JPH01318914A - Magnetic rotary sensor - Google Patents

Magnetic rotary sensor

Info

Publication number
JPH01318914A
JPH01318914A JP15031088A JP15031088A JPH01318914A JP H01318914 A JPH01318914 A JP H01318914A JP 15031088 A JP15031088 A JP 15031088A JP 15031088 A JP15031088 A JP 15031088A JP H01318914 A JPH01318914 A JP H01318914A
Authority
JP
Japan
Prior art keywords
magnetic
spacing
recording medium
magnetoresistive elements
radius
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15031088A
Other languages
Japanese (ja)
Inventor
Shoichi Kawamata
昭一 川又
Tadashi Takahashi
正 高橋
Kunio Miyashita
邦夫 宮下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP15031088A priority Critical patent/JPH01318914A/en
Publication of JPH01318914A publication Critical patent/JPH01318914A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce an even harmonic component contained in an encoder output, by disposing a magnetic sensor at some gap l separate from a magnetic drum. CONSTITUTION:A rotary drum 2 is fixed to a rotating shaft 1 and a magnetic recording medium 3 having magnetic signals recorded at a recording pitch lambdais disposed on the outer periphery of the drum. In opposition to this magnetic recording medium, a magnetic sensor 4 constructed of magnetoresistance effect elements (MR elements) R1 and R2 is disposed at some gap l separate from the medium 3. Accordingly, a recording pitch lambda' on the surface of the magnetic sensor is increased by a dimension obtained by adding a spacing l to the radius of the magnetic drum. By taking the spacing l into consideration when the magnetic sensor is designed, in other words, the occurrence of a phase error due to the recording pitch is prevented. By this constitution, an even harmonic component contained in an encoder output is reduced and a clear sine wave output having no distortion can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、回転センサに係り、特に正弦波出力を得る磁
気回転センサに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a rotation sensor, and more particularly to a magnetic rotation sensor that obtains a sinusoidal output.

〔従来の技術〕[Conventional technology]

我々は、先に磁気抵抗効果素子を用いた正弦波出力のエ
ンコーダとして我々は特開昭62−204118号公報
記載の発明を提案している。ここでは、エンコーダ出力
信号に含まれている高調波成分のうち奇数調波の低減に
ついて開示している。しかし。
We have previously proposed the invention described in Japanese Patent Application Laid-Open No. 62-204118 as a sinusoidal output encoder using a magnetoresistive element. Here, reduction of odd harmonics among harmonic components included in an encoder output signal is disclosed. but.

エンコーダ出力信号に含まれる偶数調波の低減対策まで
は言及していない。
No mention is made of measures to reduce even harmonics included in the encoder output signal.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記したような、我々が先に開発した技術は、エンコー
ダ出力信号に含まれている偶数調波成分については触れ
ておらず、そのため出力に誤差を生じてしまう問題があ
った。
The technology that we developed earlier, as described above, does not mention the even harmonic components contained in the encoder output signal, and therefore has the problem of causing errors in the output.

本発明の目的は、エンコーダの出力信号に含まれる偶数
調波成分を低減させ、高精度な磁気回転センサを提供す
ることにある。
An object of the present invention is to provide a highly accurate magnetic rotation sensor by reducing even harmonic components contained in an output signal of an encoder.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は1例えば3端子接続する磁気抵抗効果素子の
間隔を決める記録ピッチλ′を、磁気ドラムと磁気セン
サの間隔(スペーシング)をl、磁気ドラムの半径をに
、磁気ドラムに記録する1周の磁気信号の数をPとする
と として求め決定することにより達成される。
The above purpose is 1. For example, to record on the magnetic drum the recording pitch λ' that determines the spacing between the magnetoresistive elements connected with three terminals, the spacing between the magnetic drum and the magnetic sensor to be l, and the radius of the magnetic drum to be 1. This is achieved by calculating and determining the number of magnetic signals in the circumference as P.

〔作用〕[Effect]

磁気エンコーダは、磁気ドラムと磁気センサで構成され
、磁気センサは、磁気ドラムからある間隔(スペーシン
グ)Qを隔てて配置される。従って、磁気センサ面での
記録ピッチλ′は、磁気ドラム半径にスペーシングQを
加えた分だけ大きくなる。すなわち、磁気センサの設計
時にスペーシング2を考慮することにより、記録ピッチ
による位相誤差を生じない様になる。
A magnetic encoder is composed of a magnetic drum and a magnetic sensor, and the magnetic sensor is arranged at a certain spacing Q from the magnetic drum. Therefore, the recording pitch λ' on the magnetic sensor surface increases by the sum of the magnetic drum radius and the spacing Q. That is, by considering the spacing 2 when designing the magnetic sensor, it is possible to prevent phase errors due to the recording pitch from occurring.

〔実施例〕〔Example〕

以下1本発明の実施例を第1図ないし第10図により説
明する。第1図は1本発明の構成で、回転軸1に回転ド
ラム2が固定してあり、その外周に記録ピッチλの磁気
信号を記録した磁気記録媒体3を配置している。これに
対向して、磁気抵抗効果素子(以下MR素子と呼ぶ)R
t、R2で構成された磁気センサ4を磁気記録媒体3よ
りある間隔(以下、スペーシングと呼ぶ)Qを隔てて配
置する。第1図の磁気記録媒体3と磁気センサ4の関係
を第2図に展開図として示す、第2図において、磁気記
録媒体3には、記録ピッチλで磁気信号を記録している
。磁気センサ4は、MR素子Rs、Rzで構成されて、
各々、λ′/2の間隔で配置されている。λ′は、後述
するがスペーシングQを考慮して求めた記録ピッチであ
り、MR素子の間隔を決めるに使う。磁気センサ4のM
R素子Rt、Rz磁界に対して電気抵抗が変化するもの
で、ガラス基板等の表面にNi−FeやNi・Co等の
薄膜を蒸着等の手法によって作られる。
An embodiment of the present invention will be described below with reference to FIGS. 1 to 10. FIG. 1 shows a configuration according to the present invention, in which a rotating drum 2 is fixed to a rotating shaft 1, and a magnetic recording medium 3 on which magnetic signals of a recording pitch λ are recorded is arranged around the outer periphery of the rotating drum 2. Opposed to this, a magnetoresistive element (hereinafter referred to as MR element) R
t, R2 is arranged at a certain distance (hereinafter referred to as spacing) Q from the magnetic recording medium 3. The relationship between the magnetic recording medium 3 and the magnetic sensor 4 shown in FIG. 1 is shown as an expanded view in FIG. 2. In FIG. 2, magnetic signals are recorded on the magnetic recording medium 3 at a recording pitch λ. The magnetic sensor 4 is composed of MR elements Rs and Rz,
Each is arranged at an interval of λ'/2. λ' is a recording pitch determined by considering the spacing Q, which will be described later, and is used to determine the spacing between the MR elements. M of magnetic sensor 4
R element Rt, Rz The electrical resistance changes with respect to the magnetic field, and is made by a method such as vapor deposition of a thin film of Ni-Fe, Ni.Co, etc. on the surface of a glass substrate or the like.

この磁界に対する抵抗変化は、第3図(イ)に示す様に
磁界の方向に関係なく、磁界の大きさに比例して抵抗が
変化し、ある値で飽和する。ここで、回転ドラム2が回
転して、磁気記録媒体3が移動し、磁気記録媒体3の磁
気信号により磁気センサ4に加わる磁界が第3図(ロ)
の様に変化したと仮定する。この場合磁気センサ4には
、MR素子Rx、Rzの抵抗が充分飽和する程の大きな
磁界が印加される。従って、回転ドラム2が偏心してス
ペーシングQが変化しても出力振幅の変動を小さくでき
る。しかし、MR素子R1r R2の抵抗は、第3図(
ハ)の様に偶数調波を含んだ抵抗変化となる、一方、M
R素子R1,R2は、第3図(ホ)のように電源Vに対
し、直列に3端子接続し、接続点より出力e&を取り出
す、ここで、理想的には、偶数調波成分は、MR素子R
1,R2の3端子接続で相殺され、第3図(ニ)の様な
正弦波出力eoが取り出せる。しかし、以前、我々が開
発した磁気エンコーダのMR素子R1t R*の間隔λ
/2は、磁気記録媒体3に記録した磁気信号の記録ピッ
チλを元に求めている。しかし、実際の磁気センサ3は
、磁気記録媒体3からスペーシングQだけ離れて配置さ
れる。この様子を第5図に示す。
As shown in FIG. 3(a), the resistance changes in proportion to the magnitude of the magnetic field, regardless of the direction of the magnetic field, and saturates at a certain value. Here, the rotating drum 2 rotates, the magnetic recording medium 3 moves, and a magnetic field is applied to the magnetic sensor 4 by the magnetic signal of the magnetic recording medium 3 as shown in FIG.
Assume that it changes as follows. In this case, a large magnetic field is applied to the magnetic sensor 4 so that the resistances of the MR elements Rx and Rz are sufficiently saturated. Therefore, even if the spacing Q changes due to eccentricity of the rotating drum 2, fluctuations in the output amplitude can be reduced. However, the resistance of the MR elements R1r and R2 is
As shown in (c), the resistance changes include even harmonics; on the other hand, M
The R elements R1 and R2 are connected in series with three terminals to the power supply V as shown in FIG. MR element R
By connecting the three terminals 1 and R2, it is canceled out, and a sine wave output eo as shown in FIG. 3 (d) can be obtained. However, previously, the interval λ of the MR element R1t R* of the magnetic encoder that we developed
/2 is determined based on the recording pitch λ of the magnetic signals recorded on the magnetic recording medium 3. However, the actual magnetic sensor 3 is placed apart from the magnetic recording medium 3 by a spacing Q. This situation is shown in FIG.

従って、磁気センサ面4′すなわちMR素子Rt。Therefore, the magnetic sensor surface 4', that is, the MR element Rt.

R2は、スペーシングQだけ磁気記録媒体3の半径r′
が大きくなった状態の記録ピッチλ′で動作することに
なる。このため、設計時の記録ピッチλとMR素子R1
,Rzが実際に動作している記録ピッチλ′の間には、
第5図に示した様な2π72/Pなる記録ピッチ誤差が
生ずる。ここで。
R2 is the radius r' of the magnetic recording medium 3 by the spacing Q.
The operation is performed at a recording pitch λ' with a large value. For this reason, the recording pitch λ at the time of design and the MR element R1
, Rz are actually operating during the recording pitch λ',
A recording pitch error of 2π72/P as shown in FIG. 5 occurs. here.

Pは磁気記録媒体1周の磁気信号の数である。この場合
の動作波形例を第6図に示す、第6図(イ)においてM
R素子R1,Rzの抵抗変化は、第3図(ハ)に示した
ものと同様な歪波形となる。しかし、ここで第3図(ハ
)と異なるのは前述した記2πQ 録ピッチ誤差λ′−λ=□のため、λ/2離たけずれて
しまっている、又、MR素子R1による出力は、第6図
(ロ)の様に、基本波電圧(正弦波)ellと偶数調波
(第2調波)ezlに分けられる。一方、MR素子R2
,による出力は第6図(ハ)に示す様に、第6図(ロ)
に示した波形かただけの同様の波形となる。従って、M
R素子Ri、Rzの3端子出力から得られる出力波形は
第6図(ニ)に示す様に、逆位相で相殺されるはずの偶
数調波(第2調波)0口が残ってしまう、このため、3
端子出力の出力波形eaは第6図(ホ)に示す様な歪波
形となり誤差が大きくなる。またこの記録ピッチ誤差λ
′−λは、例えばエンコーダ出力として電気角で90度
位相の異なる信号を得る様な場合にも影響を与える。す
なわち、第7図に示す様にMR素子R*、Rzに対して
MR素子R3,R4を各々λ/4ずつ離して配置する。
P is the number of magnetic signals in one revolution of the magnetic recording medium. An example of the operation waveform in this case is shown in FIG. 6.
The resistance change of R elements R1 and Rz results in a distortion waveform similar to that shown in FIG. 3(c). However, what is different from FIG. 3(C) here is that due to the recording pitch error λ'-λ=□ mentioned above, the output from the MR element R1 is shifted by λ/2. As shown in FIG. 6(b), the voltage is divided into a fundamental wave voltage (sine wave) ell and an even harmonic (second harmonic) ezl. On the other hand, MR element R2
The output from , as shown in Figure 6 (C), is as shown in Figure 6 (B).
The waveform will be similar to that shown in . Therefore, M
As shown in Figure 6 (d), the output waveform obtained from the three-terminal output of R elements Ri and Rz leaves 0 even harmonics (second harmonics) that should be canceled out in opposite phases. For this reason, 3
The output waveform ea of the terminal output becomes a distorted waveform as shown in FIG. 6(E), and the error becomes large. Also, this recording pitch error λ
'-λ also affects the case where, for example, signals having a phase difference of 90 degrees in electrical angle are obtained as encoder outputs. That is, as shown in FIG. 7, MR elements R3 and R4 are arranged at a distance of λ/4 from MR elements R* and Rz.

このMR素子R1〜Raを第8図の様な接続をする。従
って、MR素子Rs、Rz(ip3端子接続から得られ
る出力amは第6図(ホ)の実線と同になる。又。
The MR elements R1 to Ra are connected as shown in FIG. Therefore, the output am obtained from the MR element Rs, Rz (ip3 terminal connection) is the same as the solid line in FIG. 6(e).

MR素子Raw Raの3端子出力から得られる出力e
bは、第6図(ハ)の−点さ線の様にMR素子のずれた
波形となり、正確に90度位相のずれた2相出力が得ら
れなくなる。この様に、記録ピッチ誤差λ′−λは、偶
数調波の発生及び位相誤差等に影響を与えることがわか
る。そこで、磁気センサ4の設計時に磁気センサ4の動
作点の記録ピッチλ′とMR素子R11Rzの間隔を決
める記録ピッチλ′が一致する様に、例えば第2図のM
R素子Rz、Rzの間隔を決める記録ピッチλ′はスペ
ーシングΩを考慮してやると良い。この様子を第5図に
示す、すなわち、磁気センサ面4′における記録ピッチ
λ′は、磁気記録媒体3の半径rにスペーシングQを加
えた半径r′で算出される。
Output e obtained from the 3-terminal output of MR element Raw Ra
b shows a shifted waveform of the MR element as shown by the - dotted line in FIG. In this manner, it can be seen that the recording pitch error λ'-λ affects the generation of even harmonics, phase error, and the like. Therefore, when designing the magnetic sensor 4, for example, the M
The recording pitch λ' that determines the interval between the R elements Rz and Rz is preferably determined by taking into consideration the spacing Ω. This situation is shown in FIG. 5. That is, the recording pitch λ' on the magnetic sensor surface 4' is calculated by the radius r' that is the sum of the radius r of the magnetic recording medium 3 and the spacing Q.

このため、磁気センサ面4′のMR素子R1t R2は
記録ピッチ誤差のない記録ピッチλ′で動作することに
なり、偶数調波は相殺できる。この様子を第9図に示す
、第9図(イ)の様にMR素子R1,Rzは、記録ピッ
チλ′を用いることにより、記録ピッチ誤差λ′−λは
なくなり、正確にλ′/2の位相のずれた抵抗変化が得
られる。従って、各MR素子R1及びR2による電圧波
形は各々(ロ)(ハ)の様になり、各々基本波@ fl
y e 12と偶数調波(第2調波) ezl、 ex
aに分けられる。
Therefore, the MR elements R1t R2 on the magnetic sensor surface 4' operate at a recording pitch λ' with no recording pitch error, and even harmonics can be canceled out. This situation is shown in FIG. 9. As shown in FIG. 9(A), by using the recording pitch λ', the recording pitch error λ'-λ is eliminated, and the MR elements R1 and Rz are accurately adjusted to λ'/2. Out-of-phase resistance changes are obtained. Therefore, the voltage waveforms due to each MR element R1 and R2 are as shown in (b) and (c), respectively, and the fundamental wave @ fl
y e 12 and even harmonic (second harmonic) ezl, ex
It is divided into a.

ここで、偶数調波(第2調波) ext、 ezzに着
目するとお互いに逆位相となっているため、3端子出力
から得られる出力波形e&は、第9図(ニ)に示す様な
偶数調波(第2調波)が相殺され、基本波のみが合成さ
れたきれいな正弦波出力が得られる。第10図は、スペ
ーシングΩを考慮して試作した磁気センサを用いた場合
の、スペーシングQに対する偶数調波成分の関係を測定
した実験結果の1例である。第10図において、一般に
磁気センサ4のスペーシングQは、センサ出力e&が最
大となる図示の最適スペーシング0m付近に設定される
。そこで、この最適スペーシングQtで見てみると、ス
ペーシングaを考慮した記録ピッチλ′を用いて試作(
対策後)したものは、スペーシングaを考慮しない試作
品(対策前)に比べ、基本波に含まれる偶数調波(第2
調波)の割合は1/3程度に低減されていることがわか
る。尚、この実施例ではMR素子R1,Rzの間隔をス
ペーシングΩを考慮した記録ピッチλ′に対してλ′/
2として説明したが、記録ピッチλ′の長さ、MR素子
の幅及び数等の関係からMR素子の間隔になる様に選ん
でも良い、ここでれは整数である。
Here, if we focus on the even harmonics (second harmonics) ext and ezz, they are in opposite phases to each other, so the output waveform e& obtained from the three-terminal output is an even harmonic as shown in Figure 9 (d). Harmonics (second harmonics) are canceled out and a clean sine wave output is obtained in which only the fundamental wave is synthesized. FIG. 10 is an example of experimental results in which the relationship between even harmonic components and the spacing Q was measured using a magnetic sensor prototyped with the spacing Ω taken into consideration. In FIG. 10, the spacing Q of the magnetic sensor 4 is generally set near the optimum spacing 0 m shown in the figure, where the sensor output e& is maximum. Therefore, if we look at this optimal spacing Qt, we can make a prototype (
Compared to the prototype (before the measures) that does not take into account the spacing a, the even-numbered harmonics (second
It can be seen that the ratio of harmonics) is reduced to about 1/3. In this embodiment, the distance between the MR elements R1 and Rz is set to λ'/with respect to the recording pitch λ' taking into account the spacing Ω.
2, but the distance between the MR elements may be selected based on the relationship between the length of the recording pitch λ', the width and number of MR elements, etc., where this is an integer.

第11図及び第12図は、MR素子R1,Rz及びRx
、Rzのブリッジ接続間で偶数調波を相殺する1実施例
を示したものである。第11図は、第2図等と同作用の
部品で構成されており、3は磁気記録媒体、4は磁気セ
ンサであり、各々展開図として示しである。磁気センサ
4を構成しているMR素子Rt、Rz’ 、R2及びR
、tの各々の間隔は、MR素子R1とR、/をλ’ /
2.R1’とR2をλ/ 2 * RzとR、tをλ′
/2としており、各各第12図の接続を行う、すなわち
、MR素子RsとR2を電源に対して直列に3端子接続
し、その接続点0の出力をal、又MR素子R1’ と
R、/  も同様に3端子接続を行い、その接続点0′
の出力をebとする。第13図にこの時の動作波形例を
示す、第13図(イ)の波形eaは、第6図(ホ)と同
じ理由で偶数調波を含んだ波形となってしまうので歪ん
でしまう、同様に、波形ea’  も歪波形となるが、
3端子出力e&と8a’間をスペーシングaを考慮した
配置(λ′/2)としているのがお互いの位相差は正確
にλ/2ずれた波形となる。従って、第13図(ロ)(
ハ)に示す様に、偶数調波(第2調波)e&z、eaz
は、お互いに逆位相となって相殺され、ブリッジ出力E
^には偶数調波(第2調波)のない基本波のみきれいな
正弦波が得られる。
FIG. 11 and FIG. 12 show MR elements R1, Rz and Rx.
, Rz shows an example of canceling even harmonics between bridge connections. FIG. 11 is composed of parts having the same function as those in FIG. 2, etc., and 3 is a magnetic recording medium and 4 is a magnetic sensor, each of which is shown as an exploded view. MR elements Rt, Rz', R2 and R constituting the magnetic sensor 4
, t, the distance between the MR elements R1 and R,/ is λ'/
2. R1' and R2 are λ/2 * Rz and R, t are λ'
/2, and the connections shown in Fig. 12 are made, that is, the three terminals of MR elements Rs and R2 are connected in series with the power supply, and the output of the connection point 0 is connected to al, and the MR elements R1' and R , / also make a three-terminal connection in the same way, and the connection point 0'
Let the output of eb be eb. FIG. 13 shows an example of the operating waveform at this time. The waveform ea in FIG. 13 (a) is distorted because it contains even harmonics for the same reason as in FIG. 6 (e). Similarly, the waveform ea' is also a distorted waveform, but
Since the three-terminal outputs e& and 8a' are arranged at an arrangement (λ'/2) taking into account the spacing a, the waveforms have a phase difference of exactly λ/2. Therefore, Fig. 13 (b) (
As shown in c), even harmonics (second harmonics) e&z, eaz
are out of phase with each other and cancel each other out, resulting in the bridge output E
In ^, a clean sine wave can be obtained only for the fundamental wave without even harmonics (second harmonics).

第14図は、スペーシングQを考慮しないで作った既存
の磁気センサで偶数調波を相殺する1実施例を示したも
のである。すなわち、磁気センサ4のMR素子R1,R
xの一間隔は磁気記録媒体3上の磁気信号の記録ピッチ
λから求めている。そこで、スペーシングQによる記録
ピッチ誤差をなくすため、既存の磁気記録媒体3の半径
を図示の様に、スペーシングQの分だけ削り取って小さ
くしても良い。すなわち磁気記録媒体3の半径rは、次
式で求められる。
FIG. 14 shows an example of canceling even harmonics using an existing magnetic sensor made without considering the spacing Q. That is, the MR elements R1, R of the magnetic sensor 4
One interval of x is determined from the recording pitch λ of magnetic signals on the magnetic recording medium 3. Therefore, in order to eliminate the recording pitch error caused by the spacing Q, the radius of the existing magnetic recording medium 3 may be reduced by cutting off the radius of the existing magnetic recording medium 3 by the amount of the spacing Q, as shown in the figure. That is, the radius r of the magnetic recording medium 3 is determined by the following equation.

2π ここで、Pは1周の磁気信号(N−8)の数、λは磁気
記録媒体3上の記録ピッチ、Ωはスペーシングである。
2π Here, P is the number of magnetic signals (N-8) in one round, λ is the recording pitch on the magnetic recording medium 3, and Ω is the spacing.

この場合には、回転ドラム2の磁気記録媒体3の外周を
調整するだけで、既存の磁気センサ4により、対策がで
きるのでコスト低減になる。
In this case, countermeasures can be taken by simply adjusting the outer circumference of the magnetic recording medium 3 of the rotating drum 2 using the existing magnetic sensor 4, resulting in cost reduction.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、エンコーダ出力に含まれる偶数調波成
分が低減し、歪のないきれいな正弦波出力が得られる。
According to the present invention, even harmonic components included in the encoder output are reduced, and a clean sine wave output without distortion can be obtained.

又、2相出力を得る場合、正確な例えば電気角で90度
の位相差の出力を得ることができるので磁気回転センサ
の精度が向上する。
Furthermore, when obtaining a two-phase output, it is possible to obtain an output with an accurate phase difference of, for example, 90 degrees in electrical angle, thereby improving the accuracy of the magnetic rotation sensor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の1実施例を示す構成図、第2図は第1
図の磁気記録媒体と磁気センサの関係を示す展開図、第
3図(イ)ないしくホ)は磁気抵抗効果索子の特性と動
作説明図、第4図及び第6図(イ)ないしくホ)は以前
開発した磁気記録媒体と磁気センサの展開図及びその動
作説明図、第5図は磁気記録媒体とスペーシングの関係
を示す構成図、第7図及び第8図は本発明の他の実施例
を示す展開図と磁気抵抗効果素子の接続図、第9図(イ
)ないしく二)、及び第10図は本発明の動作説明図及
びその特性図、第11図〜第14図は他の実施例を示す
説明図である。 1・・・回転軸、2・・・回転ドラム、3・・・磁気記
録媒体、4・・・磁気センサ、4′・・・磁気センサ面
、R・・・磁気抵抗効果素子、λ・・・磁気記録媒体上
での記録ピッチ、λ′・・・磁気センサ面での記録ピッ
チ、λ′−λ・・・記録ピッチ誤差、r・・・磁気記録
媒体の半径、P・・・磁気記録媒体1周の磁気信号の数
、α・・・スぺ高′2−日 嶌1凹 第8日 人^ぐ−1ノ゛ノブ゛2 来13図 手続補正書く方式) %式% 十−件の表示 昭和63年特許願第 150310  号発明の名称 磁気回転センサ hli正をする者 ・1′−件との関係  特許出願人 RIl【S+Il1体式会社 日 立 製 イ乍 折代
   理   人 居  −リτ(〒ILXJI東京都千代田区丸の内−丁
目5番1号補正の対象 明細書の図面の簡単な説明の欄。 Hli正の内容
FIG. 1 is a configuration diagram showing one embodiment of the present invention, and FIG. 2 is a configuration diagram showing one embodiment of the present invention.
Figures 3 (a) to 3 (e) are explanatory diagrams of the characteristics and operation of the magnetoresistive effect cable, and Figures 4 and 6 (a) to 6 are diagrams illustrating the relationship between the magnetic recording medium and the magnetic sensor. E) is a developed diagram of a previously developed magnetic recording medium and magnetic sensor and an explanatory diagram of its operation; FIG. 5 is a configuration diagram showing the relationship between the magnetic recording medium and spacing; FIGS. 9 (a) to 2), and FIG. 10 are explanatory diagrams of the operation of the present invention and their characteristic diagrams, and FIGS. 11 to 14. FIG. 3 is an explanatory diagram showing another embodiment. DESCRIPTION OF SYMBOLS 1... Rotating shaft, 2... Rotating drum, 3... Magnetic recording medium, 4... Magnetic sensor, 4'... Magnetic sensor surface, R... Magnetoresistive element, λ... - Recording pitch on the magnetic recording medium, λ'... Recording pitch on the magnetic sensor surface, λ'-λ... Recording pitch error, r... Radius of the magnetic recording medium, P... Magnetic recording Number of magnetic signals in one revolution of the medium, α...Speed height'2 - day 1 concave 8th day person ^g-1 knob 2 Next 13 Figure procedure correction writing method) % formula % 10- cases Indication of 1986 Patent Application No. 150310 Title of the invention Magnetic rotation sensor (Column for a brief explanation of the drawings of the specification subject to the amendment, ILXJI Marunouchi-5-1, Chiyoda-ku, Tokyo.

Claims (1)

【特許請求の範囲】 1、回転体又は固定体に担持される磁気信号を記録した
磁気記録媒体と、この磁気記録媒体からある距離(スペ
ーシング)を隔てて固定体又は回転体に配置された複数
の磁気抵抗効果素子からなる磁気センサを有し、前記磁
気記録媒体の磁界に感応して内部抵抗が変化する前記磁
気抵抗効果素子を電源に対して2個直列に接続し、その
接続点より出力を取り出して位置や速度を検出するもの
において、 前記、2つの磁気抵抗効果素子の間隔を、各各の抵抗変
化の偶数調波成分の位相が同相となるように選んだこと
を特徴とする磁気回転センサ。 2、前記特許請求範囲第1項記載のものにおいて、前記
複数の磁気抵抗効果素子の間隔を決める記録ピッチλ′
は前記磁気記録媒体の半径rとスペーシングlを加えた
値から求めることを特徴とする磁気回転センサ。 3、前記特許請求範囲第1項記載のものにおいて、前記
複数の磁気抵抗効果素子の間隔を決める記録ピッチλ′
は前記磁気記録媒体の半径をr、スペーシングをl、1
周の磁気信号の数をPとすると λ′=[2π(r+l)/P] として求めることを特徴とする磁気回転センサ。 4、前記特許請求範囲第1項記載のものにおいて、前記
複数の磁気抵抗効果素子の間隔を、前記磁気記録媒体の
半径をr、スペーシングをl、1周の磁気信号の数をP
とし、nを整数とすると [2π(r+l)/P](n+1/2) としたことを特徴とする磁気回転センサ。 5、回転体又は固定体に担持される磁気信号を記録した
磁気記録媒体と、この磁気記録媒体からある距離(スペ
ーシング)を隔てて固定体又は回転体に配置された複数
の磁気抵抗効果素子からなる磁気センサを有し、前記磁
気記録媒体の磁界に感応して内部抵抗が変化する前記磁
気抵抗効果素子をブリッジ接続し、その接続点より出力
を取り出して位置を検出するものにおいて、前記、ブリ
ッジ接続の各々の3端子接続された2組の磁気抵抗効果
素子の間隔を前記、ブリッジ接続の出力端で、抵抗変化
の偶数調波成分が相殺される様に選んだことを特徴とす
る磁気回転センサ。 6、前記特許請求範囲第5項記載のものにおいて、前記
2組の磁気抵抗効果素子の間隔を決める記録ピッチλ′
は前記磁気記録媒体の半径rとスペーシングlを加えた
値から求めることを特徴とする磁気回転センサ。 7、前記特許請求範囲第5項記載のものにおいて、前記
2組の磁気抵抗効果素子の間隔を決める記録ピッチλ′
は前記磁気記録媒体の半径をr、スペーシングをl、1
周の磁気信号の数をPとすると λ′=2π(r+l)/P として求めることを特徴とする磁気回転センサ。 8、前記特許請求範囲第5項記載のものにおいて、前記
2組の磁気抵抗効果素子の間隔を、前記磁気記録媒体の
半径をに、スペーシングをl、1周の磁気信号の数をP
とし、nを整数とすると [2π(r+l)/P](n+1/2) としたことを特徴とする磁気回転センサ。 9、回転体又は固定体に担持される磁気信号を記録した
磁気記録媒体と、この磁気記録媒体からある距離(スペ
ーシング)を隔てて固定体又は回転体に配置された複数
の磁気抵抗効果素子からなる磁気センサを有し、前記磁
気記録媒体の磁界に感応して内部抵抗が変化する前記磁
気抵抗効果素子の抵抗変化を電気的に取り出して位置を
検出するものにおいて、 前記複数の磁気抵抗効果素子を2つのグループに分け、
第1のグループに対して第2のグループの間隔は、各グ
ループの出力が正確に 90°位相がずれる様に選んだことを特徴とする磁気回
転センサ。 10、前記特許請求範囲第9項記載のものにおいて、前
記第1グループの磁気抵抗効果素子群と第2グループの
磁気抵抗効果素子群との間隔を決める記録ピッチλ′は
、前記磁気記録媒体の半径rとスペーシングlを加えた
値から求めることを特徴とする磁気回転センサ。 11、前記特許請求範囲第9項記載のものにおいて、前
記第1グループの磁気抵抗効果素子群と第2グループの
磁気抵抗効果素子群との間隔を決める記録ピッチλ′は
、前記磁気記録媒体の半径をr、スペーシングをl、1
周の磁気信号の数をPとすると λ′=2π(r+l)/P の関係を満すことを特徴とする磁気回転センサ。 12、前記特許請求範囲第9項において、 前記第1グループの磁気抵抗効果素子群と第2グループ
の磁気抵抗効果素子群との間隔を、前記磁気記録媒体の
半径をr、スペーシングをl、1周の磁気信号の数をP
とし、nを整数とすると [2π(r+l)/P](n+1/4) としたことを特徴とする磁気回転センサ。 13、前記特許請求範囲第1項記載のものにおいて、前
記磁気記録媒体の半径をr、前記、1周の磁気信号の数
をP、磁気信号の記録ピッチをλ、スペーシングをlと
した場合、r=(Pλ/2π)−l と選んだことを特徴とする磁気回転センサ。 14、前記特許請求範囲第5項記載のものにおいて、前
記磁気記録媒体の半径をr、前記、1周の磁気信号の数
をP、磁気信号の記録ピッチをλ、スペーシングをlと
した場合、r=(Pλ/2π)−l に選んだことを特徴とする磁気回転センサ。 15、前記特許請求範囲第9項において、前記磁気記録
媒体の半径をr、前記、1周の磁気信号の数をP、磁気
信号の記録ピッチをλ、スペーシングをlとした場合、 r=(Pλ/2π)−l と選んだことを特徴とする磁気回転センサ。
[Claims] 1. A magnetic recording medium on which magnetic signals are recorded, carried by a rotating body or a fixed body, and a magnetic recording medium placed on the fixed body or the rotating body at a certain distance (spacing) from the magnetic recording medium. It has a magnetic sensor consisting of a plurality of magnetoresistive elements, and two of the magnetoresistive elements whose internal resistance changes in response to the magnetic field of the magnetic recording medium are connected in series to a power supply, and from the connection point. A device for detecting position and velocity by extracting an output, characterized in that the spacing between the two magnetoresistive elements is selected so that the even harmonic components of each resistance change are in phase. Magnetic rotation sensor. 2. In the device described in claim 1, a recording pitch λ' that determines the spacing between the plurality of magnetoresistive elements
is determined from the sum of the radius r and the spacing l of the magnetic recording medium. 3. In the device described in claim 1, a recording pitch λ' that determines the spacing between the plurality of magnetoresistive elements
is the radius of the magnetic recording medium r, the spacing l, 1
A magnetic rotation sensor characterized in that, where P is the number of circumferential magnetic signals, λ'=[2π(r+l)/P]. 4. In the device according to claim 1, the distance between the plurality of magnetoresistive elements is such that r is the radius of the magnetic recording medium, l is the spacing, and P is the number of magnetic signals in one round.
A magnetic rotation sensor characterized in that, where n is an integer, [2π(r+l)/P](n+1/2). 5. A magnetic recording medium in which magnetic signals are recorded, carried by a rotating body or a fixed body, and a plurality of magnetoresistive elements arranged on the fixed body or the rotating body at a certain distance (spacing) from the magnetic recording medium. The magnetoresistance effect element whose internal resistance changes in response to the magnetic field of the magnetic recording medium is bridge-connected, and the position is detected by extracting an output from the connection point. The magnetic field is characterized in that the spacing between the two sets of magnetoresistive elements connected at three terminals in each of the bridge connections is selected so that even harmonic components of resistance changes are canceled out at the output end of the bridge connection. Rotation sensor. 6. In the device described in claim 5, the recording pitch λ' determines the interval between the two sets of magnetoresistive elements.
is determined from the sum of the radius r and the spacing l of the magnetic recording medium. 7. In the device according to claim 5, a recording pitch λ' that determines the interval between the two sets of magnetoresistive elements
is the radius of the magnetic recording medium r, the spacing l, 1
A magnetic rotation sensor characterized in that the number of circumferential magnetic signals is determined as λ'=2π(r+l)/P, where P is the number of magnetic signals. 8. In the device according to claim 5, the interval between the two sets of magnetoresistive elements is set to the radius of the magnetic recording medium, the spacing is l, and the number of magnetic signals per revolution is P.
A magnetic rotation sensor characterized in that, where n is an integer, [2π(r+l)/P](n+1/2). 9. A magnetic recording medium in which magnetic signals are recorded, which is carried by a rotating body or a fixed body, and a plurality of magnetoresistive elements arranged on the fixed body or the rotating body at a certain distance (spacing) from the magnetic recording medium. a magnetic sensor that detects a position by electrically extracting a change in resistance of the magnetoresistive element whose internal resistance changes in response to the magnetic field of the magnetic recording medium, wherein the plurality of magnetoresistive elements Divide the elements into two groups,
A magnetic rotation sensor characterized in that the spacing between the second group and the first group is selected so that the outputs of each group are accurately out of phase by 90 degrees. 10. In the device according to claim 9, a recording pitch λ' that determines the distance between the first group of magnetoresistive elements and the second group of magnetoresistive elements is determined by the recording pitch λ' of the magnetic recording medium. A magnetic rotation sensor characterized in that the value is obtained by adding a radius r and a spacing l. 11. In the device described in claim 9, a recording pitch λ' that determines the interval between the first group of magnetoresistive elements and the second group of magnetoresistive elements is determined by the recording pitch λ' of the magnetic recording medium. Radius is r, spacing is l, 1
A magnetic rotation sensor characterized by satisfying the relationship λ'=2π(r+l)/P, where P is the number of magnetic signals in the circumference. 12. In claim 9, the interval between the first group of magnetoresistive elements and the second group of magnetoresistive elements is defined by the radius of the magnetic recording medium being r, the spacing being l, The number of magnetic signals in one revolution is P
A magnetic rotation sensor characterized in that, where n is an integer, [2π(r+l)/P](n+1/4). 13. In the item described in claim 1, when the radius of the magnetic recording medium is r, the number of magnetic signals in one revolution is P, the recording pitch of the magnetic signals is λ, and the spacing is l. , r=(Pλ/2π)−l. 14. In the item described in claim 5, when the radius of the magnetic recording medium is r, the number of magnetic signals in one revolution is P, the recording pitch of the magnetic signals is λ, and the spacing is l. , r=(Pλ/2π)−l. 15. In claim 9, if the radius of the magnetic recording medium is r, the number of magnetic signals in one revolution is P, the magnetic signal recording pitch is λ, and the spacing is l, then r= A magnetic rotation sensor characterized in that (Pλ/2π)-l is selected.
JP15031088A 1988-06-20 1988-06-20 Magnetic rotary sensor Pending JPH01318914A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15031088A JPH01318914A (en) 1988-06-20 1988-06-20 Magnetic rotary sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15031088A JPH01318914A (en) 1988-06-20 1988-06-20 Magnetic rotary sensor

Publications (1)

Publication Number Publication Date
JPH01318914A true JPH01318914A (en) 1989-12-25

Family

ID=15494218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15031088A Pending JPH01318914A (en) 1988-06-20 1988-06-20 Magnetic rotary sensor

Country Status (1)

Country Link
JP (1) JPH01318914A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5754042A (en) * 1994-06-20 1998-05-19 General Motors Corporation Magnetoresistive encoder for tracking the angular position of a rotating ferromagnetic target wheel

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60135768A (en) * 1983-12-24 1985-07-19 Sony Corp Rotation detector
JPH01212312A (en) * 1988-02-19 1989-08-25 Sankyo Seiki Mfg Co Ltd Magnetism detecting device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60135768A (en) * 1983-12-24 1985-07-19 Sony Corp Rotation detector
JPH01212312A (en) * 1988-02-19 1989-08-25 Sankyo Seiki Mfg Co Ltd Magnetism detecting device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5754042A (en) * 1994-06-20 1998-05-19 General Motors Corporation Magnetoresistive encoder for tracking the angular position of a rotating ferromagnetic target wheel

Similar Documents

Publication Publication Date Title
US4818939A (en) Apparatus for magnetically detecting position or speed or moving body utilizing bridge circuit with series connected MR elements
US5019776A (en) Magnetic position detection apparatus having two magnetic recording medium tracks with magnetoresistors arranged in a bridge circuit so as to eliminate even order harmonic distortion
JP2982638B2 (en) Displacement detector
JPWO2008130002A1 (en) Magnetic rotation angle detector
JPH043483B2 (en)
WO2008056793A1 (en) Rotation angle determining apparatus
JP2000065596A (en) Magnetic encoder
JPH01318914A (en) Magnetic rotary sensor
JPH04282417A (en) Magnetic sensor
JPS59147213A (en) Magnetic rotary sensor
JPH1019602A (en) Magnetic encoder
US6307366B1 (en) Object position sensor using magnetic effect device
JPH0197826A (en) Detecting device of torque
JP3309025B2 (en) Reluctance type resolver
JP2722605B2 (en) Magnetic encoder
USRE34443E (en) Apparatus magnetically detecting position or speed of moving body utilizing bridge circuit with series connected MR elements
JP3610420B2 (en) Magnetic sensor
JPH0552583A (en) Magnetic encoder
JP4211278B2 (en) Encoder
JPH0682268A (en) Magnetic type position detector
JP2676878B2 (en) Absolute encoder
JP2767281B2 (en) Magnetic sensor
JPH03210422A (en) Rotary encoder
JPH0348119A (en) Position detecting apparatus
JP2957130B2 (en) Rotational position detector