタ1008はクロックパルス(図示せず)
の計数を開始しダウンカウンタ1008の値が零となっ
たときにフリップフロップ1009をリセットし駆動回
路1010は燃料噴射弁の付勢を停止する。
Down counter 1008 receives clock pulses (not shown)
starts counting, and when the value of the down counter 1008 reaches zero, the flip-flop 1009 is reset and the drive circuit 1010 stops energizing the fuel injection valve.

即ち燃料噴射量制御手段で演算された期間だけインジェ
クタ7が付勢され、演算結果に応じた燃料が内燃機関1
の各気筒に供給される。
That is, the injector 7 is energized only for the period calculated by the fuel injection amount control means, and fuel according to the calculation result is supplied to the internal combustion engine 1.
is supplied to each cylinder.

(2)燃料噴射量制御装置の設計 制御精度が高く、かつ安定な制御が実行できる燃料噴射
量制御装置を構成するために考慮するべき点は以下の通
りである。
(2) Design of fuel injection amount control device The following points should be considered in order to configure a fuel injection amount control device that has high control accuracy and can perform stable control.

即ちインジェクタ7から噴射された燃料は全ては気筒内
に注入されず、一部吸気管壁面に付着する。
That is, not all of the fuel injected from the injector 7 is injected into the cylinder, but a portion of it adheres to the wall surface of the intake pipe.

このため排気ガスの空燃比が所定の値となるようにイン
ジェクタ7からの噴射量を決定しても、所定の空燃比と
はならない。
For this reason, even if the injection amount from the injector 7 is determined so that the air-fuel ratio of the exhaust gas will be a predetermined value, the predetermined air-fuel ratio will not be achieved.

この点を考慮して吸気弁近傍の燃料の動特性を考慮して
燃料噴射量を決定するものとするが、この動特性モデル
のパラメータを決定する前処理として排気ガスの流動遅
れおよび/または空燃比センサ固有の検出遅れを補正す
る様に制御装置を構成する。
Taking this point into account, the fuel injection amount is determined by taking into account the dynamic characteristics of the fuel near the intake valve, but pre-processing to determine the parameters of this dynamic characteristic model is to consider the flow delay of exhaust gas and/or The control device is configured to correct the detection delay inherent in the fuel ratio sensor.

1)燃料の動特性モデルの構築 インジェクタ近傍の燃料の質量収支を得るために第3図
に示すようなインジェクタ近傍の仮想的なコントロール
ボリュームC■を考える。
1) Construction of fuel dynamic characteristic model In order to obtain the mass balance of fuel near the injector, consider a virtual control volume C■ near the injector as shown in FIG. 3.

所定のクランク角度(サイクル)を表すインデックスを
に 所定のクランク角度(サイクル)kにC■に流入する燃
料流量をf i  (k) 所定のクランク角度(サイクル)kに壁面に付着してい
る燃料量をfw(k) 所定のクランク角度(サイクル)kにC■から流出する
燃料流量をfc(k) 流入燃料流量f i  (k)のうち壁面に付着する割
合をR 壁面付着燃料量fw(k)のうち壁面に残留する割合を
Pとすれば次式が成立する。
Let the index representing a predetermined crank angle (cycle) be the fuel flow rate flowing into C at a predetermined crank angle (cycle) k.F i (k) is the fuel adhering to the wall surface at a predetermined crank angle (cycle) k. The amount is fw(k) The fuel flow rate flowing out from C■ at a given crank angle (cycle) k is fc(k) The proportion of the inflowing fuel flow rate f i (k) that adheres to the wall surface is R The amount of fuel adhering to the wall surface fw( If the proportion of k) that remains on the wall surface is P, the following equation holds true.

f w (k+1) −P −f w (k)十R−f
 i (k)      (1)f c  (k)  
−(1−P)  −fw  (k)+ (1−R)  
・fi(k’)     (2)2〕燃料動特性モデル
のパラメータ推定第(1)式および第(2)式から壁面
付着燃料量fwを消去すると、 f c (k) −f i  (k) −P−(f c (k−1) −f i  (k−1)
 )−R・ (f i  (k) −f i  (k−
1))  (3)ここで y  (k)  −f c  (k)  −f  i 
 (k)u  (k)  −f  i  (k−1) 
 −f  i  (k)  (4)とすれば、第(3)
式は、 y(k) −P−Y (k−1) 十R−u (k)と
なり、y (k)、y (k−1)、u (k)が得ら
れればパラメータPおよびRは周知の最小2乗法等によ
り推定することができる。
f w (k+1) −P −f w (k) 10R−f
i (k) (1) f c (k)
-(1-P) -fw (k)+ (1-R)
・fi (k') (2) 2] Parameter estimation of fuel dynamic characteristic model When the amount of fuel adhering to the wall fw is eliminated from equations (1) and (2), f c (k) - f i (k) -P-(f c (k-1) -f i (k-1)
)−R・(f i (k) −f i (k−
1)) (3) where y (k) −f c (k) −f i
(k) u (k) −f i (k−1)
−f i (k) (4), then (3)
The formula is y(k) -P-Y(k-1) 1R-u(k), and if y(k), y(k-1), and u(k) are obtained, the parameters P and R are It can be estimated by the well-known method of least squares or the like.

3)気筒的吸入空気量の決定 各気筒に吸入される空気流量mc (k)は次の何れか
の方法で求めることができる。
3) Determination of cylinder-wise intake air amount The air flow rate mc (k) taken into each cylinder can be determined by one of the following methods.

(a)下記(6)式により算出する。(a) Calculated using equation (6) below.

mc (k)= (βl・Ne−Pm−β2・Ne)/TiただしNe=
内燃機関回転数 Pm−吸気圧力 Ti=吸気温度 β1、β2一定数 (b)吸気圧力Pmおよび内燃機関回転数Neをパラメ
ータとするマツプから基本吸入空気量を求め、吸気温度
Tiで補正してmc (k)を求める。
mc (k)= (βl・Ne−Pm−β2・Ne)/Ti where Ne=
Internal combustion engine rotational speed Pm - intake pressure Ti = intake air temperature β1, β2 constant number (b) The basic intake air amount is determined from a map using the intake pressure Pm and internal combustion engine rotational speed Ne as parameters, and it is corrected with the intake air temperature Ti and mc Find (k).

(c)エアフローメーク3の検出値から推定する。(c) Estimated from the detected value of air flow make 3.

即ち吸入空気量演算手段102は上記(a)(b)(c
)のいずれかの方法を用いて演算される。
That is, the intake air amount calculation means 102 calculates the above (a), (b), and (c).
) is calculated using one of the following methods.

4)目標筒内燃料量の決定 目標とする空燃比をλrとすれば、目標とする空燃比を
得るために気筒内に注入されるべき燃料量fcrは、 f c r’=mc (k) /λr      (7
)により算出される。
4) Determining the target in-cylinder fuel amount If the target air-fuel ratio is λr, the fuel amount fcr that should be injected into the cylinder to obtain the target air-fuel ratio is f cr'=mc (k) /λr (7
) is calculated.

5)筒内燃料量の決定 空燃比センサ14により計測された空燃比をλ(k)と
すれば、空燃センサが設置されている位置に排気ガスが
到達するまでには流動遅れが存在するため、k時点にお
ける空燃比センサ14の出力は(k−d)時点における
燃料量および空気吸大量であるため、筒内燃料量fc(
k)は次式で表される。
5) Determining the amount of fuel in the cylinder If the air-fuel ratio measured by the air-fuel ratio sensor 14 is λ(k), there is a flow delay before the exhaust gas reaches the position where the air-fuel sensor is installed. Therefore, since the output of the air-fuel ratio sensor 14 at time k is the fuel amount and air intake amount at time (k-d), the in-cylinder fuel amount fc(
k) is expressed by the following formula.

f c (k−d) −mc  (k−d) /λ (
k)ただしdは離散系で表した時の排気ガスの流動遅れ
である。
f c (k-d) −mc (k-d) /λ (
k) However, d is the flow delay of the exhaust gas when expressed in a discrete system.

即ち流動遅れ補償手段106として第(8)式を使用す
る。
That is, equation (8) is used as the flow delay compensating means 106.

6)空燃比センサの検出遅れの補償 第(8)式を使用することによって排気ガスの流動遅れ
は補償することが可能であるが、空燃比センサ14自体
が有する検出遅れを補償することはできない。
6) Compensation for detection delay of air-fuel ratio sensor Although it is possible to compensate for the flow delay of exhaust gas by using equation (8), it is not possible to compensate for the detection delay of the air-fuel ratio sensor 14 itself. .

この点を解決するために、本発明に係る燃料噴射量制御
装置では燃料噴射量として、流動遅れを補償した燃料噴
射fi(k−d)を、その時定数が空燃比センサ14の
検出遅れ時定数τにほぼ等しいフィルタを通した補償燃
料噴射量fi(k−d)゛を用いることとする。
In order to solve this problem, the fuel injection amount control device according to the present invention uses, as the fuel injection amount, a fuel injection fi (kd) that has compensated for the flow delay, and whose time constant is equal to the detection delay time constant of the air-fuel ratio sensor 14. It is assumed that a filtered compensation fuel injection amount fi(k-d) which is approximately equal to τ is used.

即ち、センサ検出遅れ補償手段107としてfi(k−
d) “ −τ・ fi(k−dl) ”+ (1−τ
)・ f i  (k−d−1)  (9)を使用する
That is, as the sensor detection delay compensating means 107, fi(k-
d) "-τ・fi(k-dl)"+ (1-τ
)・f i (k−d−1) (9) is used.

第4図は、上記の補償方法の説明図であって、継軸に燃
料量、横軸にサンプリング時刻をとる。
FIG. 4 is an explanatory diagram of the above-mentioned compensation method, where the joint axis represents the fuel amount and the horizontal axis represents the sampling time.

aは実際の燃料噴射量f i  (k)、bは空燃比セ
ンサの出力に基づいて決定した筒内燃料量fc(k)、 Cは流動遅れを補償した筒内燃料量fc(k−d)、 dは真の筒内燃料量fcである。
a is the actual fuel injection amount f i (k), b is the in-cylinder fuel amount fc (k) determined based on the output of the air-fuel ratio sensor, and C is the in-cylinder fuel amount fc (k-d) which compensated for the flow delay. ), d is the true in-cylinder fuel amount fc.

第4図によればに時点における燃料噴射量aによって筒
内に流入した燃料量fcは、排気ガスの流動遅れにより
に+4時点において空燃比センサにより検出される。従
って前述の第(8)式によりに時点の空燃比センサの出
力から(k−d)時点〔第4図においてはd−4]の筒
内燃料量fcを求めることにより排気ガスの流動遅れを
補償できる。
According to FIG. 4, the amount of fuel fc flowing into the cylinder due to the fuel injection amount a at time point is detected by the air-fuel ratio sensor at time +4 due to the flow delay of the exhaust gas. Therefore, by calculating the in-cylinder fuel amount fc at time (k-d) [d-4 in Figure 4] from the output of the air-fuel ratio sensor at time using equation (8) above, the flow delay of exhaust gas can be calculated. It can be compensated.

更に空燃比センサ固有の検出遅れにより、排気ガス流動
遅れを補償した筒内燃料MCは、真の筒内燃料量dに対
して第4図に示すように遅れを有する。
Furthermore, due to the detection delay inherent in the air-fuel ratio sensor, the in-cylinder fuel MC that compensates for the exhaust gas flow delay has a delay with respect to the true in-cylinder fuel amount d, as shown in FIG.

本実施例ではに時点の燃料噴射量f i  (k)に時
定数τのフィルタを通したもの、即ちセンサの検出遅れ
分を補償した検出遅れ補償燃料噴射量fi(k)’ を
算出しており、従って検出遅れ補償燃料噴射量f i 
 (k) ’ と排気ガス流動遅れを補償した筒内燃料
量fcck−d)との関係は、排気ガス流動遅れ及びセ
ンサの検出遅れによる誤差を含まない関係となる。
In this embodiment, the current fuel injection amount f i (k) is passed through a filter with a time constant τ, that is, the detection delay compensation fuel injection amount fi (k)' which compensates for the sensor detection delay is calculated. Therefore, the detection delay compensation fuel injection amount f i
The relationship between (k)' and the in-cylinder fuel amount fcck-d) that compensates for the exhaust gas flow delay is a relationship that does not include errors due to the exhaust gas flow delay and sensor detection delay.

7)空燃比センサおよび/またはアクチュエータの定常
偏差の補償 第(5)式を使用してパラメータPおよび
Rを推定するが、空燃比センサ又はエアフローメータの
ようなセンサおよび/またはインジェクタのようなアク
チュエータの特性が変化すると、定常状態において fc(k)≠f i  (k)        (10
)となり y (k)≠O(11) であるが、燃料噴射量は一定値を維持するため、u (
k) =0 となる。
7) Compensation for steady-state deviations of air-fuel ratio sensors and/or actuators Equations (5) are used to estimate the parameters P and R, but sensors such as air-fuel ratio sensors or air flow meters and/or actuators such as injectors When the characteristics of change, fc(k)≠f i (k) (10
), and y (k)≠O(11) However, since the fuel injection amount maintains a constant value, u (
k) =0.

従って第(5)式において、 P=1                (12)でな
ければならず、正しいパラメータを推定できないことと
なる。
Therefore, in Equation (5), P=1 (12), which means that correct parameters cannot be estimated.

そこで y  (k) =f c  (k) −f i  (k
)   (13)に時定数Tのフィルタをかけ、その演
算結果をy(k)゛とすれば、 y (k+1)’ =T−y (k)’+(1−T) 
 ・y(k)   (14)そして Δy(k)=y(k)−y(k)’   (15)とし
、第(5)式を Δy(k)=P・Δy (k−1) +R−u (k)
とすることによって、空燃比センサおよび/またはアク
チュエータの特性の変化に起因する定常偏差を除去する
ことが可能となる。
Therefore, y (k) = f c (k) − f i (k
) Apply a filter with time constant T to (13) and let the calculation result be y(k)', then y (k+1)' = T-y (k)'+(1-T)
・y(k) (14) and Δy(k)=y(k)−y(k)' (15), and equation (5) is changed to Δy(k)=P・Δy(k−1) +R− u(k)
By doing so, it becomes possible to eliminate steady-state deviations caused by changes in the characteristics of the air-fuel ratio sensor and/or actuator.

なおパラメータの推定精度を一層向上させるために、流
動遅れおよび検出遅れの補償および空燃比センサおよび
/またはアクチュエータの特性変動の補償を同時に行う
こととしてもよい。
Note that in order to further improve the accuracy of parameter estimation, compensation for flow delay and detection delay and compensation for characteristic fluctuations of the air-fuel ratio sensor and/or actuator may be performed at the same time.

(3)制御の実行 第5図に2つの補償を同時に行うように構成された制御
装置の機能図を示す。
(3) Execution of Control FIG. 5 shows a functional diagram of a control device configured to perform two types of compensation simultaneously.

即ち501において、3)に記載の(a)(b)(C)
のいずれかの方法により内燃機関回転数Neおよび吸気
管圧力Pmに基づき各気筒の吸入空気i1mc(k)が
演算される。
That is, in 501, (a), (b), and (C) described in 3)
The intake air i1mc(k) of each cylinder is calculated based on the internal combustion engine rotational speed Ne and the intake pipe pressure Pm by one of the following methods.

502において、mc (k)に対して排気ガスの流動
遅れが補償されmc(k−d)が演算される。
At 502, mc(k) is compensated for the flow delay of exhaust gas, and mc(k-d) is calculated.

503において、空燃比センサ14の検出値λ(k)を
用いて筒内燃料量fc(k−d)が演算される。
At 503, the in-cylinder fuel amount fc(k-d) is calculated using the detected value λ(k) of the air-fuel ratio sensor 14.

504においては、燃料噴射11fiに対して排気ガス
の流動遅れが補償されてfi(k−d)が演算される。
In 504, the flow delay of exhaust gas is compensated for the fuel injection 11fi, and fi(kd) is calculated.

505において、空燃比センサ14固有の検出時定数τ
と等しい時定数のフィルタを通して補償燃料噴射量fi
(k−d)’を求める。
505, the detection time constant τ specific to the air-fuel ratio sensor 14
Compensated fuel injection amount fi through a filter with a time constant equal to
Find (k-d)'.

506において、503で演算された筒内燃料量fc(
k−d)と、505で演算された流動遅れおよび検出遅
れ時間が補償された燃料噴射量fi(k−d)’ との
演算結果の偏差が演算される。
At 506, the in-cylinder fuel amount fc(
k-d) and the fuel injection amount fi(k-d)' calculated in step 505 for which the flow delay and detection delay time have been compensated for.

507において、時定数Tのフィルタを用いて、空燃比
センサおよび/またはアクチュエータの定常偏差を補償
し、パラメータ推定に有効な変化分のみを取り出す。
At 507, a filter with a time constant T is used to compensate for steady-state deviations of the air-fuel ratio sensor and/or actuator, and only the changes that are useful for parameter estimation are extracted.

508において、第(16)式を用いて動特性モデルの
パラメータの推定を行う。
At 508, parameters of the dynamic characteristic model are estimated using equation (16).

一方509においては、mc (k)と目標空燃比λr
とから目標筒内燃料1ifcr(k)を演算する。
On the other hand, in 509, mc (k) and target air-fuel ratio λr
The target in-cylinder fuel 1ifcr(k) is calculated from .

そして510で推定されたパラメータを用いて燃料の動
特性モデルから燃料噴射量fi(k)を決定する。
Then, in step 510, a fuel injection amount fi(k) is determined from the fuel dynamic characteristic model using the estimated parameters.

第6図は、本発明による制御を実行するためのルーチン
であって、例えば各ストローク毎に実行される。
FIG. 6 shows a routine for executing the control according to the present invention, which is executed, for example, for each stroke.

即ちステップ601でこのルーチンの実行に必要な検出
値、即ち内燃機関回転数Ne、吸気管圧力Pmおよび排
気ガスの空燃比λを読み込む。
That is, in step 601, detected values necessary for executing this routine, ie, internal combustion engine rotational speed Ne, intake pipe pressure Pm, and exhaust gas air-fuel ratio λ are read.

ステップ602において、吸入空気量mc (k)を演
算するとともに、流動遅れに相当する時間ステップd前
の値を読み出すことにより排気ガスの流動遅れを補正す
る。
In step 602, the flow delay of the exhaust gas is corrected by calculating the intake air amount mc (k) and reading the value before the time step d corresponding to the flow delay.

そしてステップ603において、目標筒内燃料量が演算
され、第(1)式および第(2)式により燃料噴射量が
決定され、ステップ604で燃料噴射が実行される。
Then, in step 603, a target in-cylinder fuel amount is calculated, a fuel injection amount is determined by equations (1) and (2), and fuel injection is executed in step 604.

ステップ605において、機関がアイドリング等の定常
状態であるか否かを判定し定常状態であればパラメータ
の推定を行うためステップ606に進み、定常状態でな
ければ本ルーチンを終了する。
In step 605, it is determined whether the engine is in a steady state such as idling, and if the engine is in a steady state, the process proceeds to step 606 to estimate parameters, and if not in a steady state, this routine is ended.

ステップ606において燃料噴射量に対して排気ガスの
流動遅れを補償するためにdステップ分前の値が読み出
される。
In step 606, a value d steps before is read in order to compensate for the flow delay of exhaust gas with respect to the fuel injection amount.

ステップ607において、空燃比センサ固有の検出遅れ
が補償される。
In step 607, the detection delay inherent in the air-fuel ratio sensor is compensated for.

ステップ608において空燃比センサおよび/またはア
クチュエータの特性の変化に起因する定常偏差が補償さ
れる。
In step 608, steady-state deviations due to changes in air-fuel ratio sensor and/or actuator characteristics are compensated.

ステップ609で第(16)式により燃料動特性モデル
のパラメータが推定され、パラメータが更新されてこの
ルーチンを終了する。
In step 609, the parameters of the fuel dynamic characteristic model are estimated using equation (16), the parameters are updated, and this routine ends.

[発明の効果] 本発明による内燃機関の燃料噴射制御装置によれば、シ
ミュレーションモデルのパラメータを同定する際に空燃
比センサの検出値に含まれる排気ガスの流動遅れおよび
空燃比センサ固有の検出遅れが補償され、さらに空燃比
センサおよび/またはアクチュエータの特性の変化に起
因する定常偏差を除去することにより、燃料の動特性モ
デルのパラメータを正確に推定することが可能となり、
燃料噴射制御性能が向上する。
[Effects of the Invention] According to the fuel injection control device for an internal combustion engine according to the present invention, when identifying the parameters of a simulation model, the exhaust gas flow delay included in the detected value of the air-fuel ratio sensor and the detection delay specific to the air-fuel ratio sensor are eliminated. is compensated for, and furthermore, by removing steady-state deviations due to changes in the characteristics of the air-fuel ratio sensor and/or actuator, it becomes possible to accurately estimate the parameters of the fuel dynamic characteristic model,
Improves fuel injection control performance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明にかかる燃料噴射量制御装置の基本構成
を示す図、 第2図は本発明の1実施例の構成を示す図、第3図は燃
料挙動シミュレーションモデルを説明するための模式図
、 第4図は遅れ補償方法の説明図、 第5図は本発明に係る燃料噴射制御装置の機能線図、 第6図は本発明に係る燃料噴射量制御を実行するための
フローチャートである。 100・・・空燃比センサ、 101・・・運転状態検出手段、 102・・・吸入空気量演算手段、 103・・・燃料噴射量演算手段、 104・・・インジェクタ、 105・・・パラメータ推定手段、 106・・・流動遅れ補償手段、 107・・・センサ検出遅れ補償手段。
Fig. 1 is a diagram showing the basic configuration of a fuel injection amount control device according to the present invention, Fig. 2 is a diagram showing the configuration of an embodiment of the present invention, and Fig. 3 is a schematic diagram for explaining a fuel behavior simulation model. 4 is an explanatory diagram of a delay compensation method, FIG. 5 is a functional diagram of a fuel injection control device according to the present invention, and FIG. 6 is a flowchart for executing fuel injection amount control according to the present invention. . 100... Air-fuel ratio sensor, 101... Operating state detection means, 102... Intake air amount calculation means, 103... Fuel injection amount calculation means, 104... Injector, 105... Parameter estimation means , 106...Flow delay compensation means, 107...Sensor detection delay compensation means.

Claims (1)

【特許請求の範囲】 1、内燃機関の排気管に設置され排気ガスの空燃比を検
出する空燃比センサ(100)と、空燃比以外の内燃機
関の運転状態量を検出する運転状態検出手段(101)
と、 該運転状態検出手段(101)で検出された運転状態量
から各気筒に吸入される吸気量を演算する吸入空気量演
算手段(102)と、 該吸入空気量演算手段(102)との演算結果に基づい
て、各気筒のインジェクタ近傍における燃料の動的挙動
を表すシミュレーションモデルを使用して噴射するべき
燃料量を決定する燃料噴射量演算手段(103)と、 該燃料噴射量演算手段(103)により決定された燃料
噴射量と前記空燃比センサ(100)の出力との関係を
、排気ガスの流動遅れ分補正する流動遅れ補正手段(1
04)と、 さらに前記燃料噴射量演算手段(103)により決定さ
れた燃料噴射量と前記空燃比センサ(100)の出力と
の関係を、空燃比センサ自体の検出遅れ分補正するセン
サ検出遅れ補正手段(105)と、 該流動遅れ補正手段(104)と該センサ検出遅れ補正
手段(105)により補正された前記燃料噴射量演算手
段(103)により決定された燃料噴射量と前記空燃比
センサ(100)の出力との関係に基づいて前記燃料噴
射量演算手段(103)内のシミュレーションモデルの
パラメータを推定するパラメータ推定手段(106)と
、から構成される燃料噴射量制御装置。 2、前記センサ検出遅れ補正手段(105)の代わりに
センサおよび/あるいはアクチュエータの定常偏差を除
去する定常偏差除去手段(107)を設けた請求項1記
載の燃料噴射量制御装置。
[Claims] 1. An air-fuel ratio sensor (100) installed in the exhaust pipe of an internal combustion engine to detect the air-fuel ratio of exhaust gas, and an operating state detection means (100) for detecting operating state quantities of the internal combustion engine other than the air-fuel ratio. 101)
and an intake air amount calculation means (102) that calculates the amount of intake air taken into each cylinder from the operating state quantity detected by the operation state detection means (101); and the intake air amount calculation means (102). a fuel injection amount calculation means (103) that determines the amount of fuel to be injected using a simulation model representing the dynamic behavior of fuel in the vicinity of the injector of each cylinder based on the calculation result; Flow delay correction means (103) corrects the relationship between the fuel injection amount determined by the air-fuel ratio sensor (100) and the output of the air-fuel ratio sensor (100) by the flow delay of exhaust gas.
04), and sensor detection delay correction for correcting the relationship between the fuel injection amount determined by the fuel injection amount calculation means (103) and the output of the air-fuel ratio sensor (100) by the detection delay of the air-fuel ratio sensor itself. means (105), the fuel injection amount determined by the fuel injection amount calculation means (103) corrected by the flow delay correction means (104) and the sensor detection delay correction means (105) and the air-fuel ratio sensor ( A fuel injection amount control device comprising: parameter estimating means (106) for estimating parameters of a simulation model in the fuel injection amount calculating means (103) based on a relationship with the output of the fuel injection amount calculating means (100). 2. The fuel injection amount control device according to claim 1, further comprising steady-state deviation removing means (107) for removing a steady-state deviation of the sensor and/or actuator in place of the sensor detection delay correcting means (105).
JP31579990A 1990-11-22 1990-11-22 Fuel injection amount control device for internal combustion engine Expired - Fee Related JP2712821B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31579990A JP2712821B2 (en) 1990-11-22 1990-11-22 Fuel injection amount control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31579990A JP2712821B2 (en) 1990-11-22 1990-11-22 Fuel injection amount control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH04187842A true JPH04187842A (en) 1992-07-06
JP2712821B2 JP2712821B2 (en) 1998-02-16

Family

ID=18069694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31579990A Expired - Fee Related JP2712821B2 (en) 1990-11-22 1990-11-22 Fuel injection amount control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2712821B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0617680A (en) * 1992-07-03 1994-01-25 Honda Motor Co Ltd Device for controlling fuel injection quantity in internal combustion engine
JPH06257490A (en) * 1992-10-12 1994-09-13 Unisia Jecs Corp Air/fuel ratio feedback control device for internal combustion engine
JP2010065572A (en) * 2008-09-09 2010-03-25 Toyota Motor Corp Burnt gas passing quantity calculating method and burnt gas passing quantity calculating device of exhaust gas recirculating system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0617680A (en) * 1992-07-03 1994-01-25 Honda Motor Co Ltd Device for controlling fuel injection quantity in internal combustion engine
JPH06257490A (en) * 1992-10-12 1994-09-13 Unisia Jecs Corp Air/fuel ratio feedback control device for internal combustion engine
JP2010065572A (en) * 2008-09-09 2010-03-25 Toyota Motor Corp Burnt gas passing quantity calculating method and burnt gas passing quantity calculating device of exhaust gas recirculating system

Also Published As

Publication number Publication date
JP2712821B2 (en) 1998-02-16

Similar Documents

Publication Publication Date Title
EP1705359B1 (en) Method of feedforward controlling a multi-cylinder internal combustion engine and relative feedforward fuel injection control system
JPH11504093A (en) Method for determining the flow rate of air flowing into a cylinder of an internal combustion engine using a model
KR20000064611A (en) Method for determining, via model, the mass of fresh air flowing into a cylinder of an internal combustion engine that recycles external exhaust gas
WO2006019549A2 (en) Estimation of oxygen concentration in the intake manifold of an unthrottled lean burn engine
JPH01253543A (en) Air-fuel ratio control device for engine
JP2901613B2 (en) Fuel injection control device for automotive engine
JP2002147279A (en) Intake air quantity computing device and intake air pressure computing device
JPH02227532A (en) Fuel injection control device
JPH05180057A (en) Inflow air amount detecting device for engine
JP4107305B2 (en) Engine air-fuel ratio control device
JP2712821B2 (en) Fuel injection amount control device for internal combustion engine
JPH11223145A (en) Air-fuel ratio control device
JP2830461B2 (en) Fuel injection amount control device for internal combustion engine
JPH09158762A (en) Control device for engine
JPH04187844A (en) Fuel injection quantity controller for internal combustion engine
JP4023084B2 (en) Intake air amount prediction apparatus and intake pressure prediction apparatus
JPH0318640A (en) Injection quantity control device for internal combustion engine
JP3627462B2 (en) Control device for internal combustion engine
JP4618137B2 (en) Air-fuel ratio control device for internal combustion engine
JPH04259639A (en) Air-fuel ratio control device for internal combustion engine
JPH0357861A (en) Intake air temperature detecting device for internal combustion engine
JP2543762B2 (en) Fuel supply control device for internal combustion engine
JPH03145549A (en) Intake flow measuring device for internal combustion engine
JPS6321351A (en) Intake air quantity detecting device for internal combustion engine
JP2000027692A (en) Method and device for detecting intake pipe pressure in internal combustion engine

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081031

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081031

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091031

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091031

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101031

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees