JPH01319632A - Production of silicon steel plate - Google Patents

Production of silicon steel plate

Info

Publication number
JPH01319632A
JPH01319632A JP15373588A JP15373588A JPH01319632A JP H01319632 A JPH01319632 A JP H01319632A JP 15373588 A JP15373588 A JP 15373588A JP 15373588 A JP15373588 A JP 15373588A JP H01319632 A JPH01319632 A JP H01319632A
Authority
JP
Japan
Prior art keywords
austenite
ferrite
silicon steel
annealing
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15373588A
Other languages
Japanese (ja)
Other versions
JP2590533B2 (en
Inventor
Toshiro Tomita
俊郎 富田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP15373588A priority Critical patent/JP2590533B2/en
Publication of JPH01319632A publication Critical patent/JPH01319632A/en
Application granted granted Critical
Publication of JP2590533B2 publication Critical patent/JP2590533B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PURPOSE:To produce the silicon steel sheet having excellent magnetic characteristics by subjecting a cold rolled silicon steel sheet contg. specific ratios of C and N to weak decarburizing and denitrizing, then further to annealing in the decarburizing and denitrizing atmosphere. CONSTITUTION:The cold rolled silicon steel sheet which contains, by weight %, 0.2-6.5% Si, >=0.005% Nb, >=0.03% C+N or further contains one or >=2 kinds of <=4.0% Mn, <=3.0% Al, and <=1.0% Co is annealed in a vacuum or the weak decarburizing and denitrizing atmosphere of an inert gas, CO, CO2, H2, etc., in the two phase region of alpha-ferrite+austenite or the single phase region of austenite and in the temp. region where the alpha-austenite alone is formed when C and N are removed. The surface layer part is decarburized and denitrized by this annealing, by which the single phase of the alpha-austenite is formed and the two phases of the alpha-ferrite+austenite or the single phase of the alpha-austenite still remains in the inside. The steel sheet is subjected to the strong decarburizing and denitrizing annealing so as to attain <=0.01% C+N in gaseous H2 to integrate the <100> axes at a high rate to the steel sheet surface to form the columnar grain structure of the alpha-ferrite phase. The silicon steel sheet having the excellent magnetic characteristics as the magnetic core of a transformer, etc., is thus obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、(1001面集合組織をもった珪素鋼板、特
に板面に対して垂直方向に成長した結晶粒からなり、板
面に対して垂直方向に<100>軸が高度に集積した電
磁用の珪素鋼板の製造方法に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention is a silicon steel plate having a 1001-plane texture, in particular consisting of crystal grains grown perpendicular to the plate surface, The present invention relates to a method of manufacturing a silicon steel plate for electromagnetic use in which <100> axes are highly integrated in the vertical direction.

より具体的には回転機、変圧器、発電機等の磁心として
用いられる磁気特性に優れた珪素鋼板の製造方法に関す
る。
More specifically, the present invention relates to a method of manufacturing a silicon steel sheet with excellent magnetic properties used as a magnetic core for rotating machines, transformers, generators, etc.

(従来の技術) 回転機、変圧器等の磁心には従来より珪素鋼板が用いら
れている。この珪素鋼板に要求される磁性は交番磁界中
での磁気的なエネルギー損失(鉄損)が少なく、実用的
な磁界中での磁束密度が高いということである。これを
実現するには電気抵抗を高め、容易磁化方向であるbc
c格子の< 100 >方向を使用する際の磁界の方向
に集積させた鋼板とすることが必要となる。
(Prior Art) Silicon steel plates have conventionally been used for magnetic cores of rotating machines, transformers, etc. The magnetic properties required of this silicon steel plate include low magnetic energy loss (core loss) in an alternating magnetic field and high magnetic flux density in a practical magnetic field. To achieve this, the electrical resistance must be increased, and bc is the easy magnetization direction.
When using the <100> direction of the c lattice, it is necessary to use steel plates that are integrated in the direction of the magnetic field.

現在3%程度のSiを含む一方向性珪素鋼板では圧延方
向に< 100 >軸が集積し、圧延方向に磁界をかけ
て使用した場合価れた磁気特性を示す。しかし、回転機
等磁界が板面内の色々な方向にかかるような場合には、
この一方向性珪素鋼では圧延方向以外の方向に磁化し難
いため使用できず、いわゆる無方向性珪素鋼板が使用さ
れてきている。
Currently, unidirectional silicon steel sheets containing about 3% Si have <100> axes accumulated in the rolling direction, and exhibit excellent magnetic properties when used with a magnetic field applied in the rolling direction. However, in cases where the magnetic field is applied in various directions within the plate surface, such as in a rotating machine,
This unidirectional silicon steel cannot be used because it is difficult to magnetize in directions other than the rolling direction, and so-called non-oriented silicon steel sheets have been used.

このような板面内の1つの方向だけでなく2つ以上の方
向に磁界が加わる場合に最も適した集合組織は板面垂直
方向に< 100 >軸が集積したものである。なぜな
ら、この場合、3つの互いに直交した< 100 >軸
のうち2つの< 100 >軸、すなわちち容易磁化方
向が必ず板面内にあるためである。
When a magnetic field is applied not only in one direction but in two or more directions within the plate surface, the most suitable texture is one in which <100> axes are accumulated in the direction perpendicular to the plate surface. This is because in this case, two of the three <100> axes orthogonal to each other, that is, the easy magnetization directions, are always within the plate plane.

板面内での<100>軸の集積具合は、用途によって望
まれるものが異なる。たとえば、板面内の互いに直交す
る2方向に磁界か加わるE I型磁心のような場合は(
1001<001>もしくは(1001<011>方位
の集合組織が好ましく、板面内のあらゆる方向に磁界が
加わる回転機のような場合には1100+面内無方向集
合Mi織のものを使うか、もしくは(100) <00
1>、+100+ <011>型集合組織のものを板面
内での角度を変えて打ち抜いたものを重ねて使用するの
が好ましい。
The desired degree of accumulation of <100> axes within the plate surface varies depending on the application. For example, in the case of an E I-type magnetic core where the magnetic field is applied in two mutually orthogonal directions within the plate surface (
A texture of 1001<001> or (1001<011> orientation is preferable, and in the case of a rotating machine where a magnetic field is applied in all directions within the plate plane, a texture of 1100 + in-plane non-directional set Mi texture is used, or (100) <00
1>, +100+ <011> type textures are preferably punched out at different angles within the plane of the plate and used in a stacked manner.

現在までに知られている板面垂直方向に<1.00>軸
を持つ結晶粒組織の製造方法は次の通りである。
The method of producing a crystal grain structure having a <1.00> axis in the direction perpendicular to the plate surface that has been known so far is as follows.

(1)凝固組織を用いる方法: 鋼を凝固させると熱流方向に<1.00>軸を持つ結晶
が成長する。よって板状に凝固させると熱流力IJ L
i冷却面である板面に垂直となり、この方向に< 10
0 >軸が配向した結晶粒組織となる。
(1) Method using solidification structure: When steel is solidified, crystals with a <1.00> axis in the direction of heat flow grow. Therefore, when solidified into a plate shape, the heat flow force IJ L
i It is perpendicular to the plate surface which is the cooling surface, and in this direction < 10
0> A crystal grain structure with oriented axes.

(1−1)最近溶湯超急冷法と呼ばれる高速回転する冷
却ロールの表面に溶湯を吹き出し、0.05〜0゜5m
m厚程鹿の薄板を直接製造する方法が研究されている。
(1-1) Recently, the molten metal is blown out onto the surface of a cooling roll that rotates at high speed, which is called the molten metal super-quenching method, and the molten metal is 0.05 to 0.5 m thick.
A method for directly manufacturing deer thin plates with a thickness of m is being researched.

この方法で6%程度の31を含む珪素鋼薄帯を製造する
と板面に垂直かもしくはそれから20〜30°傾いた方
向に長軸を持つ柱状粒組織となる。しかし板面垂直方向
の<100>軸密度は配向性のないものの高々3〜6倍
であり、<1.0(1>軸の集積度は不十分である。ま
たこの製法では板厚精度が悪く電磁鋼板にとって必要な
高い占積率は確保できない。
When a silicon steel ribbon containing about 6% of 31 is produced by this method, it has a columnar grain structure with its long axis perpendicular to the plate surface or inclined at 20 to 30 degrees therefrom. However, the <100> axis density in the direction perpendicular to the sheet surface is at most 3 to 6 times that of the non-oriented one, and the density of <1.0 (1>) axes is insufficient.In addition, this manufacturing method has poor sheet thickness accuracy. Unfortunately, the high space factor required for electrical steel sheets cannot be secured.

(1−2)インゴノ1〜柱状晶の(100)繊維組織を
利用した(100) <001>集合組織珪素鋼の製造
方法にあっては、特殊な鋳造方法によって製造した柱状
晶インゴットを(100)面が圧延面となるように圧延
し、1000℃以上の温度で焼鈍する。
(1-2) Ingo No. 1 - In the method for producing (100) <001> textured silicon steel using the (100) fiber structure of columnar crystals, a columnar crystal ingot manufactured by a special casting method is ) is rolled so that the surface becomes the rolled surface, and annealed at a temperature of 1000° C. or higher.

(2)高温焼鈍による方法: (2−1)厚さ0.15mm以下の薄珪素鋼板の場合、
弱酸化性の雰囲気中1000°C以上の温度で焼鈍する
と、結晶粒は一度板厚程度の大きさに成長した後、板面
垂直方向に<100>軸を持った結晶粒が表面エネルギ
ーを駆動力として優先成長する。
(2) High-temperature annealing method: (2-1) For thin silicon steel sheets with a thickness of 0.15 mm or less,
When annealed at a temperature of 1000°C or higher in a slightly oxidizing atmosphere, the crystal grains grow to a size comparable to the thickness of the plate, and then the crystal grains with <100> axes perpendicular to the plate surface drive surface energy. Prioritize growth as a strength.

(2−2) 重量のAl等を添加した珪素鋼を交叉圧延
(0’ と90°方向に2回冷間圧延する圧延方法)し
、1150°Cの温度で最終の焼鈍を行うと(100)
< 001 >方位の結晶粒が2次再結晶するため、こ
れを利用してその集積度を高める。
(2-2) When silicon steel to which a certain amount of Al or the like is added is cross-rolled (a rolling method in which cold rolling is performed twice in the 0' and 90° directions) and the final annealing is performed at a temperature of 1150°C (100° )
Since crystal grains with <001> orientation undergo secondary recrystallization, this is utilized to increase their degree of integration.

(発明が解決しようとする課H) このように、従来技術にあってもすでにいくつか提案さ
れているが、今日要求されている特性からすれば、(1
−1)の方法では、< 100 >軸の集積度が低くか
つ板厚精度、占積率に劣る。
(Problem H to be solved by the invention) As described above, several proposals have already been made in the prior art, but considering the characteristics required today, (1)
In method -1), the degree of integration of the <100> axis is low and the plate thickness accuracy and space factor are poor.

一方、(1−2>、(2−1)、(2−2)の方法で得
られる組織は集積度を高めようとすると非常に大きな結
晶粒組織となり通常板厚の10〜100倍の結晶粒とな
る。このため静磁界中ての磁化特性は良好でも、交番磁
界中では渦電流損失が大きく、十分に低損失とはならな
い。
On the other hand, the structures obtained by methods (1-2>, (2-1), and (2-2) become very large grain structures when trying to increase the degree of integration, resulting in crystals that are 10 to 100 times the thickness of the normal plate. Therefore, even if the magnetization characteristics in a static magnetic field are good, the eddy current loss is large in an alternating magnetic field, and the loss is not sufficiently low.

また、(1−2)では特殊な鋳造方法によるインゴット
を用い、(2−1)では0.15mm以下という薄い板
にしか適用できず(2−2ンでは交叉圧延という長尺の
a板には適用できない圧延方法によっており、工業的に
は実用化が非常に困難である。
In addition, (1-2) uses an ingot made by a special casting method, and (2-1) can only be applied to thin plates of 0.15 mm or less (2-2) can only be applied to long A plates by cross rolling. This method uses an inapplicable rolling method and is extremely difficult to put into practical use industrially.

なお、特開昭61−44130号−一一一一にてSi:
2.0〜8.0重量%、C:0.016〜1.000重
量%を含有する高珪素鉄合金超急冷薄帯を600〜13
00℃で脱炭焼鈍することを特徴とする面内無方向性電
磁鉄板の製造方法が開示されているが、これは焼鈍開始
時の低温での粒成長を抑制し、逆に高温域での粒成長性
を促進させるための方法であり、結晶方位制御について
は何ら言及されていない。
In addition, Si:
A high-silicon iron alloy super-quenched ribbon containing 2.0-8.0% by weight and C: 0.016-1.000% by weight is 600-13% by weight.
A method for manufacturing an in-plane non-oriented electromagnetic iron sheet is disclosed, which is characterized by decarburizing annealing at 00°C. This is a method for promoting grain growth, and there is no mention of crystal orientation control.

(課題を解決するための手段) ここに、本発明者らは、以上のような課題を解決するた
め研究を重ねた結果、CおよびNを含有する冷間圧延珪
素鋼板は弱脱炭・脱窒焼鈍時に、オーステナイト相から
α−フェライト相へ変態する際に、板面に垂直方向に<
100>軸か強く配向すること、および、この結晶を強
脱炭・脱窒焼鈍ずれば板厚中心に向かって成長すること
を見出し、本発明を完成した。
(Means for Solving the Problems) As a result of repeated research to solve the above problems, the present inventors have found that cold-rolled silicon steel sheets containing C and N are weakly decarburized and decarburized. During nitride annealing, when transforming from austenite phase to α-ferrite phase, <
The present invention was completed by discovering that the 100> axis is strongly oriented and that if this crystal is shifted by strong decarburization and denitrification annealing, it grows toward the center of the plate thickness.

本発明の要旨は、Si: 0.2〜6.5呵%、N:≧
0.005 wt%かつC+N: 20.03wt%を
含有する冷間圧延鋼帯を、そのオーステナイト単相また
はオーステナイI・相とα−フェライト相の二相状態に
なる温度であって、その脱炭・脱窒後、実質的にα−フ
ェライト単相となる温度で、かつ脱炭・脱窒性雰囲気中
で、C+ N : 50.01wt%となるまで焼鈍す
るごとにより、板面に対しく1.00>軸を高度に集積
させることを特徴とする珪素鋼板の製造方法である。
The gist of the present invention is that Si: 0.2-6.5%, N:≧
A cold rolled steel strip containing 0.005 wt% and C+N: 20.03 wt% is decarburized at a temperature at which it becomes a single austenite phase or a two-phase state of austenite I phase and α-ferrite phase.・After denitrification, each time annealing is performed at a temperature at which α-ferrite becomes a single phase and in a decarburizing/denitrifying atmosphere until C+N: 50.01 wt%. This is a method for producing a silicon steel plate characterized by highly integrating .00> axes.

前記冷間圧延鋼帯としては、前記成分に、さらにMn=
  54wt%、八Q: 53wt%およびco=  
51wt%のうち1種または2種以上を含有してもよい
In addition to the above components, the cold rolled steel strip further includes Mn=
54wt%, 8Q: 53wt% and co=
One or more of these may be contained in an amount of 51 wt%.

(作用) 本発明をさらに詳細に説明すれば、次の通りである。(effect) The present invention will be explained in more detail as follows.

C,Nでオーステナイト相領域を拡大した冷間圧延珪素
鋼をまずα−フェライト−トオーステナイト二組成もし
くはオーステナイト相温度域でかつC,Nを除去したと
きα−フェライl−単相となる温度域で、一般には85
0〜1000℃の温度域で真空中、もしくは露点−20
°C以下の不活性ガス、C01CO2および水素ガス雰
囲気等の弱脱炭・脱窒性であり、かつ弱酸化性または非
酸化性の雰囲気中で焼鈍する。この焼鈍によって表面か
ら5〜50μmの部分が脱炭、脱窒され、α−フェライ
ト相単相となる。内部は依然としてα−フェライト+オ
ーステナイI・二相もしくはα−フェライト単相である
A cold-rolled silicon steel whose austenite phase region has been expanded with C and N is first in the α-ferrite-thaustenite two composition or austenite phase temperature range, and when C and N are removed, it becomes an α-ferrite l-single phase. So, generally 85
In a vacuum at a temperature range of 0 to 1000℃ or at a dew point of -20
Annealing is performed in a weakly decarburizing/denitrifying, weakly oxidizing or non-oxidizing atmosphere such as an inert gas, CO1CO2, and hydrogen gas atmosphere at a temperature below 0.9°C. By this annealing, a portion of 5 to 50 μm from the surface is decarburized and denitrified, resulting in a single α-ferrite phase. The interior is still α-ferrite + Austenite I two-phase or α-ferrite single phase.

このような弱脱炭・脱窒性の雰囲気中では、表面部分は
容易に脱炭されるが、表面から100μm以」―まで脱
炭・脱窒するには非常に多くの時間を要するので、表面
のα−フェライト粒は内部へはゆっくりとしか成長せず
、板面内方向へと2次元的に成長する。このとき、板面
に対し垂直方向に< 100 >軸を持った粒が優先的
に成長し、表面のα−フェライト相単相領域は、板面垂
直方向に< 100 >軸が強く配向した組織となる。
In such a weakly decarburizing and denitrifying atmosphere, the surface portion is easily decarburized, but it takes a very long time to decarburize and denitrify up to 100 μm from the surface. The α-ferrite grains on the surface grow only slowly inward, and grow two-dimensionally in the in-plane direction of the plate. At this time, grains with <100> axes perpendicular to the plate surface preferentially grow, and the α-ferrite single phase region on the surface has a structure in which the <100> axis is strongly oriented in the direction perpendicular to the plate surface. becomes.

この表面α−フェライト粒の直径は高々30〜300μ
m程度であるが、集積度は非常に高い。
The diameter of these surface α-ferrite grains is at most 30 to 300μ.
m, but the degree of integration is very high.

続いて強く脱炭、脱窒の生じるたとえば露点が+30°
Cの水素中で600℃以上かつ脱炭・脱窒後α−フェラ
イト単相となる温度で焼鈍すると、表面α−フェライト
粒が内部のα−フェライト+オーステナイトニ相もしく
はオーステナイI・組成に向って成長し、最終的には両
表面から内部へ向って成長した柱状粒が板厚中心部で衝
突したα−フェライト相の柱状粒組織となる。
Subsequently, strong decarburization and denitrification occur, for example, when the dew point is +30°
When annealing in C hydrogen at a temperature of 600°C or higher and at a temperature at which α-ferrite becomes a single phase after decarburization and denitrification, the surface α-ferrite grains shift toward the internal α-ferrite + austenite dual phase or austenite I composition. Eventually, the columnar grains grown inward from both surfaces collide at the center of the plate thickness, resulting in a columnar grain structure of the α-ferrite phase.

このようにα−フェライト→オーステナイト変態を利用
して表面で生成した集合MJ織が内部にまで受は継がれ
る。
In this way, the aggregated MJ weave generated on the surface by utilizing α-ferrite → austenite transformation is continued to the inside.

本発明において鋼組成および熱処理条件ならびに組織に
ついて種々限定するが、その限定理由は次の通りである
。なお、特にことわりがない限り「%」は「4%」であ
る。
In the present invention, various limitations are made regarding the steel composition, heat treatment conditions, and structure, and the reasons for the limitations are as follows. Note that "%" is "4%" unless otherwise specified.

訓戚二 Si:透磁率および電気抵抗値を増加し、鉄損値を減少
させるため、また、機械的強度を上げるため0.2%以
」二とする。一方、過剰に加えると磁束密度が低下し、
かつ脆化するため、6.5%以下とする。好ましくは0
.6%以上、5%以下、より好ましくは0.8%以上、
4%以下である。
Silicon: 0.2% or more in order to increase magnetic permeability and electrical resistance, reduce iron loss, and increase mechanical strength. On the other hand, if too much is added, the magnetic flux density will decrease,
In addition, it becomes brittle, so the content should be 6.5% or less. Preferably 0
.. 6% or more, 5% or less, more preferably 0.8% or more,
It is 4% or less.

C,Nニオ−ステナイト域を拡大し、オーステナイト−
α−フェライト変態による集合組織制御を行うためC,
Nば1種もしくは2種を総量で0.005呵%以上、か
つC]−Nが0.03%以上含有させる。最終焼鈍によ
ってCは0.005%以下、好ましくは0.003%以
下、Nは0.01%以下、好ましくは0.005%以下
まで除去する必要があり、余り多量に加えるとこの脱炭
・脱窒焼鈍に長時間を要するので総量で1%以下とする
のが好ましい。
Expanding the C,N niostenite region and austenite
C, to control texture by α-ferrite transformation;
The total amount of one or two types of N is 0.005% or more, and C]-N is 0.03% or more. It is necessary to remove C to 0.005% or less, preferably 0.003% or less, and N to 0.01% or less, preferably 0.005% or less by final annealing. Since denitrification annealing takes a long time, the total amount is preferably 1% or less.

好ましくは0.04wt%以上、0.5 wt%以下、
より好ましくは0.06wt%以上、0.3 wt%以
下である。また、Nは珪素鋼中に0.1%以上添加する
ことは困難であり、かつ特にAlを含有させた場合、A
lNとして固着され、1000°C以下の温度では鋼中
へ容易に溶解しないため、Nに代えてCを用いるほうが
好ましい。
Preferably 0.04 wt% or more and 0.5 wt% or less,
More preferably, it is 0.06 wt% or more and 0.3 wt% or less. In addition, it is difficult to add N to silicon steel in an amount of 0.1% or more, and especially when Al is included,
Since C is fixed as lN and does not easily dissolve into steel at temperatures below 1000°C, it is preferable to use C instead of N.

Mnニオ−ステナイト−α−フェライト変態による集合
組織制御を容易にするため添加することが好ましい。し
かし、Mnばオーステナイト域拡大元素であり、余り多
量に加えると変態温度が過度に低下してしまう。最終焼
鈍の後期は、脱炭・脱窒後、α−フェライト単相となる
温度で焼鈍する必要−ト、この焼鈍温度をあまり低下さ
せないため、脱炭・脱窒後のα−フェライトからオース
テナイトへの変態温度が850°C以上となるよう少量
添加する。さらに、珪素鋼板としては余り過剰に加える
と磁束密度が低下するため、4%以下とするのが好まし
い。具体的に添加できるMn量はα−フェライI・域拡
犬元素であるSi、Al量に依存するが1%の31を含
有する場合およそ2.2%Mn以下、2%のSiを含有
する場合、およそ3.5%Mn以下である。
It is preferable to add Mn to facilitate texture control through niostenite-α-ferrite transformation. However, Mn is an element that expands the austenite region, and if it is added in too large a quantity, the transformation temperature will drop excessively. In the latter stage of final annealing, it is necessary to anneal at a temperature at which α-ferrite becomes a single phase after decarburization and denitrification.In order not to lower this annealing temperature too much, α-ferrite changes to austenite after decarburization and denitrification. A small amount is added so that the transformation temperature of is 850°C or higher. Furthermore, for a silicon steel plate, if too much is added, the magnetic flux density will decrease, so it is preferably 4% or less. The specific amount of Mn that can be added depends on the amount of Si and Al, which are α-ferrite I and range-expanding elements, but when 1% of 31 is contained, it is approximately 2.2% Mn or less, and 2% of Si is contained. In this case, the Mn content is approximately 3.5% or less.

#Alば透磁率および電気抵抗値を上げ、鉄損値を低下
させるので添加することが好ましい。
It is preferable to add #Al because it increases magnetic permeability and electrical resistance and decreases iron loss.

しかし、過剰添加は脆化させるため、また最終焼鈍時に
表面酸化および内部酸化を生し易くさせるので3%以下
が好ましい。より好ましくは1%以下、さらに好ましく
は0.8%以下である。
However, since excessive addition causes embrittlement and facilitates surface oxidation and internal oxidation during final annealing, it is preferably 3% or less. More preferably it is 1% or less, and still more preferably 0.8% or less.

Co+磁束密度を上昇させるため添加してもよいが、1
%を超えると効果がない。
Co+ may be added to increase the magnetic flux density, but 1
If it exceeds %, it has no effect.

その他所望により添加しても効果を減じない元素および
量は次の通りである。
Other elements and amounts that do not reduce the effect even if added as desired are as follows.

Ni52%、Mo51%、Cr51%、Cu51%、S
 ≦0.5 %、 P ≦0.5 %、 八S≦0.0
5%、Se≦0.05%、sb≦0.1%、B≦0.0
1%、TaS2,1%、750.05%、TiS2.0
5%。
Ni52%, Mo51%, Cr51%, Cu51%, S
≦0.5%, P≦0.5%, 8S≦0.0
5%, Se≦0.05%, sb≦0.1%, B≦0.0
1%, TaS2.1%, 750.05%, TiS2.0
5%.

左田1日刺が汰: 冷間圧延を施したものであれば特に問題はない。Saida 1st day sashigata: There is no particular problem as long as it is cold rolled.

ここで冷間圧延とは再結晶の生じない500°C以下の
温度での圧延を言う。冷間圧延に際して、好ましくは2
0%以上、より好ましくは50%以上の圧延率が良い。
Here, cold rolling refers to rolling at a temperature of 500° C. or lower where recrystallization does not occur. During cold rolling, preferably 2
A rolling ratio of 0% or more, more preferably 50% or more is good.

また中間焼鈍をはさんで複数回圧延しても良い。板厚は
木質的に制限はないが、実用上の見地からは、集積度の
向上のため0.05mm以上、脱炭・脱窒に長時間を要
するので2mm以下が好ましい。
Further, rolling may be performed multiple times with intermediate annealing interposed therebetween. There is no limit to the board thickness depending on the quality of the wood, but from a practical standpoint, it is preferably 0.05 mm or more to improve the degree of integration, and 2 mm or less because decarburization and denitrification require a long time.

読)しむ四重 再結晶させるため600°C以上の温度で行うのが好ま
しい。
It is preferable to carry out the process at a temperature of 600°C or higher in order to carry out four-fold recrystallization.

この焼鈍の際、板面に対し垂直方向に< 100 >軸
の強く配向した組織とするため、まず(1)脱炭・脱窒
前にα−フェライト相とオーステナイト相の二相混合状
態もしくはオーステナイト相単相の状態でかつ実質的に
脱炭・脱窒されたときのα−フェライI・単相となる温
度で行う。このときの雰囲気は、板表面から5〜70μ
m程度の深さの領域が脱炭・脱窒され、α−フェライI
・単相となり、それ以上内部まで脱炭・脱窒が進行し難
い弱脱炭性・弱脱窒性もしくはその両者の雰囲気が好ま
しい。
During this annealing, in order to obtain a structure with strongly oriented <100> axes in the direction perpendicular to the plate surface, first (1) before decarburization and denitrification, a two-phase mixed state of α-ferrite phase and austenite phase or austenite phase is formed. It is carried out in a single phase state and at a temperature at which α-ferrite I becomes a single phase when substantially decarburized and denitrified. The atmosphere at this time is 5 to 70 μm from the plate surface.
Decarburization and denitrification are carried out in a region with a depth of about m, and α-ferrite I
・It is preferable to have a weakly decarburizing, weakly denitrifying, or both atmosphere that becomes a single phase and makes it difficult for decarburization and denitrification to proceed further into the interior.

このよ・うな遅い脱炭・脱窒によってオーステナイト相
からα−フェライト相へとゆっくりと変態させ、かつ板
面と平行な方向へとα−フェライト粒を成長させると、
板面に対し垂直な方向に<100>軸を持ったα−フェ
ライト粒か選択的に生成、成長する。その後(2)表面
のα−フェライト粒を内部にまで成長させる時間を短縮
するため強く脱炭・脱窒の生ずる雰囲気中において、脱
炭・脱窒後α−フェライト相単相となる温度で再び焼鈍
するのが好ましい。第2段目の焼鈍である。このときの
雰囲気は内部まで脱炭・脱窒が進行する強脱炭性、強脱
窒性もしくはその両者の雰囲気である。
If the austenite phase is slowly transformed into the α-ferrite phase through such slow decarburization and denitrification, and the α-ferrite grains are grown in a direction parallel to the plate surface,
α-ferrite grains with <100> axes in the direction perpendicular to the plate surface are selectively generated and grown. (2) In order to shorten the time for the α-ferrite grains on the surface to grow into the interior, in an atmosphere where strong decarburization and denitrification occur, the α-ferrite grains are heated again at a temperature at which the α-ferrite phase becomes a single phase after decarburization and denitrification. Preferably, it is annealed. This is the second stage annealing. The atmosphere at this time is a strongly decarburizing atmosphere, a strong denitrifying atmosphere, or both, in which decarburization and denitrification proceed to the inside.

上述の第1段目、第2段目の焼鈍は連続して行っても良
く、また第1段目の焼鈍後絶縁コーティングを施し、そ
の後第2段目の焼鈍を行っても良い。
The first and second stage annealing described above may be performed continuously, or an insulating coating may be applied after the first stage annealing, and then the second stage annealing may be performed.

慕虜に雰11P 前記第1段目の焼鈍の雰囲気として、その好適態様によ
れば、次のいずれかを選択する。
Atmosphere 11P According to a preferred embodiment, one of the following is selected as the atmosphere for the first stage annealing.

(]、) 1. Torrまでの真空:板面に対し垂直
な方向に<100>軸を持ったα粒を選択的に生成、成
長させるためには、真空下、特にl Torr以下の真
空が好ましく、工業的に達成可能な限り低真空でもよい
(],) 1. Vacuum up to Torr: In order to selectively generate and grow α grains with a <100> axis perpendicular to the plate surface, a vacuum, especially a vacuum below 1 Torr, is preferable and can be achieved industrially. A vacuum as low as possible may be used.

(2)n点−20°C未満−70°C以上の不活性ガス
、C01CO8および11□ガスの1種もしくは2種以
上からなる雰囲気を用いる。
(2) An atmosphere consisting of one or more of inert gas, C01CO8 and 11□ gas at a temperature of less than -20°C and more than -70°C at point n is used.

脱炭・脱窒速度が大きくなり、かつ表面酸化で集積度の
高い集合組織が形成されないため露点−20℃未満の上
記ガスとし、工業的に達成可能な限り低露点でもよい。
Since the rate of decarburization and denitrification is high and a highly integrated texture is not formed due to surface oxidation, the above gas has a dew point of less than -20°C, and the dew point may be as low as industrially achievable.

一方、前記第2段目の焼鈍雰囲気としては、脱炭・脱窒
速度を大きくするため、露点Q ’C以上の不活性ガス
および]1□ガスの1種もしくは2種以」二からなる雰
囲気を用いるのが好ましい。但し、浸炭しない範囲でC
OおよびCO□ガスを含有していても良い。
On the other hand, in order to increase the rate of decarburization and denitrification, the annealing atmosphere in the second stage is an atmosphere consisting of an inert gas with a dew point of Q'C or higher and one or more gases. It is preferable to use However, C as long as it is not carburized.
It may contain O and CO□ gases.

次に、本発明を実施例によってさらに具体的に説明する
Next, the present invention will be explained in more detail with reference to Examples.

実施例1 第1表の組成の鋼を真空溶製し、インゴットを作製した
後、3mmの厚さまで熱間圧延し、その後0.5mmの
厚さまで冷間圧延した。この薄板について第2表に示す
焼鈍条件で1段および2段目の焼鈍を施した。
Example 1 Steel having the composition shown in Table 1 was vacuum melted to produce an ingot, which was then hot rolled to a thickness of 3 mm, and then cold rolled to a thickness of 0.5 mm. This thin plate was subjected to first-stage and second-stage annealing under the annealing conditions shown in Table 2.

この試料について断面光学顕微鏡観察による結晶粒組織
の状態、表面から柱状粒が内部へ向って成長している場
合は柱状粒部分の表面からの深さを測定すると共に、C
,N量の分析を行った。
For this sample, the state of the crystal grain structure was observed by cross-sectional optical microscopy, and if columnar grains were growing inward from the surface, the depth from the surface of the columnar grain portion was measured, and the C
, N content was analyzed.

< 100 >軸の密度は、E CP  (Elect
ron ChannelPa tern)法により、各
試験片毎に200個の結晶粒の方向を測定し、板面垂直
方向から±5°以内に<1.00>軸を持つ結晶粒の数
の全体に対する比率を、配向性のない場合との比率で割
った値とした。
The density of the <100> axis is E CP (Elect
The direction of 200 crystal grains was measured for each specimen using the ron Channel Pattern method, and the ratio of the number of crystal grains with <1.00> axes within ±5° from the perpendicular direction to the plate surface to the total was calculated. , the value was divided by the ratio of the case without orientation.

明らかに本発明にかかる方法によって集積度の高い+1
00)組織合組織が形成される。
It is clear that the method according to the present invention has a high degree of integration +1
00) Tissue synapse is formed.

実施例2 第1表の鋼種りの鋼を真空中で溶製し、そのインゴット
を熱間圧延によって3mmの厚さまで圧延し、その後、
冷間圧延によって1mmの厚さまで圧延し、850°C
で3分間焼鈍してから後0.1−0.5mmの厚さまで
再び冷間圧延した。この薄板を露点−35°Cの3%の
thを含むAr−tLz中で1000°CX 5 b焼
鈍し、次いで、(A)露点+25゛Cの20%112−
Ar中、850°Cx15m1n、 もしくは(B)露
点−25℃の++2中850°CX24hの各熱処理条
件での焼鈍を施した。
Example 2 Steel having the grade shown in Table 1 was melted in vacuum, the ingot was hot rolled to a thickness of 3 mm, and then,
Rolled to a thickness of 1 mm by cold rolling and heated at 850°C.
It was annealed for 3 minutes and then cold rolled again to a thickness of 0.1-0.5 mm. The sheet was annealed at 1000°C in Ar-tLz containing 3% th with a dew point of -35°C and then (A) 20% 112- with a dew point of +25°C.
Annealing was performed under the following heat treatment conditions: 850°C x 15ml in Ar, or (B) 850°C x 24h in ++2 with a dew point of -25°C.

(A)の熱処理条件は強脱炭・脱窒処理を行う場合、(
B)はそれを行わない場合のそれである。
The heat treatment conditions of (A) are (
B) is what happens when this is not done.

この試料から内径50mm、外径60mmのリング状試
料を打ち抜き、100クーンの1次コイルおよび100
ターンの2次コイルをこれに巻きつけ磁化力が5000
Δ/mのときの磁束密度Bsoおよび50Hzの交番磁
界中で磁束密度が1.5Tとなるまで磁化した時の鉄損
WIS150を求めた。その結果を第3表に記す。
A ring-shaped sample with an inner diameter of 50 mm and an outer diameter of 60 mm was punched out from this sample, and a 100 Coun primary coil and a 100 mm
Wrap the secondary coil of the turn around this and the magnetizing force will be 5000.
The magnetic flux density Bso at Δ/m and the iron loss WIS150 when magnetized in an alternating magnetic field of 50 Hz until the magnetic flux density reached 1.5 T were determined. The results are shown in Table 3.

なお、磁束密度は値が大きいほうが、鉄損は値が小さい
ほうが磁気特性がすくれていると考えられる。
It is considered that the larger the magnetic flux density value is, the smaller the iron loss value is, the weaker the magnetic properties are.

第3表の結果からは比較例と比べて、本発明のものはい
ずれもずくれた磁気特性を有する。強脱炭・脱窒処理を
行ったものが一層ずくれた磁気特性を示している。
From the results in Table 3, it can be seen that the samples of the present invention all have sloppy magnetic properties compared to the comparative example. Those that underwent strong decarburization and denitrification showed even more distorted magnetic properties.

第3表 (発明の効果) かくして、本発明にかかる方法によれば:(1)例えば
、焼鈍温度が850〜1000°Cという比較的低い温
度で十分に< 100 >軸を板面垂直方向に強く配向
させ得る。
Table 3 (Effects of the Invention) Thus, according to the method of the present invention: (1) For example, at a relatively low annealing temperature of 850 to 1000°C, the <100> axis can be sufficiently aligned in the direction perpendicular to the plate surface. Can be strongly oriented.

(2+ 0 、2%という低Si量から6.5%という
高SI量のものまで広い組織領域で珪素鋼板の製造が可
能である。
(2+0) It is possible to manufacture silicon steel sheets in a wide range of structures, from a low Si content of 2% to a high Si content of 6.5%.

(3)板厚に影響されず、数mm厚のものでも十分に集
合組織の制御が可能である。
(3) It is not affected by the plate thickness, and the texture can be sufficiently controlled even with a thickness of several mm.

(4)2次再結晶によって集合組織制御したものでは、
数mm〜数士闘とい粗大な結晶粒となるが、本発明では
50〜500 μm程度の微細な柱状粒となり、渦電流
損失が一段と低減される。
(4) In the case of texture controlled by secondary recrystallization,
Although the crystal grains are coarse, ranging in size from several millimeters to several millimeters, in the present invention, the grains are fine columnar grains of about 50 to 500 μm, and eddy current loss is further reduced.

以上詳述したように、本発明は、脱炭、脱窒に伴って起
こるγ−α変態に際しての優先的粒成長を巧みに利用す
るものであり、+1001面集合組組織容易に形成され
ることから、その磁気特性の改善も著しく、その意義は
大きい。
As detailed above, the present invention skillfully utilizes the preferential grain growth during the γ-α transformation that occurs with decarburization and denitrification, and the +1001 plane texture is easily formed. Therefore, the magnetic properties have been significantly improved, and this is of great significance.

Claims (2)

【特許請求の範囲】[Claims] (1)Si:0.2〜6.5wt%、N:≧0.005
wt%かつC+N:≧0.03wt%を含有する冷間圧
延鋼帯を、そのオーステナイト単相またはオーステナイ
ト相とα−フェライト相の二相状態になる温度であって
、その脱炭・脱窒後、実質的にα−フェライト単相とな
る温度で、かつ脱炭・脱窒性雰囲気中で、C+N:≦0
.01wt%となるまで焼鈍することにより、板面に対
し<100>軸を高度に集積させることを特徴とする珪
素鋼板の製造方法。
(1) Si: 0.2 to 6.5 wt%, N: ≧0.005
wt% and C+N:≧0.03wt% at a temperature at which the cold rolled steel strip contains a single austenite phase or a two-phase state of an austenite phase and an α-ferrite phase, after decarburization and denitrification. , C+N:≦0 at a temperature at which α-ferrite becomes substantially single phase and in a decarburizing/denitrifying atmosphere.
.. A method for manufacturing a silicon steel sheet, characterized in that <100> axes are highly integrated on the sheet surface by annealing the steel sheet to 0.01 wt%.
(2)前記冷間圧延鋼帯が、さらにMn≦4wt%、A
l:≦3wt%およびCo:≦1wt%のうちの1種ま
たは2種以上を含有することを特徴とする請求項1記載
の方法。
(2) The cold rolled steel strip further has Mn≦4wt%, A
The method according to claim 1, characterized in that the method contains one or more of L:≦3wt% and Co:≦1wt%.
JP15373588A 1988-06-22 1988-06-22 Manufacturing method of silicon steel sheet Expired - Lifetime JP2590533B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15373588A JP2590533B2 (en) 1988-06-22 1988-06-22 Manufacturing method of silicon steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15373588A JP2590533B2 (en) 1988-06-22 1988-06-22 Manufacturing method of silicon steel sheet

Publications (2)

Publication Number Publication Date
JPH01319632A true JPH01319632A (en) 1989-12-25
JP2590533B2 JP2590533B2 (en) 1997-03-12

Family

ID=15568954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15373588A Expired - Lifetime JP2590533B2 (en) 1988-06-22 1988-06-22 Manufacturing method of silicon steel sheet

Country Status (1)

Country Link
JP (1) JP2590533B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0551141A1 (en) * 1992-01-10 1993-07-14 Sumitomo Chemical Company, Limited Oriented magnetic steel sheets and manufacturing process therefor
WO2009091217A1 (en) * 2008-01-16 2009-07-23 Method for producing non-oriented electrical steel sheet
US8361243B2 (en) * 2006-12-22 2013-01-29 Jin Kyung Sung Method of forming {100} texture on surface of iron or iron-base alloy sheet, method of manufacturing non-oriented electrical steel sheet by using the same and non-oriented electrical steel sheet manufactured by using the same
WO2022070497A1 (en) * 2020-09-29 2022-04-07 株式会社日立製作所 Soft magnetic iron plate, method for manufacturing soft magnetic iron plate, and iron core and dynamo-electric machine in which soft magnetic iron plate is used
CN116065006A (en) * 2022-11-29 2023-05-05 无锡普天铁心股份有限公司 Gradient decarburization annealing method for improving surface quality of secondary cold-rolled oriented silicon steel

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0551141A1 (en) * 1992-01-10 1993-07-14 Sumitomo Chemical Company, Limited Oriented magnetic steel sheets and manufacturing process therefor
US5425820A (en) * 1992-01-10 1995-06-20 Sumitomo Metal Industries, Ltd. Oriented magnetic steel sheets and manufacturing process therefor
US8361243B2 (en) * 2006-12-22 2013-01-29 Jin Kyung Sung Method of forming {100} texture on surface of iron or iron-base alloy sheet, method of manufacturing non-oriented electrical steel sheet by using the same and non-oriented electrical steel sheet manufactured by using the same
WO2009091217A1 (en) * 2008-01-16 2009-07-23 Method for producing non-oriented electrical steel sheet
WO2022070497A1 (en) * 2020-09-29 2022-04-07 株式会社日立製作所 Soft magnetic iron plate, method for manufacturing soft magnetic iron plate, and iron core and dynamo-electric machine in which soft magnetic iron plate is used
CN116065006A (en) * 2022-11-29 2023-05-05 无锡普天铁心股份有限公司 Gradient decarburization annealing method for improving surface quality of secondary cold-rolled oriented silicon steel
CN116065006B (en) * 2022-11-29 2023-08-22 无锡普天铁心股份有限公司 Gradient decarburization annealing method for improving surface quality of secondary cold-rolled oriented silicon steel

Also Published As

Publication number Publication date
JP2590533B2 (en) 1997-03-12

Similar Documents

Publication Publication Date Title
US5800633A (en) Method for making high magnetic density, low iron loss, grain oriented electromagnetic steel sheet
EP1108794B1 (en) Electrical steel sheet suitable for compact iron core and manufacturing method therefor
WO2006068399A1 (en) Non-oriented electrical steel sheets with excellent magnetic properties and method for manufacturing the same
KR101463368B1 (en) Fe-BASED METAL PLATE AND METHOD FOR MANUFACTURING SAME
CN113166872B (en) Double-oriented electrical steel sheet and method for manufacturing same
JP2021509441A (en) Bidirectional electromagnetic steel sheet and its manufacturing method
JP2535963B2 (en) Silicon steel sheet having excellent magnetic properties and method for producing the same
JP2001158950A (en) Silicon steel sheet for small-size electrical equipment, and its manufacturing method
EP0906963B1 (en) Bidirectional electromagnetic steel plate and method of manufacturing the same
JPH01319632A (en) Production of silicon steel plate
CN108431244B (en) Oriented electrical steel sheet and method for manufacturing the same
JPH01252727A (en) Double oriented silicon steel sheet and its production
US3130092A (en) Process of making cubic texture silicon-iron
EP1436433A4 (en) Method of producing (110) 001] grain oriented electrical steel using strip casting
JP2576621B2 (en) Silicon steel sheet with excellent magnetic properties
JPH04224624A (en) Manufacture of silicon steel sheet excellent in magnetic property
JPH02274844A (en) Silicon steel sheet excellent in magnetic property and its production
KR100240993B1 (en) The manufacturing method for non-oriented electric steel sheet with excellent hysterisys loss
JPH0623411B2 (en) Manufacturing method of electrical steel sheet with small anisotropy
JPS59104429A (en) Preparation of non-directional electromagnetic steel strip
JPH02274845A (en) Semiprocessed silicon steel sheet
JP2015010241A (en) Fe-BASED METAL PLATE AND PRODUCTION METHOD OF THE SAME
CN113166882A (en) Oriented electrical steel sheet and method for manufacturing the same
JPH02156024A (en) Manufacture of silicon steel sheet
JPH0781166B2 (en) Manufacturing method of grain-oriented electrical steel sheet with low iron loss

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071219

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081219

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081219

Year of fee payment: 12