JPH01319438A - Production of r-134a - Google Patents

Production of r-134a

Info

Publication number
JPH01319438A
JPH01319438A JP63151188A JP15118888A JPH01319438A JP H01319438 A JPH01319438 A JP H01319438A JP 63151188 A JP63151188 A JP 63151188A JP 15118888 A JP15118888 A JP 15118888A JP H01319438 A JPH01319438 A JP H01319438A
Authority
JP
Japan
Prior art keywords
activated carbon
elements
hours
hydrogen
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63151188A
Other languages
Japanese (ja)
Other versions
JP2508807B2 (en
Inventor
Shinsuke Morikawa
森川 真介
Masaru Yoshitake
優 吉武
Shin Tatematsu
伸 立松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP63151188A priority Critical patent/JP2508807B2/en
Priority to CA000603343A priority patent/CA1337434C/en
Priority to DE68912657T priority patent/DE68912657T2/en
Priority to EP89111176A priority patent/EP0347830B1/en
Publication of JPH01319438A publication Critical patent/JPH01319438A/en
Priority to US08/308,612 priority patent/US5426253A/en
Application granted granted Critical
Publication of JP2508807B2 publication Critical patent/JP2508807B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PURPOSE:To obtain the subject compound which is a promising candidate of a substitute for CCl2F2 in high selectivity by reacting R-114a (CF3CCl2F) with hydrogen in the presence of a specific catalyst having excellent durability and selectivity and containing a group VIII element as a main component and a group IB element as an additive component. CONSTITUTION:The objective compound can be produced by reacting R-114a (CF3CCl2F) with hydrogen (the amount of hydrogen is preferably more than stoichiometric based on the raw material, e.g., >=4mol) under normal or positive reaction pressure in vapor phase at 120-450 deg.C in the presence of a hydrogenation catalyst containing a group VIII element as a main component and one or more elements selected from group IB elements as an additive component. The amount of the group IB element in the above catalyst is 0.01-90wt.%, preferably 0.1-30wt.%. The carrier of the hydrogenation catalyst is e.g., activated carbon or alumina.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はR12<CCl2F3)の有望な代替候補トミ
なされているR  134a(CFaCHzF)の製造
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing R134a (CFaCHzF), which is considered a promising alternative candidate for R12<CCl2F3).

[従来の技術および課題] R134a (CF3CH2F)の製造にツイテは、式
CF2XCFYZ(式中、Xはフッ素または塩素である
。Xがフッ素である場合にはY、Zは塩素、フッ素また
は水素であり、Y、Zの一方がフッ素である場合にはY
、  Zの他方は水素または塩素である。Xが塩素であ
る場合には、Y、Zの一方はフッ素であり、Y、Zの他
方は塩素または水素である。)で表わされる4個または
5個のフッ素原子を有するハロエタン原料を水素化触媒
の存在下で水素と反応させる方法がその一つの手段とし
て挙げられる。ここで、典型的なハロエタン原料は1.
1−ジクロロ−1,2,2,2−テトラフルオロエタン
(CF 3CCl2F )である、この方法においては
、ハロエタン原料から2個の塩素原子を除去し、これら
を水素で置き換える。
[Prior art and problems] In the production of R134a (CF3CH2F), the formula CF2XCFYZ (wherein, , if one of Y and Z is fluorine, Y
, the other of Z is hydrogen or chlorine. When X is chlorine, one of Y and Z is fluorine, and the other of Y and Z is chlorine or hydrogen. One method is to react a haloethane raw material having 4 or 5 fluorine atoms represented by the following formula with hydrogen in the presence of a hydrogenation catalyst. Here, typical haloethane raw materials are 1.
1-dichloro-1,2,2,2-tetrafluoroethane (CF3CCl2F). In this method, two chlorine atoms are removed from the haloethane feedstock and these are replaced with hydrogen.

この反応においては下式に示すように塩化水素が副生ず
るため触媒には耐酸性が要求される。従って、白金族元
素または白金族元素を主成分とする合金触媒が使用可能
である。
In this reaction, hydrogen chloride is produced as a by-product as shown in the formula below, so the catalyst is required to have acid resistance. Therefore, a platinum group element or an alloy catalyst containing a platinum group element as a main component can be used.

CFzCCt2F+H2−CF3CH2F  F+HC
1(R−114a)         (R−124)
CFsCHCl  F+、H2−CFaCH2F+HC
1(R−124)         (R−134a)
このための触媒として既に比較的低コストの貴金属であ
るパラジウムを用いる方法が報告されている。 (特公
昭56−38131号公報を参照)しかし、耐久性が必
ずしも充分ではない他、目的成分であるR−134aの
選択率も充分ではなく、より還元の進んだR−143a
 (CF3CHi)の生成が比較的多いという欠点を有
している。
CFzCCt2F+H2-CF3CH2F F+HC
1 (R-114a) (R-124)
CFsCHCl F+, H2-CFaCH2F+HC
1 (R-124) (R-134a)
A method using palladium, a relatively low-cost noble metal, as a catalyst has already been reported. (Refer to Japanese Patent Publication No. 56-38131) However, the durability is not necessarily sufficient, and the selectivity of R-134a, which is the target component, is not sufficient.
It has the disadvantage that (CF3CHi) is produced in a relatively large amount.

[課題を解決するための手段] パラジウムは白金族元素の中では融点が低く、したがっ
て原子の移動が活発になる温度が低い。
[Means for Solving the Problems] Palladium has a low melting point among platinum group elements, and therefore the temperature at which atomic movement becomes active is low.

それゆえ触媒寿命が充分ではない原因の一つとしてパラ
ジウム微粒子のシンタリングが考えられる。
Therefore, sintering of palladium fine particles is considered to be one of the reasons why the catalyst life is not sufficient.

触媒のシンタリングは異種金属の添加、すなわち合金化
、および酸化物分散によって抑制できることが知られて
いる。
It is known that catalyst sintering can be suppressed by the addition of dissimilar metals, ie, alloying, and oxide dispersion.

一方、本反応は下式に示すように逐次反応であり目的生
成物に加え、R124(CF 3CHCIF)、R14
3a(CFsCHi)も相当量生成する。それゆえ、R
134aの選択率にすぐれた触媒の開発が要望されてい
る。特に、目的生成物であるR−134aが還元されて
できるR−143aの生成抑制はきわめて重要である。
On the other hand, this reaction is a sequential reaction as shown in the formula below, and in addition to the target product, R124 (CF 3CHCIF), R14
A considerable amount of 3a (CFsCHi) is also produced. Therefore, R
There is a need for the development of a catalyst with excellent selectivity for 134a. In particular, it is extremely important to suppress the production of R-143a, which is produced by reducing the target product R-134a.

上式の一連の反応は触媒表面で生起する不均一反応であ
り、反応種の触媒表面への吸着が不可欠である。すなわ
ち、本反応に関するマイクロメカニズムは必ずしも明ら
かにはされていないが、気相にある水素分子が触媒表面
に吸着して初めて生ずる吸着水素原子とへロエタンが触
媒表面で反応して還元反応が進行すると考えられる。而
して上式の3つのステージにおいて、■および■は脱塩
素水素化反応であるのにないし、■のステージは脱フツ
素水素化反応であって、■および■に比較して反応の活
性化エネルギーが大きいと推定される。したがって、R
−143aの生成抑制にはR−134aの触媒表面への
吸着を抑制し、平均滞留時間を低減することが効果的で
あると考えられる。固体表面への分子の吸着は様々な要
因が複雑に関係するため、明快な解釈は困難であるが、
−最的に言って、吸着種と固体表面の電子構造および幾
何的な因子が重要な要素となる。化学吸着エネルギーは
d−電子数と関係があり、d一般の満たされていない遷
移元素は大きな吸着エネルギー2有する。遷移元素の中
で水素還元活性に優れるものが多いPt、Pd、  N
i、Rh、  Co、Ru、等の■族元素のd−電子数
は6〜10までの範囲に分布しており、比絞的満たされ
ているといえる。
The series of reactions in the above equation are heterogeneous reactions that occur on the catalyst surface, and adsorption of reactive species to the catalyst surface is essential. In other words, although the micromechanism involved in this reaction has not necessarily been clarified, the reduction reaction progresses when hydrogen molecules in the gas phase are adsorbed onto the catalyst surface, and the adsorbed hydrogen atoms that are generated react with heroethane on the catalyst surface. Conceivable. Therefore, in the three stages in the above equation, ■ and ■ are dechlorination and hydrogenation reactions, but stage ■ is a defluorination and hydrogenation reaction, and the reaction activity is lower than in ■ and ■. It is estimated that the oxidation energy is large. Therefore, R
In order to suppress the production of -143a, it is considered effective to suppress the adsorption of R-134a onto the catalyst surface and reduce the average residence time. The adsorption of molecules onto solid surfaces is complicated by various factors, so it is difficult to give a clear interpretation.
-Ultimately, the electronic structure and geometrical factors of the adsorbed species and the solid surface are important factors. The chemisorption energy is related to the number of d-electrons, and d-general unsatisfied transition elements have a large adsorption energy 2. Among transition elements, many have excellent hydrogen reduction activity, such as Pt, Pd, and N.
The number of d-electrons of group II elements such as i, Rh, Co, Ru, etc. is distributed in the range of 6 to 10, and it can be said that the number of d-electrons is specifically satisfied.

とりわけ、Pd、Pt1.td−電子数がそれぞれ9お
よび10であって、特に吸着エネルギーが少ない傾向に
ある。
Among others, Pd, Pt1. The number of td-electrons is 9 and 10, respectively, and the adsorption energy tends to be particularly low.

次に、幾何的な因子について検討する。上記の一連の分
子は非常に安定なCF3基を有しており、触媒表面で反
応が生起する場合、CF 3基の反対側のCXYZ基(
X、  Y、  Z: HまたはCt またはF)と触
媒表面との相互作用が重要であると推定される。上記反
応式においてR−114aおよびR−124は大きな塩
素原子をそれぞれ2個および1個有しており、サイズの
大きな分子であるのに対し、R−134aおよびR−1
43aは塩素原子を含まず、前記へロエタンに比べてサ
イズが小さい、■および■の反応を速やかに進行させ、
かつ■の反応を抑止するためには塩素原子が無く従って
、サイズの小さいR−134a分子の吸着を抑制すべく
、触媒金属の格子定数を拡大することが有効と考えられ
る。格子の拡大は吸着エネルギーが小さく従って、触媒
活性の低い元素を添加し触媒原子の間に挿入することま
たは格子常数の大きな金属原子を添加し合金化すること
により達成できる。添加元素としてはd−電子の満たさ
れている典型元素の中で上記反応において耐食性を有し
、かつ触媒毒とならない元素としてIB族元素が選ばれ
る。かくして、これらの基本的原理をもとに合金の組合
せ、組成比、触媒調製条件等の最適化を鋭意検討した結
果、耐久性、選択性に優れた触媒を用いて本発明を提供
するに至ったものである。以下、その詳細について述べ
る。
Next, consider geometric factors. The above series of molecules have a very stable CF3 group, and when a reaction occurs on the catalyst surface, the CXYZ group on the opposite side of the CF3 group (
It is presumed that the interaction between X, Y, Z: H or Ct or F) and the catalyst surface is important. In the above reaction formula, R-114a and R-124 have two and one large chlorine atoms, respectively, and are large molecules, whereas R-134a and R-1
43a does not contain a chlorine atom, is smaller in size than the above-mentioned heloethane, and allows the reactions of (1) and (2) to proceed rapidly;
In order to suppress the reaction (2), it is considered effective to expand the lattice constant of the catalyst metal in order to suppress the adsorption of R-134a molecules, which are small in size and do not have chlorine atoms. Expansion of the lattice can be achieved by adding an element with low adsorption energy and therefore low catalytic activity and inserting it between catalyst atoms, or by adding metal atoms with a large lattice constant and alloying. As the additive element, an IB group element is selected as an element that has corrosion resistance in the above reaction and does not poison the catalyst among typical elements filled with d-electrons. Based on these basic principles, we have diligently studied the optimization of alloy combinations, composition ratios, catalyst preparation conditions, etc., and as a result, we have been able to provide the present invention using a catalyst with excellent durability and selectivity. It is something that The details will be described below.

−ffi的に、触媒を合金化した場合、組成に依存して
成分元素の特性が現われることが多い、しかし、IB族
元素を■族元素に添加した場合には、理由は必ずしも明
確にはなっていないが還元活性がそれほど低下しないこ
とがシクロプロパン、アセチレン、メチルアセチレン等
の水素化反応において知られている0本反応においても
高い活性が得られることが判明した。
-ffi-wise, when a catalyst is alloyed, the characteristics of the component elements often appear depending on the composition. However, when group IB elements are added to group II elements, the reason is not necessarily clear. However, it has been found that high activity can be obtained even in the zero reaction, which is known for the hydrogenation reactions of cyclopropane, acetylene, methylacetylene, etc., and that the reducing activity does not decrease so much.

IB族元素の添加量は、0.01〜90重量%、好まし
くは0.1〜30重景%が■族元素の水素還元活性を活
かす上で好適である。
The amount of the IB group element added is preferably 0.01 to 90% by weight, preferably 0.1 to 30% by weight, in order to take advantage of the hydrogen reduction activity of the group I element.

−i的にシンタリングを抑制するためには異種金属を0
.1%以上の添加量において効果的であると言われてい
る。それゆえ、格子拡大およびシンタリング抑制の両者
の観点から添加量としては、0.1〜30重景%が好適
である。
- In order to effectively suppress sintering, the amount of dissimilar metals is 0.
.. It is said that it is effective when added in an amount of 1% or more. Therefore, from the viewpoint of both lattice expansion and sintering suppression, the addition amount is preferably 0.1 to 30%.

本発明は、上記知見に基づいて完成されたものであり、
R114a原料を、■族元素のうちいずれか1種または
2種以上の元素を主成分とし、IB族元素のうちから運
ばれるいずれが1つまたは2つ以上の金属を添加してな
る水素化触媒の存在下で水素と反応させることを特徴と
するR−134aの製造法を新規に提供するものである
The present invention was completed based on the above findings,
A hydrogenation catalyst made by using R114a raw material as a main component containing one or more elements of Group I elements and adding one or more metals transported from Group IB elements. The present invention provides a new method for producing R-134a, which is characterized by reacting with hydrogen in the presence of R-134a.

本発明において、水素化触媒の担体としては、例えば、
活性炭、アルミナ、ジルコニア等が好適である。担持方
法は、従来の貴金属触媒の調製法が適用可能である。な
お、使用に当たってはかかる金属の化合物は少なくとも
一部還元する。
In the present invention, examples of the hydrogenation catalyst carrier include:
Activated carbon, alumina, zirconia, etc. are suitable. As the supporting method, a conventional noble metal catalyst preparation method can be applied. In addition, upon use, such metal compounds are at least partially reduced.

水素と原料の割合は大幅に変動させ得る。しかしながら
、通常、化学量論量の水素を使用してハロゲン原子を除
去する。出発物質の全モル数に対して、化学量論量より
かなり多い量、例えば4モルまたはそれ以上の水素を使
用し得る。  反応圧力については常圧、または常圧以
上の圧力が使用し得る。
The proportions of hydrogen and feedstock can be varied widely. However, stoichiometric amounts of hydrogen are usually used to remove the halogen atoms. Significantly more than stoichiometric amounts of hydrogen can be used, for example 4 moles or more, based on the total number of moles of starting materials. As for the reaction pressure, normal pressure or a pressure higher than normal pressure can be used.

反応温度は120℃以上が望ましいが、450℃を越え
ない温度において気相で行なうことが、反応泗択性、触
媒寿命の観点から好ましい。
The reaction temperature is preferably 120° C. or higher, but it is preferable to carry out the reaction in the gas phase at a temperature not exceeding 450° C. from the viewpoint of reaction selectivity and catalyst life.

接触時間は、反応を気相で行なう場合には通常0.1〜
300秒、特には2〜60秒である。
The contact time is usually 0.1 to 0.1 when the reaction is carried out in the gas phase.
300 seconds, especially 2 to 60 seconds.

本発明はR143a (CF3CH3)の副生が少なく
、したがってR134a (CF3CH2F)を高選択
的に製造できるという利点を有する製造方法を提供する
ものである。
The present invention provides a production method that has the advantage of producing less R143a (CF3CH3) as a by-product and therefore being able to produce R134a (CF3CH2F) with high selectivity.

[実施例] 以下に本発明の実施例を示す。[Example] Examples of the present invention are shown below.

調製例 1 ヤシガラ活性炭を純水中に浸漬し細孔内部まで水を含浸
させた。  これに塩化パラジウムと硫酸銅をそれぞれ
の金属成分の重量比で90:10の割合で、活性炭の重
量に対し金属成分の全重量で0.5%だけ溶解した水溶
液を少しずつ滴下しイオン成分を活性炭に吸着させた。
Preparation Example 1 Coconut shell activated carbon was immersed in pure water to impregnate the inside of the pores with water. To this, an aqueous solution in which palladium chloride and copper sulfate were dissolved in a ratio of 90:10 by weight of each metal component, and the total weight of the metal components was 0.5% based on the weight of the activated carbon, was added dropwise little by little to remove the ionic components. Adsorbed on activated carbon.

純水を用いて洗浄した後、それを150℃で5時間乾燥
した0次に窒素中550℃で4時間乾燥した後、水素を
導入し、5時間、250℃に保持して還元した。
After washing with pure water, it was dried at 150° C. for 5 hours, then dried in nitrogen at 550° C. for 4 hours, hydrogen was introduced, and the temperature was maintained at 250° C. for 5 hours for reduction.

調製例 2 ヤシガラ活性炭を純水中に浸漬し細孔内部まで水を含浸
させた。  これに硫酸パラジウムと硝酸銀をそれぞれ
の金属成分の重量比で90:10の割合で、活性炭の重
量に対し金属成分の全重量で0.5%だけ溶解した水溶
液を少しずつ滴下しイオン成分を活性炭に吸着させた。
Preparation Example 2 Coconut shell activated carbon was immersed in pure water to impregnate the inside of the pores with water. To this, an aqueous solution in which palladium sulfate and silver nitrate were dissolved at a weight ratio of 90:10 and only 0.5% of the total weight of the metal components relative to the weight of the activated carbon was added little by little to remove the ionic components from the activated carbon. was adsorbed to.

純水を用いて洗浄した後、それを150℃で5時間乾燥
した0次に窒素中550℃で4時間乾燥した後、水素を
導入し、5時間、250℃に保持して還元した。
After washing with pure water, it was dried at 150° C. for 5 hours, then dried in nitrogen at 550° C. for 4 hours, hydrogen was introduced, and the temperature was maintained at 250° C. for 5 hours for reduction.

調製例 3 ヤシガラ活性炭を純水中に浸漬し細孔内部まで水を含浸
させた。  これに塩化パラジウムと塩化金酸をそれぞ
れの金属成分の重量比で90:10の割合で、活性炭の
重量に対し金属成分の全X量で0.5%だけ溶解した水
溶液を少しずつ滴下しイオン成分を活性炭に吸着させた
。純水を用いて洗浄した後、それを150℃で5時間乾
燥した6次に窒素中500℃で4時間乾燥した後、水素
を導入し、5時間、250℃に保持して還元した。
Preparation Example 3 Coconut shell activated carbon was immersed in pure water to impregnate the inside of the pores with water. An aqueous solution in which palladium chloride and chloroauric acid were dissolved in a ratio of 90:10 by weight of each metal component, and 0.5% of the total amount of metal components based on the weight of activated carbon was added dropwise little by little to ionize. The components were adsorbed onto activated carbon. After washing with pure water, it was dried at 150° C. for 5 hours, then dried in nitrogen at 500° C. for 4 hours, hydrogen was introduced, and the temperature was maintained at 250° C. for 5 hours for reduction.

調製例 4 ヤシガラ活性炭を純水中に浸漬し細孔内部まで水を含浸
させた。これに塩化パラジウム、塩化白金酸および塩化
金酸をそれぞれの金属成分の重量比で90:  2+ 
8の割合で、活性炭の重量に対し金属成分の全重量で0
.5%だけ溶解した水溶液を少しずつ滴下しイオン成分
を活性炭に吸着させた。
Preparation Example 4 Coconut shell activated carbon was immersed in pure water to impregnate the inside of the pores with water. To this, palladium chloride, chloroplatinic acid and chloroauric acid were added in a weight ratio of each metal component of 90:2+
At a ratio of 8, the total weight of metal components to the weight of activated carbon is 0.
.. An aqueous solution containing only 5% of the solution was dropped little by little to cause the ionic components to be adsorbed onto the activated carbon.

純水を用いて洗浄した後、それを150℃で5時間乾燥
した0次に窒素中500℃で4時間乾燥した後、水素を
導入し、5時間、250℃に保持して還元した。
After washing with pure water, it was dried at 150° C. for 5 hours, then dried in nitrogen at 500° C. for 4 hours, hydrogen was introduced, and the temperature was maintained at 250° C. for 5 hours for reduction.

調製例 5 ヤシガラ活性炭を純水中に浸漬し細孔内部まで水を含浸
させた。これに塩化パラジウム、塩化ロジウムおよび塩
化金酸をそれぞれの金属成分の重量比で90:  1:
  9の割合で、活性炭の重量に対し金属成分の全重量
で0.5%だけ溶解した水溶液を少しずつ滴下しイオン
成分を活性炭に吸着させた。純水を用いて洗浄した後、
それを150℃で5時間乾燥した0次に窒素中500℃
で4時間乾燥した後、水素を導入し、5時間、250℃
に保持して還元した。
Preparation Example 5 Coconut shell activated carbon was immersed in pure water to impregnate the inside of the pores with water. To this, palladium chloride, rhodium chloride and chloroauric acid were added in a weight ratio of each metal component of 90:1:
An aqueous solution containing only 0.5% of the total weight of metal components dissolved in the weight of the activated carbon was dropped little by little at a ratio of 9 to 9 to adsorb the ionic components onto the activated carbon. After washing with pure water,
It was then dried at 150℃ for 5 hours at 500℃ in nitrogen.
After drying at 250°C for 4 hours, hydrogen was introduced and
It was retained and reduced.

調製例 6 ヤシガラ活性炭を純水中に浸漬し細孔内部まで水を含浸
させた。これに塩化パラジウム、塩化イリジウムおよび
塩化金酸をそれぞれの金属成分の重量比で90:  1
:’9の割合で、活性炭の重量に対し金属成分の全重量
で0.5%だけ溶解した水溶液を少しずつ滴下しイオン
成分を活性炭に吸着させた。純水を用いて洗浄した後、
それを150℃で5時間乾燥した0次に窒素中500℃
で4時間乾燥した後、水素を導入し、5時間、250℃
に保持して還元した。
Preparation Example 6 Coconut shell activated carbon was immersed in pure water to impregnate the inside of the pores with water. To this, palladium chloride, iridium chloride and chloroauric acid were added in a weight ratio of each metal component of 90:1.
:'9, an aqueous solution in which only 0.5% of the total weight of the metal components was dissolved in the weight of the activated carbon was dropped little by little to cause the ionic components to be adsorbed onto the activated carbon. After washing with pure water,
It was then dried at 150℃ for 5 hours at 500℃ in nitrogen.
After drying at 250°C for 4 hours, hydrogen was introduced and
It was retained and reduced.

調製例 7 ヤシガラ活性炭を純水中に浸漬し細孔内部まで水を含浸
させた。これに硫酸ロジウムと硝酸銀をそれぞれの金属
成分の重量比で90:10の割合で、活性炭の重量に対
し金属成分の全重量でQ、5%だけ溶解した水溶液を少
しずつ滴下しイオン成分を活性炭に吸着させた。純水を
用いて洗浄した後、それを150℃で5時間乾燥した6
次に窒素中550℃で4時間乾燥した後、水素を導入し
、5時間、300℃に保持して還元した。
Preparation Example 7 Coconut shell activated carbon was immersed in pure water to impregnate the inside of the pores with water. To this, an aqueous solution in which rhodium sulfate and silver nitrate were dissolved at a ratio of 90:10 by weight of each metal component, Q, 5% of the total weight of the metal components relative to the weight of the activated carbon, was added little by little to remove the ionic components from the activated carbon. was adsorbed to. After washing with pure water, it was dried at 150°C for 5 hours.
Next, after drying in nitrogen at 550°C for 4 hours, hydrogen was introduced and the mixture was maintained at 300°C for 5 hours for reduction.

調製例 8 ヤシガラ活性炭を純水中に浸漬し細孔内部まで水を含浸
させた。これに塩化ロジウムと塩化金酸をそれぞれの金
属成分の重量比で90:  10の割合で、活性炭の重
量に対し金属成分の全重量で0.5%だけ溶解した水溶
液を少しずつ滴下しイオン成分を活性炭に吸着させた。
Preparation Example 8 Coconut shell activated carbon was immersed in pure water to impregnate the inside of the pores with water. An aqueous solution in which rhodium chloride and chloroauric acid were dissolved in a ratio of 90:10 by weight of each metal component, and the total weight of the metal components was 0.5% based on the weight of the activated carbon, was added little by little to the ionic components. was adsorbed on activated carbon.

純水を用いて洗浄した後、それを150℃で5時間乾燥
した0次に窒素中550℃で4時間乾燥した後、水素を
導入し、5時間、300 ’Cに保持して還元した。
After washing with pure water, it was dried at 150°C for 5 hours, then dried in nitrogen at 550°C for 4 hours, then hydrogen was introduced and kept at 300'C for 5 hours for reduction.

調製例 9 ヤシガラ活性炭を純水中に浸漬し細孔内部まで水を含浸
させた。これに塩化ロジウム、塩化コバルトおよび硫酸
銅をそれぞれの金属成分の重量比で45: 45:  
10の割合で、活性炭の重量に対し金属成分の全重量で
0.5%だけ溶解した水溶液を少しずつ滴下しイオン成
分を活性炭に吸着させた。純水を用いて洗浄した後、そ
れを150℃で5時間乾燥した。次に窒素中550℃で
4時間乾燥した後、水素を導入し、5時間、300℃に
保持して還元した。
Preparation Example 9 Coconut shell activated carbon was immersed in pure water to impregnate the inside of the pores with water. To this, rhodium chloride, cobalt chloride and copper sulfate were added in a weight ratio of each metal component of 45:45:
An aqueous solution containing only 0.5% of the total weight of metal components dissolved in the weight of the activated carbon was dropped little by little at a ratio of 10:10 to adsorb the ionic components onto the activated carbon. After washing with pure water, it was dried at 150° C. for 5 hours. Next, after drying in nitrogen at 550°C for 4 hours, hydrogen was introduced and the mixture was maintained at 300°C for 5 hours for reduction.

調製例 10 ヤシガラ活性炭を純水中に浸漬し細孔内部まで水を含浸
させた。これに硫酸ロジウム、硫酸コバルトおよび硝酸
銀をそれぞれの金属成分の重量比で50: 40:  
10の割合で、活性炭の重量に対し金属成分の全重量で
0.5%だけ溶解した水溶液を少しずつ滴下しイオン成
分を活性炭に吸着させた。純水を用いて洗浄した後、そ
れを150℃で5時間乾燥した0次に窒素中550℃で
4時間乾燥した後、水素を導入し、5時間、300℃に
保持して還元した。
Preparation Example 10 Coconut shell activated carbon was immersed in pure water to impregnate the inside of the pores with water. To this, rhodium sulfate, cobalt sulfate and silver nitrate were added in a weight ratio of each metal component of 50:40:
An aqueous solution containing only 0.5% of the total weight of metal components dissolved in the weight of the activated carbon was dropped little by little at a ratio of 10:10 to adsorb the ionic components onto the activated carbon. After washing with pure water, it was dried at 150° C. for 5 hours, then dried in nitrogen at 550° C. for 4 hours, hydrogen was introduced, and the temperature was maintained at 300° C. for 5 hours for reduction.

調製例 11 ヤシガラ活性炭を純水中に浸漬し細孔内部まで水を含浸
させた。これに塩化ロジウム、塩化コバルトおよび塩化
金酸をそれぞれの金属成分の重量比で50: 40: 
 10の割合で、活性炭の重量に対し金属成分の全重量
で0.5%だけ溶解した水溶液を少しずつ滴下しイオン
成分を活性炭に吸着させた。純水を用いて洗浄した後、
それを150℃で5時間乾燥した0次に窒素中550℃
で4時間乾燥した後、水素を導入し、5時間、300℃
に保持して還元しな。
Preparation Example 11 Coconut shell activated carbon was immersed in pure water to impregnate the inside of the pores with water. To this, rhodium chloride, cobalt chloride and chloroauric acid were added in a weight ratio of each metal component of 50:40:
An aqueous solution containing only 0.5% of the total weight of metal components dissolved in the weight of the activated carbon was dropped little by little at a ratio of 10:10 to adsorb the ionic components onto the activated carbon. After washing with pure water,
It was then dried at 150°C for 5 hours at 550°C in nitrogen.
After drying for 4 hours at 300°C for 5 hours, hydrogen was introduced.
Keep it and give it back.

調製例 12 ヤシガラ活性炭を純水中に浸漬し細孔内部まで水を含浸
させた。これに塩化白金酸、塩化金酸をそれぞれの金属
成分の重量比で90:10の割合で、活性炭の重量に対
し金属成分の全重量で0.5%だけ溶解した水溶液を少
しずつ滴下しイオン成分を活性炭に吸着させた。純水を
用いて洗浄した後、それを150℃で5時間乾燥した0
次に窒素中550℃で4時間乾燥した後、水素を導入し
、5時間、300℃に保持して還元した。
Preparation Example 12 Coconut shell activated carbon was immersed in pure water to impregnate the inside of the pores with water. To this, an aqueous solution in which chloroplatinic acid and chloroauric acid were dissolved in a weight ratio of 90:10 of each metal component, and only 0.5% of the total weight of the metal components to the weight of activated carbon was added dropwise to ionize. The components were adsorbed onto activated carbon. After washing with pure water, it was dried at 150°C for 5 hours.
Next, after drying in nitrogen at 550°C for 4 hours, hydrogen was introduced and the mixture was maintained at 300°C for 5 hours for reduction.

調製例 13 ヤシガラ活性炭を純水中に浸漬し細孔内部まで水を含浸
 せた、これに塩化パラジウム、塩化ニッケルおよび硫
酸銅をそれぞれの金属成分の重量比で45: 45: 
 10の割合で、活性炭の重量に対し金属成分の全重量
で0.5%だけ溶解した水溶液を少しずつ滴下しイオン
成分を活性炭に吸着させた。純水を用いて洗浄した後、
それを150℃で5時間乾燥した0次に窒素中550℃
で4時間乾燥した後、水素を導入し、5時間、300℃
に保持して還元した。
Preparation Example 13 Coconut shell activated carbon was immersed in pure water to impregnate water to the inside of the pores, and palladium chloride, nickel chloride, and copper sulfate were added to this in a weight ratio of 45:45:
An aqueous solution containing only 0.5% of the total weight of metal components dissolved in the weight of the activated carbon was dropped little by little at a ratio of 10:10 to adsorb the ionic components onto the activated carbon. After washing with pure water,
It was then dried at 150°C for 5 hours at 550°C in nitrogen.
After drying for 4 hours at 300°C for 5 hours, hydrogen was introduced.
It was retained and reduced.

調製例 14 ヤシガラ活性炭を純水中に浸漬し細孔内部まで水を含浸
させた。これに硫酸パラジウム、硫酸ニッケルおよび硝
酸銀をそれぞれの金奥成分の重量比で45: 45: 
 10の割合で、活性炭の重量に対し金属成分の全重量
で0.5%だけ溶解した水溶液を少しずつ滴下しイオン
成分を活性炭に吸着させた。純水を用いて洗浄した後、
それを150℃で5時間乾燥した0次に窒素中550℃
で4時間乾燥した後、水素を導入し、5時間、300℃
に保持して還元した。
Preparation Example 14 Coconut shell activated carbon was immersed in pure water to impregnate the inside of the pores with water. To this, palladium sulfate, nickel sulfate and silver nitrate were added in a weight ratio of 45:45:
An aqueous solution containing only 0.5% of the total weight of metal components dissolved in the weight of the activated carbon was dropped little by little at a ratio of 10:10 to adsorb the ionic components onto the activated carbon. After washing with pure water,
It was then dried at 150°C for 5 hours at 550°C in nitrogen.
After drying for 4 hours at 300°C for 5 hours, hydrogen was introduced.
It was retained and reduced.

調製例 15 ヤシガラ活性炭を純水中に浸漬し細孔内部まで水を含浸
させた。これに塩化パラジウム、塩化ニッケルおよび塩
化金酸をそれぞれの金属成分の重量比で45: 45:
  10の割合で、活性炭の重量に対し金属成分の全重
量で0.5%だけ溶解した水溶液を少しずつ滴下しイオ
ン成分を活性炭に吸着させた。純水を用いて洗浄した後
、それを150℃で5時間乾燥した。次に窒素中550
℃で4時間乾燥した後、水素を導入し、5時間、300
℃に保持して還元した。
Preparation Example 15 Coconut shell activated carbon was immersed in pure water to impregnate the inside of the pores with water. To this, palladium chloride, nickel chloride and chloroauric acid were added in a weight ratio of each metal component of 45:45:
An aqueous solution containing only 0.5% of the total weight of metal components dissolved in the weight of the activated carbon was dropped little by little at a ratio of 10:10 to adsorb the ionic components onto the activated carbon. After washing with pure water, it was dried at 150° C. for 5 hours. Then 550 in nitrogen
After drying at ℃ for 4 hours, hydrogen was introduced and the
It was kept at ℃ and reduced.

調製例 16 ヤシガラ活性炭を純水中に浸漬し細孔内部まで水を含浸
させた。これに塩化ルテニウム、塩化金酸をそれぞれの
金属成分の重量比で90:10の割合で、活性炭の重量
に対し金属成分の全重量で0.5%だけ溶解した水溶液
を少しずつ滴下しイオン成分を活性炭に吸着させた。純
水を用いて洗浄した後、それを150℃で5時間乾燥し
た0次に窒素中550℃で4時間乾燥した後、水素を導
入し、5時間、300℃に保持して還元した。
Preparation Example 16 Coconut shell activated carbon was immersed in pure water to impregnate the inside of the pores with water. To this, an aqueous solution containing ruthenium chloride and chloroauric acid dissolved in a weight ratio of 90:10 for each metal component and only 0.5% of the total weight of the metal components relative to the weight of the activated carbon was added little by little to form the ionic components. was adsorbed on activated carbon. After washing with pure water, it was dried at 150° C. for 5 hours, then dried in nitrogen at 550° C. for 4 hours, hydrogen was introduced, and the temperature was maintained at 300° C. for 5 hours for reduction.

比較調製例 1 ヤシガラ活性炭を純水中に浸漬し細孔内部まで水を含浸
させた。これに塩化パラジウムを、活性炭の重量に対し
金属成分の全重量で0.5%だけ溶解した水溶液を少し
ずつ滴下しイオン成分を活性炭に吸着させた。純水を用
いて洗浄した後、それを150℃で5時間乾燥した0次
に窒素中550℃で4時間乾燥した後、水素を導入し、
5時間、300℃に保持して還元した。
Comparative Preparation Example 1 Coconut shell activated carbon was immersed in pure water to impregnate the inside of the pores with water. An aqueous solution in which palladium chloride was dissolved in an amount of 0.5% of the total weight of the metal components based on the weight of the activated carbon was added little by little to make the ionic components adsorbed onto the activated carbon. After washing with pure water, it was dried at 150 °C for 5 hours. Then, after drying in nitrogen at 550 °C for 4 hours, hydrogen was introduced,
The mixture was maintained at 300° C. for 5 hours for reduction.

比較調製例 2 ヤシガラ活性炭を純水中に浸漬し細孔内部まで水を含浸
させた。これに塩化パラジウムと塩化ニッケル(モル比
1: 1)を、活性炭の重量に対し金属成分の全重量で
0.5%だけ溶解した水溶液を少しずつ滴下しイオン成
分を活性炭に吸着させた。
Comparative Preparation Example 2 Coconut shell activated carbon was immersed in pure water to impregnate the inside of the pores with water. An aqueous solution in which palladium chloride and nickel chloride (molar ratio 1:1) were dissolved in an amount of 0.5% of the total weight of the metal components based on the weight of the activated carbon was added little by little to the mixture, so that the ionic components were adsorbed onto the activated carbon.

純水を用いて洗浄した後、それを150℃で5時間乾燥
した0次に窒素中550℃で4時間乾燥した後、水素を
導入し、5時間、300℃に保持して還元した。
After washing with pure water, it was dried at 150° C. for 5 hours, then dried in nitrogen at 550° C. for 4 hours, hydrogen was introduced, and the temperature was maintained at 300° C. for 5 hours for reduction.

比較調製例 3 ヤシガラ活性炭を純水中に浸漬し細孔内部まで水を含浸
させた。これに塩化ルテニウムを、活性炭の重量に対し
金属成分の全重量で0.5%だけ溶解した水溶液を少し
ずつ滴下しイオン成分を活性炭に吸着させた。純水を用
いて洗浄した後、それを150’Cで5時間乾燥した0
次に窒素中550℃で4時間乾燥した後、水素を導入し
、5時間、300’Cに保持して還元した。
Comparative Preparation Example 3 Coconut shell activated carbon was immersed in pure water to impregnate the inside of the pores with water. An aqueous solution in which ruthenium chloride was dissolved in an amount of 0.5% of the total weight of the metal components based on the weight of the activated carbon was added little by little to cause the ionic components to be adsorbed onto the activated carbon. After washing with pure water, it was dried at 150'C for 5 hours.
Next, after drying in nitrogen at 550° C. for 4 hours, hydrogen was introduced and the temperature was maintained at 300° C. for 5 hours for reduction.

実施例 1〜16 調製例のようにして調製した触媒を300cc充填した
内径2.54cm、長さ100cmのインコネル600
製反応管を塩浴炉中に浸漬した。
Examples 1 to 16 Inconel 600 with an inner diameter of 2.54 cm and a length of 100 cm filled with 300 cc of the catalyst prepared as in the preparation example.
The prepared reaction tube was immersed in a salt bath furnace.

水素とジクロロテトラフルオロエタン(R−114a純
度95モル%、残分は異性体であるR−114)を2=
 1のモル比で反応管に導入した。
Hydrogen and dichlorotetrafluoroethane (R-114a purity 95 mol%, remainder is isomer R-114) in 2=
A molar ratio of 1 was introduced into the reaction tube.

水素、出発物質の流量はそれぞれ、100cc/分、5
0cc/分とした0反応温度は200℃、接触時間は6
.7秒であった。反応管出口のガス組成をガスクロを用
いて分析した。その結果、主な反応生成物はR−124
、R−134aおよびR−143aであることを確認し
た。それらのなかでR−143aの選択率について第1
表に示す。
The flow rates of hydrogen and starting material were 100 cc/min and 5 cc/min, respectively.
The reaction temperature was 200°C and the contact time was 6 cc/min.
.. It was 7 seconds. The gas composition at the outlet of the reaction tube was analyzed using gas chromatography. As a result, the main reaction product is R-124
, R-134a and R-143a. Among them, the selectivity of R-143a is the first.
Shown in the table.

比較例 1〜3 比較調製例のようにして調製した触媒を用いて、実施例
と同様にして反応を行ない反応管出口のガス組成を分析
した。その結果、主な反応生成物はR−124、R13
4aおよびR−143aであることを確認しな、それら
のなかでR−143aの選択率について第2表に示す。
Comparative Examples 1 to 3 Using the catalysts prepared as in Comparative Preparation Examples, reactions were carried out in the same manner as in Examples, and the gas composition at the outlet of the reaction tube was analyzed. As a result, the main reaction products are R-124, R13
Among them, the selectivity of R-143a is shown in Table 2.

第1表 R−143a選択率 実施例に用いた触媒は反応開始後500時間を越えても
特性の変化はほとんど認められなかった。
Table 1 R-143a selectivity The catalyst used in the example showed almost no change in characteristics even after 500 hours from the start of the reaction.

第2表 R−143a!!択率 [発明の効果コ 本発明は、実施例に示すように、反応選択性および耐久
性の向上に優れた効果を有する。
Table 2 R-143a! ! Selectivity [Effects of the Invention] As shown in Examples, the present invention has excellent effects in improving reaction selectivity and durability.

Claims (1)

【特許請求の範囲】 1、R−114a(CF_3CCl_2F)を、VIII族
元素を主成分とし I B族元素から選ばれる1種または
2種以上の元素を添加成分として含む水素化触媒の存在
下で水素と反応させることを特徴とするCF_3CH_
2Fで表わされるR−134aの製造法。 2、原料に対して少なくとも化学量論量の水素を使用す
る特許請求の範囲第1項に記載の製造法。 3、添加成分の割合が0.01〜90重量%であるVII
I族元素を主成分とする合金を水素化触媒として用いる
特許請求の範囲第1項〜第2項のいずれか一項に記載の
製造法。 4、添加成分の割合が0.1〜30重量%であるVIII族
元素を主成分とする合金を水素化触媒として用いる特許
請求の範囲第1項〜第3項のいずれか一項に記載の製造
法。 5、VIII族元素を主成分とし I B族元素から選ばれる
1種または2種以上の元素を添加成分とする触媒が活性
炭担体上に担持されている水素化触媒を用いる特許請求
の範囲第1項〜第4項のいずれか一項に記載の製造法。 6、VIII族元素を主成分とし I B族元素から選ばれる
1種または2種以上の元素を添加成分とする触媒がアル
ミナ担体上に担持されている水素化触媒を用いる特許請
求の範囲第1項〜第4項のいずれか一項に記載の製造法
。 7、VIII族元素を主成分とし I B族元素から選ばれる
1種または2種以上の元素を添加成分とする触媒がジル
コニア担体上に担持されている水素化触媒を用いる特許
請求の範囲第1項〜第4項のいずれか一項に記載の製造
法。 8、反応を気相中において120℃〜450℃の温度範
囲で行なう特許請求の範囲第1項〜第7項のいずれか一
項に記載の製造法。
[Claims] 1. R-114a (CF_3CCl_2F) in the presence of a hydrogenation catalyst containing a group VIII element as a main component and one or more elements selected from group IB elements as an additive component. CF_3CH_ characterized by reacting with hydrogen
A method for producing R-134a represented by 2F. 2. The manufacturing method according to claim 1, wherein at least a stoichiometric amount of hydrogen is used with respect to the raw material. 3. VII in which the proportion of added components is 0.01 to 90% by weight
The manufacturing method according to any one of claims 1 to 2, in which an alloy containing Group I elements as a main component is used as a hydrogenation catalyst. 4. The hydrogenation catalyst according to any one of claims 1 to 3, in which an alloy mainly composed of group VIII elements in which the proportion of added components is 0.1 to 30% by weight is used as a hydrogenation catalyst. Manufacturing method. 5. Claim 1 using a hydrogenation catalyst in which a catalyst containing Group VIII elements as a main component and one or more elements selected from Group I and B elements is supported on an activated carbon carrier. The manufacturing method according to any one of Items 1 to 4. Claim 1 uses a hydrogenation catalyst in which a catalyst containing group VIII elements as a main component and one or more elements selected from group I and B elements is supported on an alumina carrier. The manufacturing method according to any one of Items 1 to 4. 7. Claim 1 using a hydrogenation catalyst in which a catalyst containing a group VIII element as a main component and one or more elements selected from group I and B elements as an additive component is supported on a zirconia carrier. The manufacturing method according to any one of Items 1 to 4. 8. The production method according to any one of claims 1 to 7, wherein the reaction is carried out in a gas phase at a temperature range of 120°C to 450°C.
JP63151188A 1988-06-21 1988-06-21 Method for producing R-134a Expired - Fee Related JP2508807B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP63151188A JP2508807B2 (en) 1988-06-21 1988-06-21 Method for producing R-134a
CA000603343A CA1337434C (en) 1988-06-21 1989-06-20 Process for producing 1,1,1,2-tetrafluoroethane
DE68912657T DE68912657T2 (en) 1988-06-21 1989-06-20 Process for the preparation of 1,1,1,2-tetrafluoroethane.
EP89111176A EP0347830B1 (en) 1988-06-21 1989-06-20 Process for producing 1,1,1,2-tetrafluoroethane
US08/308,612 US5426253A (en) 1988-06-21 1994-09-19 Process for producing 1,1,1,2-tetrafluoroethane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63151188A JP2508807B2 (en) 1988-06-21 1988-06-21 Method for producing R-134a

Publications (2)

Publication Number Publication Date
JPH01319438A true JPH01319438A (en) 1989-12-25
JP2508807B2 JP2508807B2 (en) 1996-06-19

Family

ID=15513202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63151188A Expired - Fee Related JP2508807B2 (en) 1988-06-21 1988-06-21 Method for producing R-134a

Country Status (1)

Country Link
JP (1) JP2508807B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02233625A (en) * 1989-01-19 1990-09-17 Soc Atochem Selective hydrogenolysis of perhalogenated ethane derivative

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5231006A (en) * 1975-09-01 1977-03-09 Toagosei Chem Ind Co Ltd Process for preparation of vinylidene chloride
JPS5231005A (en) * 1975-09-01 1977-03-09 Toagosei Chem Ind Co Ltd Process for preparation of vinyl chloride
JPS53147005A (en) * 1977-05-24 1978-12-21 Ici Ltd Process for preparing tetrafluoroethane
JPS6230730A (en) * 1985-06-10 1987-02-09 アウシモント・ソチエタ・ペル・アツイオニ Manufacture of 1,2-difluoroethylene and 1-chloro-1,2-difluoroethylene

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5231006A (en) * 1975-09-01 1977-03-09 Toagosei Chem Ind Co Ltd Process for preparation of vinylidene chloride
JPS5231005A (en) * 1975-09-01 1977-03-09 Toagosei Chem Ind Co Ltd Process for preparation of vinyl chloride
JPS53147005A (en) * 1977-05-24 1978-12-21 Ici Ltd Process for preparing tetrafluoroethane
JPS6230730A (en) * 1985-06-10 1987-02-09 アウシモント・ソチエタ・ペル・アツイオニ Manufacture of 1,2-difluoroethylene and 1-chloro-1,2-difluoroethylene

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02233625A (en) * 1989-01-19 1990-09-17 Soc Atochem Selective hydrogenolysis of perhalogenated ethane derivative

Also Published As

Publication number Publication date
JP2508807B2 (en) 1996-06-19

Similar Documents

Publication Publication Date Title
CA1337434C (en) Process for producing 1,1,1,2-tetrafluoroethane
US5136113A (en) Catalytic hydrogenolysis
US8044250B2 (en) Manufacture of 1,1,1,2,3,3-hexafluoropropane and 1,1,1,2-tetrafluoropropane via catalytic hydrogenation
JPH10510838A (en) Catalytic hydrogenolysis
JPH01128942A (en) Production of tetrafluoroethane
JP2531215B2 (en) Method for producing tetrafluoroethane
JP2814606B2 (en) Method for producing pentafluoroethane
US5663464A (en) Method for producing1,1,1,3,3-pentafluoropropane
JPH01319438A (en) Production of r-134a
JP2581168B2 (en) Method for producing R-134a
JP2581169B2 (en) Method for producing R-134a
JP3897830B2 (en) Process for producing cycloolefin
EP0669304B1 (en) Process for producing difluoromethane
JP2586129B2 (en) Method for producing 1,1,1,2-tetrafluoroethane
JP2541256B2 (en) Method for producing tetrafluoroethane
EP0717727B1 (en) Catalytic method of replacing halogen in halocarbons
JPH0733342B2 (en) Method for producing 1,1,1,2-tetrafluoroethane
JP2581170B2 (en) Method for producing 1,1-dichloro-2,2,2-trifluoroethane
JP2551052B2 (en) Method for producing 1,1,1,2-tetrafluoroethane
JPH01242536A (en) Production of tetrafluoroethane
JP7388776B2 (en) Catalyst for ammonia synthesis and method for producing ammonia
JPH02218625A (en) Production of hcfc-134a
JPH05140008A (en) Production of 1,3-dichloro-1,2,2,3,3-pentafluoropropane
JP2551051B2 (en) Method for producing 1,1,1,2-tetrafluoroethane
JPH01132538A (en) Production of tetrafluoroethane

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees