JPH01320255A - Production of ceramic-bn based composite material - Google Patents

Production of ceramic-bn based composite material

Info

Publication number
JPH01320255A
JPH01320255A JP63154064A JP15406488A JPH01320255A JP H01320255 A JPH01320255 A JP H01320255A JP 63154064 A JP63154064 A JP 63154064A JP 15406488 A JP15406488 A JP 15406488A JP H01320255 A JPH01320255 A JP H01320255A
Authority
JP
Japan
Prior art keywords
ceramic
composite material
precursor
sliding
size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63154064A
Other languages
Japanese (ja)
Other versions
JP2641257B2 (en
Inventor
Mikio Sakaguchi
美喜夫 阪口
Michihide Yamauchi
山内 通秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP63154064A priority Critical patent/JP2641257B2/en
Publication of JPH01320255A publication Critical patent/JPH01320255A/en
Application granted granted Critical
Publication of JP2641257B2 publication Critical patent/JP2641257B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To obtain the title composite material having excellent sliding characteristic and worked surface precision by preforming a mixture of a BN precursor, wherein the interfacial spacing by X-ray diffraction and size of the crystallite are specified, and ceramic grains in a specified ratio, and then calcining the preform under pressure. CONSTITUTION:A mixture of 50-50wt.% BN precursor, wherein the BN (002) interfacial spacing by X-ray diffraction is controlled to 2.15-2.40Angstrom and the size of the crystallite to 50-2,000Angstrom , and 95-50wt.% ceramic grains is prepared. The mixture is preformed, and the preform is then calcined at 10-120MPa pressure to obtain the composite material. When <50wt.% ceramic is used in the material, the heat resistance, high strength, and high-hardness characteristic inherent in the ceramic can be hardly developed, and the effect of the mixed BN is not fully exhibited at >96% ceramic. When the interfacial spacing and size of the BN precursor are respectively higher than the upper limit and lower than the lower limit, crystallization by calcination is not sufficient, and the sliding property, workability, etc., due to mixing is not improved. When the interfacial spacing and size of the crystallite are respectively lower than the lower limit and higher than the upper limit, the grains of both components are not uniformly mixed, the kind of the composite ceramic is restricted, and the strength of the calcined body and the worked surface precision are deteriorated.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、摺動特性、耐摩耗性、加工性に浸れたセラミ
ックス−IlN系複合材料の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing a ceramic-IIN composite material that has excellent sliding properties, wear resistance, and processability.

[従来の技術及び解決すべき課題] セラミックスは優れた耐熱性、耐食性を持ち、高硬度、
高強度であるため、スラリー輸送パイプ内張り、メカニ
カルシール等、耐蝕耐IT耗+4料として広く利用され
ている。しかしながら、軸受けのボール、リテーナ−1
磁気ヘツド基材、スライダー等の精密摺動材料あるいは
エンジン部材として利用する場合、その摩擦係数が大き
い、加工面精度が低い等で、広く実用化には至っていな
い。
[Conventional technology and issues to be solved] Ceramics have excellent heat resistance and corrosion resistance, high hardness,
Due to its high strength, it is widely used as a corrosion-resistant and wear-resistant +4 material for slurry transport pipe linings, mechanical seals, etc. However, the ball of the bearing, retainer-1
When used as a magnetic head base material, a precision sliding material such as a slider, or an engine component, it has not been widely put into practical use because of its large friction coefficient and low machined surface accuracy.

これを解決する手段として、特開昭61−281086
号公報に「セラミックス多孔体にフッ素オイルを含浸す
る方法」、特開昭61−251586号公報に「セラミ
ックス多孔体に樹脂を含浸する方法」が開示されている
が、いずれらセラミックス−a機動複合系で、セラミッ
クスの優れた耐熱性を発現できない。また、セラミック
ス多孔体に何機物を含浸しただけなので、強度、硬度、
加工表面精度が不十分である。
As a means to solve this problem, Japanese Patent Application Laid-Open No. 61-281086
``Method of impregnating a porous ceramic body with fluorine oil'' is disclosed in Japanese Patent Publication No. 1986-251586, and ``Method of impregnating a porous ceramic body with resin'', but both of them disclose ceramics-a mobile composite. system, cannot exhibit the excellent heat resistance of ceramics. In addition, since the porous ceramic body is simply impregnated with some material, the strength, hardness,
Machining surface accuracy is insufficient.

更に、特開昭61−51614号公報にrZrO3とカ
ーボンとの混合物を焼結する方法」が開示されているが
、複合成分が炭素であるため、耐熱性が不十分である。
Further, JP-A-61-51614 discloses a method for sintering a mixture of rZrO3 and carbon, but since the composite component is carbon, the heat resistance is insufficient.

また、特開昭62−56376号および同62−563
77号公報に「複合焼結体の製造方法」が開示されてい
るが、窒化アルミニウム粉末とBN粉末の混合物を成形
、焼成するもので、結晶化したBN粉末を使用するため
、セラミックス種が限定され、かつ、分散度が悪く、焼
成体の加工面精度は低い。
Also, JP-A-62-56376 and JP-A No. 62-563
Publication No. 77 discloses a "method for manufacturing a composite sintered body," but it involves molding and firing a mixture of aluminum nitride powder and BN powder, and since crystallized BN powder is used, the types of ceramics are limited. Moreover, the degree of dispersion is poor, and the machined surface accuracy of the fired body is low.

一方、現在、表面に磁性層を塗布したり、薄膜形成した
磁性層を有するフレキシブルデスクやハードデスクまた
は磁気テープを用いて記録再生を行なうため、種々の磁
気媒体装置が市販され、さらに高密度化に向けて開発が
進められている。これらの記録再生装置は、磁気媒体と
常時または一時的に相対して摺接する部品が数多く使用
されている。これらの部品は耐久性に優れ、かつ相対的
に摺接する記録媒体を損傷させないことか必要である。
On the other hand, various magnetic media devices are currently on the market for recording and reproducing using flexible disks, hard disks, or magnetic tapes that have a magnetic layer coated on the surface or a thin magnetic layer formed on the surface. Development is currently underway. These recording and reproducing devices use many parts that are in sliding contact with the magnetic medium either permanently or temporarily. These parts must have excellent durability and must not damage the recording medium with which they come into relative sliding contact.

特に高速、高密度化の傾向が高く、媒体との摺接部品に
はより厳しい制約が課せられ従来のセラミックスに変わ
る材料が要望されている。
In particular, there is a strong trend toward higher speeds and higher densities, and stricter restrictions are being imposed on parts that come into sliding contact with the media, creating a need for materials that can replace conventional ceramics.

[課題解決のための手段] 本発明者らは、前述の課題を解決するため鋭意研究を重
ねた結果、摺動特性、加工性に優れ、しから材料が本来
的に持っている強度、硬度を十分引出し得るセラミック
ス−BN系複合材料の製造方法を完成するに至った。
[Means for Solving the Problems] As a result of intensive research to solve the above-mentioned problems, the inventors of the present invention have found that they have excellent sliding properties and workability, and have the strength and hardness inherent to the iron material. We have completed a method for manufacturing a ceramic-BN composite material that can sufficiently bring out the following.

即ち、本発明は、セラミックス−BN系複合材料の製法
において、BN源として特定のBN前駆体を用いること
を特徴とするものである。ここで用いられるBN前駆体
はX線回折によるB N(002)面間隔が2.15〜
2.40人かつ結晶子の大きさが50〜2000人のら
のであり、本発明ではこれを焼成前のセラミックス配合
物中5〜50wt%含むセラミックス−BN前駆体組成
物を予備成型した後、10〜120MPa、好、ましく
は20〜100MPaの圧力下で焼成することを特徴と
するセラミックス−BN系複合材料の製造方法に関する
ものである。本発明にいう(OO2)面間隔及び結晶子
の大きさとは、X線回折によるCuKα回折ピークの半
価幅中点法により求めた2θ値と半価幅とから、それぞ
れブラッグの式及びシェラ−の式から計算したものであ
る。
That is, the present invention is characterized in that a specific BN precursor is used as a BN source in the method for producing a ceramic-BN composite material. The BN precursor used here has a BN (002) plane spacing of 2.15 to 2.15 by X-ray diffraction.
In the present invention, after preforming a ceramic-BN precursor composition containing 5 to 50 wt% of this in the ceramic composition before firing, The present invention relates to a method for producing a ceramic-BN composite material, which is characterized by firing under a pressure of 10 to 120 MPa, preferably 20 to 100 MPa. The (OO2) interplanar spacing and crystallite size referred to in the present invention are determined from the 2θ value and half-width determined by the half-width midpoint method of the CuKα diffraction peak by X-ray diffraction, and are calculated using Bragg's equation and Scherrer equation, respectively. It is calculated from the formula.

本発明に用いられるセラミックス粒子として好ましくは
、A(ho3、ZrCL、’ri(L、MgO。
The ceramic particles used in the present invention are preferably A(ho3, ZrCL, 'ri(L, MgO).

SrO,、NiONlol等の酸化物; 5iC1Ti
C。
Oxides such as SrO, NiONlol; 5iC1Ti
C.

W C1B 4 Cs Z r C等の炭化物; 5i
aN*、A12N。
Carbide such as W C1B 4 Cs Z r C; 5i
aN*, A12N.

’riN、ZrN等の窒化物;ZrBt、CrB、Ti
B2等のホウ化物から選ばれる1種あるいは2種以上の
らのが挙げられる。また、これらの化合物の固溶体を使
用してもよい。これら粉末の純度はセラミックス成分が
90wt%以上、粒径は0.05〜5.00μmのもの
が好ましい。純度90wt%未満では、セラミックスの
耐熱性、高硬度という特性が発現しない。粒径が上記範
囲以下では、粉末が凝集体を形成して均一な複合組織と
ならず、上記範囲以上では、焼結性か悪くなり、強度が
低く、高密度とならない。セラミックス粒子の使用量は
、50〜95wt%か望ましい。50%以下では、セラ
ミックスのもつ耐熱性、高強度、高硬度特性を発現させ
るのが困難で、96wt%以上ではBN複合による複合
効果が十分でない。
Nitride such as 'riN, ZrN; ZrBt, CrB, Ti
Examples include one or more borides selected from borides such as B2. Also, solid solutions of these compounds may be used. The purity of these powders is preferably 90 wt % or more as a ceramic component, and the particle size is preferably 0.05 to 5.00 μm. If the purity is less than 90 wt%, the characteristics of ceramics such as heat resistance and high hardness will not be exhibited. If the particle size is below the above range, the powder will form aggregates and will not form a uniform composite structure, and if it is above the above range, the sinterability will be poor, the strength will be low, and the density will not be high. The amount of ceramic particles used is preferably 50 to 95 wt%. If it is less than 50%, it is difficult to exhibit the heat resistance, high strength, and high hardness properties of ceramics, and if it is more than 96wt%, the composite effect of the BN composite is not sufficient.

本発明で使用するBN前駆体は、X線回折にょ7>l3
N(7)(002)面間隔が、2.15〜2.40人の
範囲のらので、結晶子の大きさが50〜2000人であ
ることが必要である。望ましくはBN前駆体は不純物と
して含まれるB、0.の含有率が5wL%以下のもので
ある。B N 面駆体のX線回折による(002)面間
隔が2.40人を越えた場合または結晶子の大きさか5
0人に足りない場合は、焼成による結晶化か難しくなり
、複合による特性向」二、例えば摺動性、加工性向上が
発現できない。
The BN precursor used in the present invention has an X-ray diffraction ratio of 7>l3
Since the N(7)(002) plane spacing is in the range of 2.15 to 2.40 crystallites, it is necessary that the crystallite size is 50 to 2000 crystallites. Preferably, the BN precursor contains B, 0. The content is 5wL% or less. When the (002) plane spacing by X-ray diffraction of B N plane carrier exceeds 2.40 or the crystallite size is 5
If the number is insufficient, it becomes difficult to crystallize by firing, and properties such as sliding properties and workability cannot be improved by compounding.

(OO2)面間隔が2.15人未満の場合または結晶子
の大きさが2000人を越えるときは、BN粒子とセラ
ミックス粒子との均一混合が困難となり、複合するセラ
ミックス種が限定される」二、焼成体の強度、加工面精
度が劣るものとなる。BN前駆体中のB、03成分が5
wt%以上の場合、焼成体中にB、03成分が残留し、
強度、加工性、摺動特性4こ劣る場合がある。
(OO2) When the interplanar spacing is less than 2.15 particles or the crystallite size exceeds 2000 particles, it becomes difficult to mix BN particles and ceramic particles uniformly, and the types of ceramics to be composited are limited. , the strength and machined surface accuracy of the fired body will be inferior. The B,03 component in the BN precursor is 5
If it is more than wt%, the B, 03 component remains in the fired body,
Strength, workability, and sliding properties may be inferior.

本発明に係わるBN而面体は、BN結晶の発達が不十分
で結晶子の小さいものであるが、このため活性に優れ、
−船釣にセラミックスとの馴染みや分散性がよく、用い
るセラミックスの焼成温度で容易にBNに結晶化する。
Although the BN metahedron according to the present invention has insufficiently developed BN crystals and small crystallites, it has excellent activity and
- It has good compatibility and dispersibility with ceramics for boat fishing, and easily crystallizes into BN at the firing temperature of the ceramics used.

このような13N前駆体の合成法は、具体的には従来か
ら知られている合成方法、例えば、ホウ酸、酸化ホウ素
、ホウ酸アンモニウム等をホウ酸源とし、尿素、メラミ
ン、ノンアンジアミド等の窒素を含む有機物を用いて窒
化還元する方法、ジボランを分解する方法、CVD法等
によって得られるが、工業的には還元窒化法が好ましい
。これらの方法において、上述の[3N 面駆体条件を
満たすためには特定の条件を選ぶことが必要である。
Specifically, the synthesis method of such a 13N precursor is a conventionally known synthesis method, for example, using boric acid, boron oxide, ammonium borate, etc. as a boric acid source, and using urea, melamine, non-andiamide, etc. It can be obtained by a nitridation reduction method using a nitrogen-containing organic substance, a method of decomposing diborane, a CVD method, etc., but the reduction nitridation method is industrially preferred. In these methods, it is necessary to select specific conditions in order to satisfy the above-mentioned [3N surface precursor condition.

本発明で使用するBN前駆体の量は5〜50vt%が望
ましい。5wt%以下では前述と同様にBN複合による
複合効果が不十分となることがあり、50w(5以上で
はセラミックス本来の高強度、高硬度特性が発現しない
ためである。
The amount of the BN precursor used in the present invention is preferably 5 to 50 vt%. If it is less than 5wt%, the composite effect of the BN composite may be insufficient as described above, and if it is more than 50w (5wt%), the high strength and high hardness characteristics inherent to ceramics will not be expressed.

本発明のセラミックス−BN系複合材料の製造方法は、
前述の限定したセラミックス粒子とBN萌駆体を混合し
た後、金型プレス、鋳込み成型、射出成型等で予備成型
する。必要に応じて、脱脂した後、熱間ダイス、ガラス
カプセル、金属カプセル等中に前記予備成形体を挿入し
、10〜120 M P a、好ましくは20〜loO
MPaの圧力で、該セラミックスの焼成温度のもとで、
非酸化性雰囲気中で焼成して得られる。
The method for manufacturing the ceramic-BN composite material of the present invention includes:
After mixing the above-described limited ceramic particles and the BN precursor, preliminary molding is performed by die pressing, cast molding, injection molding, or the like. If necessary, after degreasing, the preform is inserted into a hot die, a glass capsule, a metal capsule, etc., and heated to 10 to 120 MPa, preferably 20 to 1000
At a pressure of MPa and at a firing temperature of the ceramic,
Obtained by firing in a non-oxidizing atmosphere.

一般的には熱間ダイスの場合はポットプレス、カプセル
の場合はlI T P (熱間静水圧プレス)が用いら
れろ。雰囲気ガスは、セラミックス種により、Ar、 
I−[c、 N2、Co等が1種または2種以上混合し
て用いられる。
Generally, a pot press is used for hot dies, and an ITP (hot isostatic press) is used for capsules. The atmospheric gas may be Ar,
I-[c, N2, Co, etc. may be used alone or in combination of two or more.

[実施例] 次に本発明によって得られたセラミックス−BN系複合
材料の特徴を実施例で詳述する。
[Example] Next, the characteristics of the ceramic-BN composite material obtained by the present invention will be described in detail in Examples.

実施例1−10および比較例1〜6 実施例1〜10は、第1表に示すセラミックス粒子とB
 N 1iii駆体をエタノール中で湿式混合、乾燥し
、全形プレスで予備成形した後、所定の雰囲気、温度て
10〜60MPaの圧力でホットプレスしたちのである
Examples 1-10 and Comparative Examples 1-6 Examples 1-10 were prepared using ceramic particles shown in Table 1 and B
The N1iii precursor was wet mixed in ethanol, dried, preformed in a full-size press, and then hot pressed at a pressure of 10 to 60 MPa in a predetermined atmosphere and temperature.

比較例1は所定の温度で、無加圧真空焼成したちのであ
る。比較例2〜6は実施例と同様の条件で焼成したもの
である。
Comparative Example 1 was baked at a predetermined temperature in a vacuum without pressure. Comparative Examples 2 to 6 were fired under the same conditions as the Examples.

上記複合材料について強度等を測定して、第1表に示す
。曲げ強度は、J[5I604Rに基づき、硬度は、ビ
ッカース硬度計によりIOKgfの荷重で、摩擦係数、
摩耗量はピン−オンディスク法により、3に9fの荷重
で、相手材に該セラミックス単味焼結体を選び、300
 rpmの回転数で測定した。加工面精度は、平面研削
盤でRmax= 120sまで研削した後、研磨盤で、
3μmのダイヤモンドペーストでラッピング、1μmの
ダイヤモンドペーストでポリッシングした後、レーダー
式非接触表面粗さ計で測定した。
The strength etc. of the above composite material were measured and are shown in Table 1. Bending strength is based on J[5I604R, hardness is measured using a Vickers hardness tester at a load of IOKgf, friction coefficient,
The amount of wear was determined by the pin-on-disk method, using a load of 9 f on 3, selecting the ceramic single sintered body as the mating material, and measuring 300.
The rotation speed was measured in rpm. The machined surface accuracy is determined by grinding with a surface grinder to Rmax = 120s, then using a polishing machine.
After lapping with 3 μm diamond paste and polishing with 1 μm diamond paste, the surface roughness was measured using a radar type non-contact surface roughness meter.

実施例1の複合材料をメカニカルシールに適用したとこ
ろ、従来材料に較べ、シール性も良好で長時間の耐久性
を示した。
When the composite material of Example 1 was applied to a mechanical seal, it showed better sealing performance and long-term durability compared to conventional materials.

実施例4の複合材料を転がり軸受リテーナ−に精密加工
し、使用したところ、無潤滑で長時間の耐久性を示した
When the composite material of Example 4 was precisely machined into a rolling bearing retainer and used, it showed long-term durability without lubrication.

実施例5の複合材料を撚糸リングとして使用したところ
、従来材料に較べ、低摩擦係数、高耐久性を示した。
When the composite material of Example 5 was used as a twisted ring, it exhibited a lower coefficient of friction and higher durability than conventional materials.

実施例7の複合材料を磁気へラドスタビライダーとして
、使用したところ、無潤滑で長時間の耐久性を示した。
When the composite material of Example 7 was used as a magnetic helad stabilizer, it showed long-term durability without lubrication.

実施例IOの複合材料を鋼線の線びきダイスに適用した
ところ、鋼線の焼き付きも無く、長時間の耐久性を示し
た。
When the composite material of Example IO was applied to a wire drawing die for steel wire, the steel wire did not seize and exhibited long-term durability.

さらに本発明を用いた部品を上述の磁気媒体と摺接する
各種接触部分に用いることにより、媒体との摺動特性を
向上させ、摩擦係数が少なく媒体を傷つけることなく、
長時間にわたり安定した記録再生特性をもたせることが
できた。
Furthermore, by using parts using the present invention in various contact parts that come into sliding contact with the above-mentioned magnetic medium, the sliding characteristics with the medium can be improved, and the friction coefficient is small and the medium will not be damaged.
It was possible to provide stable recording and reproducing characteristics over a long period of time.

[発明の効果] 以上述べたごとく、本発明により調製されたセラミック
ス−BN系複合材料は、セラミックスとBN前駆体の種
と複合割合、焼成条件を限定しであるため、セラミック
ス本来の強度、硬度を保ったまま、摺動特性、加工面精
度に優れる材料である。従って、転がり軸受、メカニカ
ルシール、磁気ヘッドスライダ−等の無潤滑摺動部材と
して、極めて好適な材料である。本発明の複合材料を用
いろと、装置の耐久性、信頼性が著しく向上し、産業上
有用である。
[Effects of the Invention] As described above, the ceramic-BN composite material prepared according to the present invention does not have the inherent strength and hardness of ceramics because the species, composite ratio, and firing conditions of the ceramic and BN precursor are limited. It is a material with excellent sliding properties and machined surface accuracy while maintaining the same properties. Therefore, it is an extremely suitable material for non-lubricated sliding members such as rolling bearings, mechanical seals, and magnetic head sliders. Use of the composite material of the present invention significantly improves the durability and reliability of the device, making it industrially useful.

Claims (5)

【特許請求の範囲】[Claims] 1.X線回折によるBN(002)面間隔が2.15〜
2.40Åかつ結晶子の大きさが50〜2000ÅのB
N前駆体5〜50wt%と、セラミックス粒子95〜5
0wt%とからなる混合物を予備成型した後、10〜1
20MPaの圧力下で焼成することを特徴とするセラミ
ックス−BN系複合材料の製造方法。
1. BN (002) plane spacing by X-ray diffraction is 2.15~
B with a crystallite size of 2.40 Å and 50 to 2000 Å
N precursor 5-50wt% and ceramic particles 95-5%
After preforming a mixture consisting of 0 wt%, 10 to 1
A method for producing a ceramic-BN composite material, which comprises firing under a pressure of 20 MPa.
2.該セラミックス粒子が酸化物、炭化物、窒化物、ま
たはホウ化物の内の一種または二種以上の粒子からなり
、かつそれらの含有量が50〜95wt%であることを
特徴とする、請求項1記載のセラミックス−BN系複合
材料の製造方法。
2. Claim 1, wherein the ceramic particles are composed of particles of one or more of oxides, carbides, nitrides, and borides, and have a content of 50 to 95 wt%. A method for producing a ceramic-BN composite material.
3.機械要素がその可動する部分を有し、一時的または
常時接触し、かつ相対的に摺動する摺動部品に於て少な
くとも、その摺動面が請求項1記載の方法によって製造
されたセラミックス−BN系複合材料により構成されて
いることを特徴とする摺動部品。
3. In sliding parts in which the mechanical element has a movable part, contacts temporarily or permanently, and slides relative to each other, at least the sliding surface thereof is made of ceramic manufactured by the method according to claim 1. A sliding part characterized by being made of a BN-based composite material.
4.請求項3記載の摺動部品を用いた精密機械。4. A precision machine using the sliding part according to claim 3. 5.記録媒体と一時的又は常時接触し、かつ相対的に摺
動する部品を具備する磁気媒体装置に於て、少なくとも
その摺動面が請求項1記載の方法によって製造されたセ
ラミックス−BN系複合材料により構成されていること
を特徴とする摺動部6.請求項5記載の摺動部品を用い
る磁気媒体装置。
5. In a magnetic media device comprising parts that are in temporary or permanent contact with a recording medium and slide relative to each other, at least the sliding surface thereof is a ceramic-BN composite material manufactured by the method according to claim 1. A sliding portion 6. A magnetic media device using the sliding component according to claim 5.
JP63154064A 1988-06-22 1988-06-22 Method for producing ceramic-BN composite material Expired - Fee Related JP2641257B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63154064A JP2641257B2 (en) 1988-06-22 1988-06-22 Method for producing ceramic-BN composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63154064A JP2641257B2 (en) 1988-06-22 1988-06-22 Method for producing ceramic-BN composite material

Publications (2)

Publication Number Publication Date
JPH01320255A true JPH01320255A (en) 1989-12-26
JP2641257B2 JP2641257B2 (en) 1997-08-13

Family

ID=15576109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63154064A Expired - Fee Related JP2641257B2 (en) 1988-06-22 1988-06-22 Method for producing ceramic-BN composite material

Country Status (1)

Country Link
JP (1) JP2641257B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993020023A1 (en) * 1992-03-31 1993-10-14 Sumitomo Electric Industries, Ltd. Sliding member and production thereof
JP2010254545A (en) * 2009-03-31 2010-11-11 Mitsui Mining & Smelting Co Ltd Silicon nitride-based composite ceramic and method for producing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993020023A1 (en) * 1992-03-31 1993-10-14 Sumitomo Electric Industries, Ltd. Sliding member and production thereof
US5543371A (en) * 1992-03-31 1996-08-06 Sumitomo Electric Industries, Ltd. Slide member and method of manufacturing the same
US5776600A (en) * 1992-03-31 1998-07-07 Sumitomo Electric Industries, Ltd. Slide member and method of manufacturing the same
JP2010254545A (en) * 2009-03-31 2010-11-11 Mitsui Mining & Smelting Co Ltd Silicon nitride-based composite ceramic and method for producing the same
JP4667520B2 (en) * 2009-03-31 2011-04-13 三井金属鉱業株式会社 Silicon nitride based composite ceramics and method for producing the same

Also Published As

Publication number Publication date
JP2641257B2 (en) 1997-08-13

Similar Documents

Publication Publication Date Title
US4650774A (en) Magnetic head slider material
EP0113660A2 (en) Nitride based cutting tool
US5656213A (en) Process for the production of carbon-filled ceramic composite material
EP0497345B1 (en) Composite ceramic sintered material, process for producing the same, and slider member using the same
CN111517798A (en) Carbide-based ceramic material, preparation method and application thereof
JPH01320255A (en) Production of ceramic-bn based composite material
JPH01320254A (en) Ceramic-carbon based composite material and its production
JP2836866B2 (en) Ceramic-SiC-molybdenum disulfide-based composite material and its sliding parts
JP3147511B2 (en) Alumina sintered body for tools
JP2968293B2 (en) Method for producing silicon carbide carbon composite ceramics compact
JPH059055A (en) Ceramics-carbon system composite material, its manufacture and sliding component
JPH0797256A (en) Sintered body of aluminum oxide base and its production
JP3153518B2 (en) Silicon carbide carbon composite ceramics
JPS6256106B2 (en)
JP3793644B2 (en) Multi-layer sleeve and die casting machine
JP2752417B2 (en) Preparation of Alumina-Molybdenum Disulfide Composite
JPH06183841A (en) Low frictional ceramic
JPS62138377A (en) Silicon carbide base composite material
JP3793646B2 (en) Die-casting machine plunger device and die-casting machine
JPS5891059A (en) Composite ceramic sintered body and manufacture
JPS6016867A (en) High hardness sintered body
JP3793647B2 (en) Multi-layer sleeve and die casting machine
CN115403380A (en) Application of excellent wear-resistant fluorite structure high-entropy ceramic material
JPS61201665A (en) Silicon nitride base sintered body and manufacture
CN115259857A (en) Cr-Ti-Mo-based MAX ceramic material, and preparation method and use method thereof

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees