JP3610420B2 - Magnetic sensor - Google Patents

Magnetic sensor Download PDF

Info

Publication number
JP3610420B2
JP3610420B2 JP29820796A JP29820796A JP3610420B2 JP 3610420 B2 JP3610420 B2 JP 3610420B2 JP 29820796 A JP29820796 A JP 29820796A JP 29820796 A JP29820796 A JP 29820796A JP 3610420 B2 JP3610420 B2 JP 3610420B2
Authority
JP
Japan
Prior art keywords
elements
phase
distance
magnetoresistive
magnetic sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP29820796A
Other languages
Japanese (ja)
Other versions
JPH10122808A (en
Inventor
幸昌 諸野脇
弘光 板橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP29820796A priority Critical patent/JP3610420B2/en
Publication of JPH10122808A publication Critical patent/JPH10122808A/en
Application granted granted Critical
Publication of JP3610420B2 publication Critical patent/JP3610420B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、磁気抵抗効果素子を用いた磁気センサに関する。
【従来の技術】
一般に、ファクトリオートメーション、オフィースオートメーション、その他の分野での自動化機械装置にあっては、直線或いは回転移動体の正確な位置を求めるために光学式或いは磁気式のエンコーダが用いられている。この中で磁気式のエンコーダは、構造が簡単で且つ耐水性、耐油性等の環境条件に対して有利であることから、多用されている。この磁気式の回転エンコーダを例にとれば、このエンコーダは所定のピッチで着磁した回転ドラムと、これに対向させて配置した磁気センサとよりなり、この磁気センサに設けた例えば磁気抵抗効果素子からの出力波形を処理することにより、その相対的或いは絶対的位置を処理することにより、その相対的或いは絶対的位置を求めるようになっている。
【0002】
これを具体的に説明すると、図6は磁気式の回転エンコーダの一般的構成を示す斜視図であり、このエンコーダは回転位置の検出対象となる回転軸2に固定した回転ドラム4と、このドラム外周面に対向させて所定の間隔(スペーシング)を隔てて配置した磁気センサ6とにより主に構成される。上記回転ドラム4の外周面には、所定のピッチλで、N、S極が着磁された多極磁気パターン8が設けられる。図7は上記多極磁気パターンの展開図を示しており、磁気センサ6には、上記ピッチλの略半分の間隔、すなわち実質的にλ/2の間隔で配置した2つの磁気抵抗効果素子R1、R2を有しており、回転ドラム4の回転に伴う磁界の変化を検出し得るようになっている。
尚、ここで、素子R1,R2間の距離が、実質的にλ/2とは、両素子間の距離が精度良くλ/2に設定する場合もあるし、また、特開平1−318914号公報に示すようにドラムとセンサ間の距離、すなわちスペーシングを考慮してセンサに接する円を仮定した時に定まる仮のピッチに基づいて素子R1,R2間の距離を設定する場合もある点を含めて実質的という言葉を用いている。
この磁気抵抗効果素子、すなわちMR素子R1、R2は、例えばガラス基板等の表面に磁界の強度によってその電気抵抗が変化する材料、例えばNi・FeやNi・Co等の薄膜を蒸着等の手法によって形成している。
【0003】
次に、MR素子の動作原理について図8を参照しつつ説明する。
この種のMR素子の磁界に対する抵抗変化は、図8(A)に示すような特性を有し、磁界の方向に関係なく、磁界の大きさに比例して抵抗が変化し、ある値で飽和する。ここで回転ドラム4が回転してMR素子R1、R2に、図8(B)に示すような大きさが正弦波状に変化する磁界Bが加わったものと仮定する。
このような磁界BがMR素子R1、R2に加わると、それぞれピッチλの半波整流波形に似た抵抗値(図8(C))となり、当然のこととしてMR素子R1、R2の抵抗波形はλ/2の位相差となっている。
従って、これらのMR素子R1、R2を図8(D)に示すように直列接続して検出直流電源10より電圧Vを印加すれば、その接続点より出力eaを取り出すことができる。この時の出力波形は図8(E)に示すように周期がλの略正弦波出力を得ることができる。
【0004】
以上の説明は、磁界変化の検出の原理であるが、実際には、MR素子の抵抗変化量は2%程度と小さく、しかも、相対的な回転量、或いは回転角を求めるインクリメンタル相を考慮すれば、正逆回転を認識するためにA相とB相の2つの信号が必要となる。
そこで、図9に示すように8つのMR素子RA、RB、Ra、Rb、Ra’、Rb’、RA’、RB’を用い、これらをそれぞれ1/4λの間隔だけ隔てて順次配列し、図10に示すように配線接続している。尚、A相用のMR素子とB相用のMR素子の間隔は、当然のこととして、λ/4の奇数倍に設定されている。
【0005】
ここでは、図中左側の4つのMR素子RA、RB、Ra、Rbが検出直流電源のプラス側に接続されることからプラス側磁気抵抗効果素子として構成され、他方、図中右側の4つのMR素子Ra’、Rb’、RA’、RB’がマイナス側(接地)に接続されることからマイナス側磁気抵抗効果素子として構成される。ここでMR素子RA、RA’、Ra、Ra’はA相側の信号を出力するものであり、MR素子RB、RB’、Rb、Rb’はB相側の信号を出力するものである。各MR素子の対、例えばRAとRA’、RaとRa’、RBとRB’、RbとRb’はそれぞれ先に説明したMR素子R1とR2の関係を有しており、従って、両素子間は実質的に(λ/2)×奇数倍の間隔を隔てて配置されている。
そして、A相信号用のMR素子RA、RA’、Ra、Ra’はブリッジ状に接続されており(図10(A)参照)、両接続点V 、V を例えばオペアンプ等よりなるA相側増幅器12の−端子と+端子にそれぞれ入力することにより両接続点V 、V の出力を差動増幅するようになっている。これにより、MR素子の抵抗変化量の少なさを補償するようになっている。
【0006】
また同様に、B相信号用のMR素子RB、RB’、Rb、Rb’もブリッジ状に接続されており(図10(B)参照)、両接続点V 、V をB相側増幅器14の−端子と+端子にそれぞれ入力することにより、両接続点V 、V の出力を差動増幅するようになっている。また、このようにA相信号用のMR素子とB相信号用のMR素子を実質的に1/4λずつ間隔を隔てて配置することにより、理想的には図11に示すようにA相信号とB相信号は電気角で90°位相がずれた状態で出力され、正逆回転の回転方向に応じて進む相が変わるので、これにより正回転であるか、逆回転であるかを認識する。
【0007】
【発明が解決しようとする課題】
ところで、図12に示すように回転ドラム4と磁気センサ6との位置関係を拡大して示すと、回転ドラム4の曲率のために、磁気センサ6の中心部とドラム4との間の距離(スペーシング)g1と、センサ6の周辺部とドラム4との間の距離g2とが僅かではあるが異なり、この距離差が原因でMR素子の出力波形は正弦波にはならず、図13(A)に示すような正弦波が僅かに歪んだ波形となってしまう。この歪波を解析すると、図13(B)に示すように波長λの基本波16の他に、主として波長がλ/3の第3高調波18が含まれており、この第3高調波18に起因して上述のように出力波形が大きく歪んでしまう。回転ドラム4の曲率がセンサ6の長さLに対して小さい場合や、検出精度がそれ程高くなくてもよい場合には問題とはならないが、高い検出精度が求められるような場合には、上記第3高調波成分を打ち消して歪を除去する必要がある。
【0008】
そこで、図14に示すようにMR素子RbとRa’との間の距離を上記第3高調波の波長λ/3の半分の長さ、すなわちλ/6だけ更に大きくすることにより右側の4つのMR素子Ra’、Rb’、RA’、RB’をそれぞれ距離λ/6だけ右側にシフトするようにしている。尚、逆に距離λ/6だけ左側にシフトさせるようにしてもよい。これにより、図13(C)に示すように右側の4つのMR素子Ra’、Rb’、RA’、RB’ではλ/6だけシフトした波形が生じ、この第3高調波18’は上記図13(B)に示す第3高調波18に対して1/2波長分だけ位相がずれているので両第3高調波18、18’は相殺し合うことになり、結果として図13(D)に示すように出力波形の歪をある程度抑制することが可能となる。
【0009】
しかしながら、例えば半導体製造装置等のように、より高い位置決めの精度が要求される分野においては、上述のように第3高調波を相殺しただけでは不十分であり、更なる歪の除去が求められている。例えば、上述したような操作で歪を抑制したA相、B相の信号をリサージュ波形として評価したところ、図15に示すように中心からの最大距離raと最小距離riとの差を用いて表す歪率(ra−ri)/raが例えば約7%になってしまい、更にこの歪率を小さくすることが望まれている。尚、図15において破線にて示す真円は歪のない理想的な波形を示す。
本発明は、以上のような問題点に着目し、これを有効に解決すべく創案されたものである。本発明の目的は、出力波形の歪がより少ない、磁気センサを提供することにある。
【0010】
【課題を解決するための手段】
上記問題点を解決するために、本発明は、所定のピッチλでN、S極が着磁された多極磁気パターンを有する回転ドラムに対向して配置される磁気センサであって、検出直流電源のプラス側に接続される複数のプラス側磁気抵抗効果素子と前記検出直流電源のマイナス側に接続される複数のマイナス側磁気抵抗効果素子とを前記回転ドラムの回転方向に沿って特定のピッチで配列した磁気センサにおいて、前記プラス側磁気抵抗効果素子前記マイナス側磁気抵抗効果素子とを互いに隣り合うように交互に配置すると共に、前記プラス側磁気抵抗効果素子と前記マイナス側磁気抵抗効果素子はA相用とB相用にそれぞれ2個ずつ有し、前記A相用の磁気抵抗効果素子と前記B相用の磁気抵抗効果素子の間隔は、λ/4の奇数倍に設定されており、前記A相用とB相用の各相の4個の磁気抵抗効果素子を相毎に相互にブリッジ状に差動増幅的に接続し、該ブリッジの直列接続される磁気抵抗効果素子間の距離を、高調波成分をキャンセルする距離に設定するように構成したものである。
【0011】
これにより、プラス側磁気抵抗効果素子とマイナス側磁気抵抗効果素子とは交互に配置されることになるので、従来のセンサと比較して素子の配列部分の全長を略半分程度まで短くすることが可能となる。従って、センサの中央部と回転ドラムとの間の距離と、センサ周辺部と回転ドラムとの間の距離との差を更に少なくでき、これによりセンサ中央部とセンサ周辺部における多極磁気パターンからの磁界強度の差異をより少なくして出力波形の歪を更に抑制することが可能となる。
【0012】
また、上記ブリッジの直列接続される磁気抵抗効果素子間の距離は、例えば第3高調波成分をキャンセルする場合にはこの距離を実質的にλ/2×奇数倍±λ/6の値に設定し、この時、ブリッジの対向辺となる位置に接続される素子間の距離は実質的にλ/6となる。また、第2高調波成分をキャンセルする場合には、実質的にλ/2の奇数倍の距離となるような距離で両素子を配列し、この時、ブリッジの対向辺となる位置に接続される素子間の距離は両素子が実質的に同じ位置となるような微小間隔となる。
【0013】
【発明の実施の形態】
以下に、本発明に係る磁気センサの一実施例を添付図面に基づいて詳述する。図1は本発明に係る磁気センサの磁気抵抗効果素子の配列状態を示す図である。尚、先に説明した従来の磁気センサと同一部分については同一符号を付して説明する。
図1に示すようにこの磁気センサ20においても、先に図9或いは図14にて説明したと同様に8つの磁気抵抗効果(以下、MRと称す)素子RA、RB、Ra、Rb、Ra’、Rb’、RA’、RB’を有しており、それぞれ回転ドラム4の多極磁気パターン8の回転方向に沿って後述するようなピッチでもって配列されている。
【0014】
上記各MR素子は、一端が検出直流電源に接続されてプラスの電圧Vが印加されるプラス側MR素子RA、RB、Ra、Rbと、一端が上記電源のマイナス側(接地)に接続されるマイナス側MR素子Ra’、Rb’、RA’、RB’とに2つに分類される。また、これらの各MR素子は、前述のように回転ドラムの正逆回転を認識するためにA相信号とB相信号の2つの信号を必要とすることからA相用のMR素子RA、RA’、Ra、Ra’とB相用のMR素子RB、RB’、Rb、Rb’とに分けられる。
これらの各MR素子は、先に図10を参照して説明したと同様に接続される。すなわち、図10(A)に示すようにA相側のMR素子RA、RA’同士及びRa、Ra’同士はそれぞれ直列に接続されて、両素子のそれぞれの接続点V 、V から出力を取り出す。
【0015】
これらの4つのMR素子RA、RA’、Ra、Ra’はブリッジ接続されて図中上下端に検出直流電源10を接続している。この場合、前述のようにプラス側MR素子RA、Raは電源10のプラス側に、マイナス側MR素子RA’、Ra’はマイナス側にそれぞれ接続される。両接続点V 、V の出力を、それぞれA相側増幅器12のマイナス端子及びプラス端子にそれぞれ入力することにより、両出力を差動増幅させてA相信号を得ている。
また、図10(B)に示すようにB相側のMR素子RB、RB’同士及びRb、Rb’同士もそれぞれ直列に接続されて、両素子のそれぞれの接続点V 、V から出力を取り出す。これらの4つのMR素子RB、RB’、Rb、Rb’はブリッジ接続されて図中上下端に検出直流電源10を接続している。この場合も、前述のようにプラス側MR素子RB、Rbは電源10のプラス側に、マイナス側MR素子RB’、Rb’はマイナス側にそれぞれ接続される。両接続点V 、V の出力をそれぞれB相側増幅器14のマイナス端子及びプラス端子にそれぞれ入力することにより、両出力を差動増幅させてB相信号を得ている。
【0016】
一方、各MR素子の配列は、図1に示すように4つのプラス側MR素子RA、RB、Ra、Rbと、4つのマイナス側MR素子Ra’、Rb’、RA’、RB’とを隣り合うように交互に配置している。すなわち、図9に示す図中左側の4つのMR素子RA、RB、Ra、Rb間に、図中右側の4つのMR素子Ra’、Rb’、RA’、RB’を櫛歯状に挿入するかのように配置している。すなわち、8個のMR素子の配列は、多極磁気パターン8のピッチλ内に略収めることが可能となる。ここで隣り合うMR素子同士、すなわち、RAとRa’同士、RBとRb’同士、RaとRA’同士、RbとRB’同士は、図10を参照すると明らかなようにブリッジ回路の対向辺となるように位置関係にある。当然のこととして、プラス側MR素子RA、RB、Ra、Rb、同士の間隔は、多極磁気パターン8のピッチをλとすると実質的にλ/4に所定され、同様にマイナス側MR素子Ra’、Rb’、RA’、RB’同士の間隔も実質的にλ/4に設定されている。ここで、実質的という言葉は、前述のようにドラムとセンサとの間の距離、すなわちスペーシングを考慮したときの仮のピッチも含めるという意味である。すなわち、ドラムの半径にスペーシングの距離を加えた値を半径とする円周上におけるN,Sのピッチを仮のピッチとする。以下の実質的という言葉も同義である。
【0017】
そして、上記ブリッジ回路の対向辺となる位置関係にある隣り合うMR素子同士、すなわち素子RAとRa’間、RBとRb’間、RaとRA’間、RbとRB’間はそれぞれ実質的にλ/6のピッチに設定されており、第3高調波成分をキャンセルし得るようになっている。尚、ちなみに反対側に隣り合うMR素子同士、例えばRa’、RB間の距離は、実質的にλ/12(=λ/4−λ/6)となる。
ここで、ピッチλの値は、約2mm程度であるのに対して各MR素子の幅は20μm程度となってピッチλに対して非常に狭いので、ここではMR素子の幅をほとんど考慮しなくてよい。尚、ピッチλやMR素子の幅は、これに限定されないのは勿論である。
【0018】
さて、以上のように構成された磁気センサにおいて、回転ドラム4が回転することにより、上述のように構成された磁気センサ20の各MR素子に対して加わる磁界が変化すると、先に説明したように各MR素子の電気抵抗が変化してその出力波形を取り出すことができる。
ここで、ブリッジ接続の対向辺に位置するMR素子同士、例えば素子RA、Ra’同士、素子RB、Rb’同士、素子RA、RA’同士、及び素子Rb、RB’同士を隣り合うように配置し、且つそれらの間を実質的にλ/6の距離だけ離間させるようにしたので直列接続される素子同士、例えば素子RA、RA’同士、素子RB、RB’同士、素子Ra、Ra’同士、素子Rb、Rb’同士は実質的に[(λ/2)×奇数倍±λ/6]に相当する距離だけ離間されて配置されていることになり、結果的に図13にて説明したように出力波形に含まれる第3高調波は相互に逆位相となってこれをキャンセルすることができ、出力波形の歪を抑制することができる。図13(A)は、図13(B)に示す波形と、図13(C)に示す波形との合成波である。この点は、図14にて説明した場合と同様である。
【0019】
更に、従来の磁気センサでは、図9及び図14に示すようにMR素子の配列部分の長さは略2λの距離に相当していたが、本実施例では、プラス側MR素子RA、RB、Ra、Rbとマイナス側MR素子Ra’、Rb’、RA’、RB’とを互いに隣り合うように櫛歯状に配列することによりMR素子の配列部分の長さを短くして多極磁気パターン8の1ピッチの長さλに相当する距離内に略収めることができる。具体的には両端のMR素子RA、RB’間の距離は(11/12)λである。
【0020】
従って、図12に示すように磁気センサのMR素子配列部分の長さLが略1/2になる結果、センサ中心部と回転ドラム4との間の距離g1と、センサ周辺部と回転ドラム4との間の距離g2との差、すなわちギャップ差を従来のセンサの場合と比較して大幅に少なくすることができるので、その分、センサ中心部と周辺部との間における磁束強度の相異量を抑制でき、出力波形の歪を更に少なくすることが可能となる。
図2は以上のように構成した磁気センサのA相信号とB相信号とを示す信号波形であり、略正弦波に近い出力信号を得ることができた。また、上記A相信号とB相信号をオシロスコープのX軸とY軸に印加してリサージュ波形を形成したところ、図3に示すように略真円に近い波形を得ることができた。この波形の歪率を測定したところ歪率は、1.1%程度であり、従来のセンサの歪率7%に対して大幅な改善を図ることができた。
【0021】
尚、図1に示すMR素子の配列は、図9或いは図14に示す右側4つのMR素子Ra’、Rb’、RA’、RB’をこの順序で他方の4つのMR素子間に単純に櫛歯状に挿入したような配列を示しているが、図1中のMR素子RB’を1ピッチの距離λだけ左側へシフトさせて図4に示すようにMR素子RB’を左端に位置させるようにしてもよい。この場合には、両端のMR素子RB’、RB間の距離は図1に示す場合よりも更に実質的にλ/12に相当する距離だけ短くすることができ、その分、出力波形の歪を更に抑制することが可能となる。
【0022】
尚、以上に説明した各実施例は主として第3高周波成分をキャンセルするために実質的にλ/6の距離だけ位置ずれさせてMR素子を配列したが、これに限らず、第2高周波をキャンセルするようにMR素子を配列してもよい。この場合の配列は図5に示されており、基本的には第2高周波成分をキャンセルするためには直列接続されるMR素子同士、例えば素子RA、RA’同士、素子RB、RB’同士、素子Ra、Ra’同士、及び素子Rb、Rb’同士は実質的にλ/2×奇数倍の距離だけ離間させる必要があることから、素子RA、RA’同士、素子RB、RB’同士、素子Ra、Ra’同士、及び素子Rb、Rb’同士を完全に同一場所に重ねて設けなければならないが、両素子を上下に重ねることはできないので、両素子を微小間隔L1だけ離間させて隣り合わせに配列し、実質的に同じ位置に配列させている。この微小間隔L1は、両MR素子間の絶縁状態を維持した状態で小さければ小さい程よく、MR素子の薄膜成形技術に依存する。現在のところ、この微小間隔L1は、5μm程度である。
【0023】
また更に、上記実施例では、第2高周波成分と第3高周波成分をキャンセルする場合のMR素子配列について説明したが、隣り合うMR素子間のピッチを考慮することなく、一方のMR素子RA、RB、Ra、Rb間に他方のMR素子Ra’、Rb’、RA’、RB’を単に櫛歯状に挿入するように配列させて、センサの全長を短くするようにしてもよい。この場合には、第2或いは第3高周波成分はキャンセルすることができないが、センサの全長を短くすることにより出力波形に含まれる高次波形成分が少なくなり、この場合にも歪を抑制することができる。
また、櫛歯状にMR素子を配列することにより、出力波形のピーク値は、少し低下するが、低下量は、高々最大20%程度あり、歪抑制効果の利点の方が遥かに大きいものである。
【0024】
【発明の効果】
以上説明したように、本発明の磁気センサによれば、次のように優れた作用効果を発揮することができる。
プラス側磁気抵抗効果素子とマイナス側磁気抵抗効果素子とを隣り合うように交互に配置して、いわば櫛歯状に配列するようにしたので、従来のセンサと比較してその長さを略半分程度に短くすることができる。
従って、センサの素子配列方向において、センサと円形回転ドラムとの間の距離(ギャップ)の相異量が少なくなり、この結果、出力波形に含まれる高次高調波成分を抑制して出力波形の歪を大幅に抑制することができる。
特に、ブリッジ回路において直列接続される磁気抵抗効果素子間の距離を、実質的にλ/2×奇数倍±λ/6の距離に設定することにより、第3高調波成分をキャンセルすることができ、出力波形の歪を更に抑制することができる。
また、ブリッジ回路において直列接続される磁気抵抗効果素子間の距離を、λ/2の奇数倍の距離に設定することにより、第2高調波成分をキャンセルすることができ、出力波形の歪を抑制することができる。
【図面の簡単な説明】
【図1】本発明に係る磁気センサの磁気抵抗効果素子の配列状態を示す図である。
【図2】図1に示すセンサより得られたA相信号とB相信号を示す波形図である。
【図3】図2に示すA相信号とB相信号のリサージュ波形図である。
【図4】図1に示す磁気センサの変形例を示す図である。
【図5】本発明の磁気センサの他の変形例を示す図である。
【図6】磁気センサを含む一般的な磁気式エンコーダを示す斜視図である。
【図7】図6に示す回転ドラムの多極磁気パターンを示す展開図である。
【図8】磁気センサの動作原理を説明するための説明図である。
【図9】磁気センサの磁気抵抗効果素子の従来の配列パターンを示す図である。
【図10】図9に示す磁気抵抗効果素子の接続状態を示す回路図である。
【図11】理想的な磁気センサから得られたA相信号とB相信号を示す波形図である。
【図12】磁気センサと回転ドラムとの位置関係を示す部分拡大図である。
【図13】磁気抵抗効果素子の出力波形の歪を説明するための波形図である。
【図14】磁気センサの磁気抵抗効果素子の従来の他の配列パターンを示す図である。
【図15】従来装置のA相信号とB相信号のリサージュ波形図である。
【符号の説明】
2 回転軸
4 回転ドラム
8 多極磁気パターン
10 検出直流電源
12 A相側増幅器
14 B相側増幅器
16 基本波
18 第3高調波
20 磁気センサ
RA,RB,Ra,Rb プラス側磁気抵抗効果素子
RA’,RB’,Ra’,Rb’ マイナス側磁気抵抗効果素子
λ 多極磁気パターンのピッチ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a magnetic sensor using a magnetoresistive effect element.
[Prior art]
In general, in an automation machine apparatus in factory automation, office automation, and other fields, an optical or magnetic encoder is used to obtain an accurate position of a linear or rotary moving body. Of these, magnetic encoders are widely used because of their simple structure and their advantage for environmental conditions such as water resistance and oil resistance. Taking this magnetic rotary encoder as an example, this encoder is composed of a rotating drum magnetized at a predetermined pitch and a magnetic sensor arranged so as to oppose it, for example, a magnetoresistive effect element provided in this magnetic sensor. The relative or absolute position is obtained by processing the relative or absolute position by processing the output waveform.
[0002]
More specifically, FIG. 6 is a perspective view showing a general configuration of a magnetic rotary encoder. The encoder is a rotary drum 4 fixed to a rotary shaft 2 to be detected as a rotational position, and the drum. The magnetic sensor 6 is mainly composed of a magnetic sensor 6 disposed at a predetermined interval (spacing) so as to face the outer peripheral surface. A multipolar magnetic pattern 8 having N and S poles magnetized at a predetermined pitch λ is provided on the outer peripheral surface of the rotating drum 4. FIG. 7 shows a developed view of the multipolar magnetic pattern. The magnetic sensor 6 includes two magnetoresistive elements R1 arranged at a substantially half interval of the pitch λ, that is, at a substantially λ / 2 interval. , R2 so that a change in the magnetic field accompanying the rotation of the rotating drum 4 can be detected.
Here, the distance between the elements R1 and R2 is substantially λ / 2. In some cases, the distance between the elements is set to λ / 2 with high accuracy, or in Japanese Patent Laid-Open No. 1-318914. Including the point that the distance between the elements R1 and R2 may be set based on a temporary pitch determined when a distance between the drum and the sensor, that is, a circle in contact with the sensor is assumed in consideration of the spacing as shown in the publication The term “substantial” is used.
This magnetoresistive element, that is, the MR elements R1 and R2, is formed by a technique such as vapor deposition of a material whose electrical resistance changes depending on the strength of the magnetic field on the surface of a glass substrate, for example, a thin film such as Ni · Fe or Ni · Co. Forming.
[0003]
Next, the operation principle of the MR element will be described with reference to FIG.
The resistance change with respect to the magnetic field of this type of MR element has the characteristics shown in FIG. 8A. The resistance changes in proportion to the magnitude of the magnetic field regardless of the direction of the magnetic field, and is saturated at a certain value. To do. Here, it is assumed that the rotating drum 4 rotates and a magnetic field B whose magnitude changes in a sine wave shape as shown in FIG. 8B is applied to the MR elements R1 and R2.
When such a magnetic field B is applied to the MR elements R1 and R2, the resistance values are similar to the half-wave rectified waveform with the pitch λ (FIG. 8C), and naturally the resistance waveforms of the MR elements R1 and R2 are The phase difference is λ / 2.
Therefore, when these MR elements R1 and R2 are connected in series as shown in FIG. 8D and the voltage V is applied from the detection DC power supply 10, the output ea can be taken out from the connection point. As the output waveform at this time, a substantially sine wave output with a period of λ can be obtained as shown in FIG.
[0004]
The above explanation is the principle of detecting the change in the magnetic field, but in practice, the resistance change amount of the MR element is as small as about 2%, and the incremental phase for obtaining the relative rotation amount or rotation angle is taken into consideration. For example, in order to recognize forward / reverse rotation, two signals of A phase and B phase are required.
Therefore, as shown in FIG. 9, eight MR elements RA, RB, Ra, Rb, Ra ′, Rb ′, RA ′, and RB ′ are used and are sequentially arranged at intervals of ¼λ, respectively. As shown in FIG. As a matter of course, the interval between the A-phase MR element and the B-phase MR element is set to an odd multiple of λ / 4.
[0005]
Here, since the four MR elements RA, RB, Ra, Rb on the left side in the figure are connected to the plus side of the detection DC power supply, they are configured as plus side magnetoresistive elements, while the four MR elements on the right side in the figure are configured. Since the elements Ra ′, Rb ′, RA ′, and RB ′ are connected to the minus side (ground), they are configured as minus side magnetoresistive elements. Here, the MR elements RA, RA ′, Ra and Ra ′ output A phase side signals, and the MR elements RB, RB ′, Rb and Rb ′ output B phase signals. Each pair of MR elements, for example, RA and RA ′, Ra and Ra ′, RB and RB ′, and Rb and Rb ′ have the relationship of the MR elements R1 and R2 described above. Are substantially spaced apart at an interval of (λ / 2) × odd times.
The MR elements RA, RA ′, Ra, Ra ′ for A-phase signals are connected in a bridge shape (see FIG. 10A), and both connection points V A , V a are made of, for example, operational amplifiers A By inputting to the negative terminal and the positive terminal of the phase side amplifier 12 respectively, the outputs of both connection points V A and V a are differentially amplified. This compensates for the small amount of resistance change of the MR element.
[0006]
Similarly, MR elements RB, RB ′, Rb, Rb ′ for B-phase signals are also connected in a bridge shape (see FIG. 10B), and both connection points V B , V b are connected to the B-phase side amplifier. By inputting the signals to the negative terminal 14 and the positive terminal 14 respectively, the outputs of both connection points V B and V b are differentially amplified. Further, by arranging the MR element for the A phase signal and the MR element for the B phase signal substantially at intervals of 1 / 4λ in this way, ideally, as shown in FIG. And the B phase signal are output with the electrical angle being 90 ° out of phase, and the phase that advances according to the forward and reverse rotation direction changes, so that it recognizes whether it is forward rotation or reverse rotation. .
[0007]
[Problems to be solved by the invention]
By the way, when the positional relationship between the rotating drum 4 and the magnetic sensor 6 is enlarged as shown in FIG. 12, due to the curvature of the rotating drum 4, the distance between the center of the magnetic sensor 6 and the drum 4 ( The spacing g1 and the distance g2 between the peripheral portion of the sensor 6 and the drum 4 are slightly different, but due to this distance difference, the output waveform of the MR element does not become a sine wave. A sine wave as shown in A) becomes a slightly distorted waveform. When this distorted wave is analyzed, as shown in FIG. 13B, in addition to the fundamental wave 16 having the wavelength λ, the third harmonic 18 having a wavelength of λ / 3 is mainly included. As a result, the output waveform is greatly distorted as described above. This is not a problem when the curvature of the rotating drum 4 is small with respect to the length L of the sensor 6 or when the detection accuracy does not need to be so high. It is necessary to cancel the third harmonic component and remove the distortion.
[0008]
Therefore, as shown in FIG. 14, the distance between the MR elements Rb and Ra ′ is further increased by half the wavelength λ / 3 of the third harmonic, that is, λ / 6, so that the four The MR elements Ra ′, Rb ′, RA ′, and RB ′ are shifted to the right by a distance λ / 6. Conversely, it may be shifted leftward by a distance λ / 6. As a result, as shown in FIG. 13C, the right four MR elements Ra ′, Rb ′, RA ′, and RB ′ generate a waveform shifted by λ / 6, and the third harmonic 18 ′ is shown in the above diagram. Since the phase is shifted by ½ wavelength with respect to the third harmonic wave 18 shown in FIG. 13 (B), both the third harmonic waves 18 and 18 ′ cancel each other, and as a result, FIG. As shown in FIG. 4, it is possible to suppress distortion of the output waveform to some extent.
[0009]
However, in a field where higher positioning accuracy is required, such as a semiconductor manufacturing apparatus, it is not sufficient to cancel the third harmonic as described above, and further distortion removal is required. ing. For example, when the A-phase and B-phase signals whose distortion is suppressed by the operation as described above are evaluated as Lissajous waveforms, the difference between the maximum distance ra and the minimum distance ri from the center is expressed as shown in FIG. The distortion rate (ra-ri) / ra is about 7%, for example, and it is desired to further reduce this distortion rate. In addition, the perfect circle shown with a broken line in FIG. 15 shows an ideal waveform without distortion.
The present invention has been devised to pay attention to the above problems and to effectively solve them. An object of the present invention is to provide a magnetic sensor with less distortion of an output waveform.
[0010]
[Means for Solving the Problems]
In order to solve the above-described problems, the present invention provides a magnetic sensor disposed opposite to a rotating drum having a multipolar magnetic pattern in which N and S poles are magnetized at a predetermined pitch λ, and detecting DC A plurality of positive side magnetoresistive effect elements connected to the positive side of the power source and a plurality of negative side magnetoresistive effect elements connected to the negative side of the detection DC power source have a specific pitch along the rotation direction of the rotating drum. in the magnetic sensor are arranged, as well as arranged alternately with the positive magnetoresistance effect element and the minus side magnetoresistive element next to each other, the positive magnetoresistance effect element and the minus side magnetoresistive element Has two each for A phase and B phase, and the interval between the magnetoresistive effect element for A phase and the magnetoresistive effect element for B phase is set to an odd multiple of λ / 4. The four magnetoresistive elements for each of the phases for A phase and B phase are connected to each other in a differential manner in a bridge shape for each phase, and between the magnetoresistive elements connected in series in the bridge The distance is configured to be set to a distance for canceling the harmonic component .
[0011]
As a result, the plus-side magnetoresistive effect element and the minus-side magnetoresistive effect element are alternately arranged, so that the total length of the element arrangement portion can be shortened to about half as compared with the conventional sensor. It becomes possible. Therefore, the difference between the distance between the central part of the sensor and the rotating drum and the distance between the sensor peripheral part and the rotating drum can be further reduced. can be further suppressed distortion less and output waveform difference of the magnetic field strength and that Do.
[0012]
The distance between the magnetoresistive element are connected in series in the bridge, the value of substantially lambda / 2 × odd multiple ± lambda / 6 The distances to cancel a third harmonic component If e Example At this time, the distance between the elements connected to the position that is the opposite side of the bridge is substantially λ / 6. In order to cancel the second harmonic component, both elements are arranged at a distance that is substantially an odd multiple of λ / 2, and at this time, they are connected to the position that is the opposite side of the bridge. The distance between the elements is such that the two elements are at substantially the same position.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of a magnetic sensor according to the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a diagram showing an arrangement state of magnetoresistive elements of a magnetic sensor according to the present invention. The same parts as those of the conventional magnetic sensor described above are denoted by the same reference numerals.
As shown in FIG. 1, this magnetic sensor 20 also has eight magnetoresistive (hereinafter referred to as MR) elements RA, RB, Ra, Rb, Ra ′ as described in FIG. 9 or FIG. , Rb ′, RA ′, and RB ′, which are arranged at a pitch as described later along the rotation direction of the multipolar magnetic pattern 8 of the rotary drum 4.
[0014]
Each of the MR elements has one end connected to a detection DC power source and a positive voltage V applied thereto, plus MR elements RA, RB, Ra, and Rb, and one end connected to the minus side (ground) of the power source. The negative side MR elements Ra ′, Rb ′, RA ′, and RB ′ are classified into two. Further, each of these MR elements requires two signals of the A-phase signal and the B-phase signal in order to recognize the forward / reverse rotation of the rotating drum as described above. ', Ra, Ra' and B-phase MR elements RB, RB ', Rb, Rb'.
These MR elements are connected in the same manner as described above with reference to FIG. That is, as shown in FIG. 10A, the MR elements RA and RA ′ on the A phase side and Ra and Ra ′ are connected in series, and output from the respective connection points V A and V a of both elements. Take out.
[0015]
These four MR elements RA, RA ′, Ra, Ra ′ are bridge-connected, and the detection DC power supply 10 is connected to the upper and lower ends in the figure. In this case, as described above, the plus side MR elements RA and Ra are connected to the plus side of the power supply 10 and the minus side MR elements RA ′ and Ra ′ are connected to the minus side, respectively. The outputs of both connection points V A and V a are respectively input to the minus terminal and the plus terminal of the A-phase side amplifier 12, whereby the outputs are differentially amplified to obtain an A-phase signal.
Further, as shown in FIG. 10B, the MR elements RB and RB ′ on the B phase side and Rb and Rb ′ are also connected in series, and output from respective connection points V B and V b of both elements. Take out. These four MR elements RB, RB ′, Rb, Rb ′ are bridge-connected, and a detection DC power source 10 is connected to the upper and lower ends in the figure. Also in this case, as described above, the plus side MR elements RB and Rb are connected to the plus side of the power source 10 and the minus side MR elements RB ′ and Rb ′ are connected to the minus side. By inputting the outputs of both connection points V B and V b to the negative terminal and the positive terminal of the B-phase side amplifier 14 respectively, both outputs are differentially amplified to obtain a B-phase signal.
[0016]
On the other hand, as shown in FIG. 1, each MR element is arranged such that four plus-side MR elements RA, RB, Ra, Rb and four minus-side MR elements Ra ′, Rb ′, RA ′, RB ′ are adjacent to each other. Alternatingly arranged to fit. That is, the four MR elements Ra ′, Rb ′, RA ′, RB ′ on the right side in the drawing are inserted in a comb-tooth shape between the four MR elements RA, RB, Ra, Rb on the left side in the drawing shown in FIG. Arranged as if. That is, the arrangement of the eight MR elements can be substantially accommodated within the pitch λ of the multipolar magnetic pattern 8. Here, adjacent MR elements, that is, RA and Ra ′, RB and Rb ′, Ra and RA ′, and Rb and RB ′, as shown in FIG. It is in a positional relationship. As a matter of course, the intervals between the plus side MR elements RA, RB, Ra, Rb are substantially set to λ / 4 when the pitch of the multipolar magnetic pattern 8 is λ, and similarly, the minus side MR element Ra. The interval between ', Rb', RA 'and RB' is also substantially set to λ / 4. Here, the term “substantial” means that the distance between the drum and the sensor, that is, a temporary pitch when considering the spacing is included as described above. That is, the pitch of N and S on the circumference whose radius is a value obtained by adding the spacing distance to the radius of the drum is a temporary pitch. The following terms are also synonymous.
[0017]
Then, adjacent MR elements that are in a positional relationship that is the opposite side of the bridge circuit, that is, between the elements RA and Ra ′, between RB and Rb ′, between Ra and RA ′, and between Rb and RB ′ are substantially each. The pitch is set to λ / 6, and the third harmonic component can be canceled. Incidentally, the distance between adjacent MR elements on the opposite side, for example, Ra ′ and RB, is substantially λ / 12 (= λ / 4−λ / 6).
Here, although the value of the pitch λ is about 2 mm, the width of each MR element is about 20 μm, which is very narrow with respect to the pitch λ. Therefore, the width of the MR element is hardly considered here. It's okay. Of course, the pitch λ and the width of the MR element are not limited to this.
[0018]
In the magnetic sensor configured as described above, when the rotating drum 4 rotates, the magnetic field applied to each MR element of the magnetic sensor 20 configured as described above changes, as described above. In addition, the electrical resistance of each MR element changes and the output waveform can be extracted.
Here, MR elements located on opposite sides of the bridge connection, for example, elements RA and Ra ′, elements RB and Rb ′, elements RA and RA ′, and elements Rb and RB ′ are arranged adjacent to each other. In addition, since they are substantially separated by a distance of λ / 6, elements connected in series, for example, elements RA, RA ′, elements RB, RB ′, elements Ra, Ra ′ The elements Rb and Rb ′ are substantially spaced apart from each other by a distance corresponding to [(λ / 2) × odd multiple ± λ / 6], and as a result, described with reference to FIG. As described above, the third harmonics included in the output waveform are mutually opposite in phase and can be canceled, and distortion of the output waveform can be suppressed. FIG. 13A is a composite wave of the waveform shown in FIG. 13B and the waveform shown in FIG. This is the same as the case described with reference to FIG.
[0019]
Further, in the conventional magnetic sensor, as shown in FIGS. 9 and 14, the length of the arrangement portion of the MR elements corresponded to a distance of about 2λ, but in this embodiment, the plus side MR elements RA, RB, By arranging Ra and Rb and minus side MR elements Ra ′, Rb ′, RA ′, and RB ′ in a comb shape so as to be adjacent to each other, the length of the arrangement part of the MR elements is shortened, and the multipolar magnetic pattern 8 within a distance corresponding to a length λ of 1 pitch. Specifically, the distance between the MR elements RA and RB ′ at both ends is (11/12) λ.
[0020]
Accordingly, as shown in FIG. 12, the length L of the MR element array portion of the magnetic sensor is approximately halved, so that the distance g1 between the sensor center and the rotating drum 4 and the sensor peripheral portion and the rotating drum 4 are as follows. Since the difference with the distance g2 between the sensor and the gap, that is, the gap difference can be greatly reduced compared to the conventional sensor, the difference in the magnetic flux intensity between the sensor center and the peripheral part is accordingly increased. The amount can be suppressed, and the distortion of the output waveform can be further reduced.
FIG. 2 is a signal waveform showing the A-phase signal and the B-phase signal of the magnetic sensor configured as described above, and an output signal substantially similar to a sine wave could be obtained. When the Lissajous waveform was formed by applying the A-phase signal and the B-phase signal to the X-axis and Y-axis of the oscilloscope, it was possible to obtain a waveform close to a perfect circle as shown in FIG. When the distortion factor of this waveform was measured, the distortion factor was about 1.1%, which was a significant improvement over the conventional sensor distortion factor of 7%.
[0021]
The arrangement of the MR elements shown in FIG. 1 is such that the four MR elements Ra ′, Rb ′, RA ′, RB ′ on the right side shown in FIG. 9 or FIG. 14 are simply combed between the other four MR elements in this order. Although the arrangement is inserted like a tooth, the MR element RB ′ in FIG. 1 is shifted to the left by a distance λ of one pitch so that the MR element RB ′ is positioned at the left end as shown in FIG. It may be. In this case, the distance between the MR elements RB ′ and RB at both ends can be made shorter by a distance substantially equivalent to λ / 12 than the case shown in FIG. 1, and the distortion of the output waveform is correspondingly reduced. Further suppression is possible.
[0022]
In each of the embodiments described above, the MR elements are arranged by being substantially displaced by a distance of λ / 6 in order to mainly cancel the third high frequency component. However, the present invention is not limited to this, and the second high frequency is canceled. In this manner, MR elements may be arranged. The arrangement in this case is shown in FIG. 5. Basically, in order to cancel the second high frequency component, MR elements connected in series, for example, elements RA and RA ′, elements RB and RB ′, Since elements Ra and Ra ′ and elements Rb and Rb ′ need to be substantially separated by a distance of λ / 2 × odd multiple, elements RA and RA ′, elements RB and RB ′, elements Ra, Ra ′ and elements Rb, Rb ′ must be completely stacked in the same place. However, since both elements cannot be stacked one above the other, the two elements are separated from each other by a small distance L1. Are arranged at substantially the same position. The minute interval L1 is preferably as small as possible while maintaining the insulation state between the MR elements, and depends on the thin film forming technique of the MR element. At present, the minute interval L1 is about 5 μm.
[0023]
Furthermore, in the above embodiment, the MR element arrangement in the case of canceling the second high frequency component and the third high frequency component has been described, but one MR element RA, RB is not considered without considering the pitch between adjacent MR elements. , Ra and Rb, the other MR elements Ra ′, Rb ′, RA ′, and RB ′ may be arranged so as to be simply inserted in a comb shape, thereby shortening the overall length of the sensor. In this case, the second or third high-frequency component cannot be canceled, but the higher-order waveform component contained in the output waveform is reduced by shortening the total length of the sensor, and in this case, distortion is also suppressed. Can do.
In addition, by arranging the MR elements in a comb shape, the peak value of the output waveform is slightly reduced, but the amount of reduction is at most about 20%, and the advantage of the distortion suppression effect is much greater. is there.
[0024]
【The invention's effect】
As described above, according to the magnetic sensor of the present invention, the following excellent operational effects can be exhibited.
The plus side magnetoresistive effect element and the minus side magnetoresistive effect element are alternately arranged so as to be adjacent to each other, so that they are arranged in a comb-like shape. Can be as short as possible.
Therefore, the difference in the distance (gap) between the sensor and the circular rotating drum in the element arrangement direction of the sensor is reduced, and as a result, the higher-order harmonic component contained in the output waveform is suppressed and the output waveform is reduced. Distortion can be greatly suppressed.
In particular, the third harmonic component can be canceled by setting the distance between the magnetoresistive effect elements connected in series in the bridge circuit to a distance of substantially λ / 2 × odd multiple ± λ / 6. The distortion of the output waveform can be further suppressed.
Also, by setting the distance between magnetoresistive elements connected in series in the bridge circuit to a distance that is an odd multiple of λ / 2, the second harmonic component can be canceled and distortion of the output waveform is suppressed. can do.
[Brief description of the drawings]
FIG. 1 is a diagram showing an arrangement state of magnetoresistive elements of a magnetic sensor according to the present invention.
FIG. 2 is a waveform diagram showing an A phase signal and a B phase signal obtained from the sensor shown in FIG.
3 is a Lissajous waveform diagram of an A phase signal and a B phase signal shown in FIG.
4 is a view showing a modification of the magnetic sensor shown in FIG. 1. FIG.
FIG. 5 is a view showing another modification of the magnetic sensor of the present invention.
FIG. 6 is a perspective view showing a general magnetic encoder including a magnetic sensor.
7 is a development view showing a multipolar magnetic pattern of the rotating drum shown in FIG. 6. FIG.
FIG. 8 is an explanatory diagram for explaining the principle of operation of the magnetic sensor.
FIG. 9 is a diagram showing a conventional arrangement pattern of magnetoresistive elements of a magnetic sensor.
10 is a circuit diagram showing a connection state of the magnetoresistive effect element shown in FIG. 9;
FIG. 11 is a waveform diagram showing an A-phase signal and a B-phase signal obtained from an ideal magnetic sensor.
FIG. 12 is a partially enlarged view showing the positional relationship between the magnetic sensor and the rotating drum.
FIG. 13 is a waveform diagram for explaining distortion of the output waveform of the magnetoresistive element.
FIG. 14 is a diagram showing another conventional arrangement pattern of magnetoresistive effect elements of a magnetic sensor.
FIG. 15 is a Lissajous waveform diagram of the A phase signal and the B phase signal of the conventional device.
[Explanation of symbols]
2 Rotating shaft 4 Rotating drum 8 Multipolar magnetic pattern 10 Detecting DC power supply 12 A phase side amplifier 14 B phase side amplifier 16 Fundamental wave 18 3rd harmonic 20 Magnetic sensors RA, RB, Ra, Rb Plus side magnetoresistive element RA ', RB', Ra ', Rb' Negative side magnetoresistive element λ Pitch of multipolar magnetic pattern

Claims (7)

所定のピッチλでN、S極が着磁された多極磁気パターンを有する回転ドラムに対向して配置される磁気センサであって、検出直流電源のプラス側に接続される複数のプラス側磁気抵抗効果素子と前記検出直流電源のマイナス側に接続される複数のマイナス側磁気抵抗効果素子とを前記回転ドラムの回転方向に沿って特定のピッチで配列した磁気センサにおいて、
前記プラス側磁気抵抗効果素子前記マイナス側磁気抵抗効果素子とを互いに隣り合うように交互に配置すると共に、前記プラス側磁気抵抗効果素子と前記マイナス側磁気抵抗効果素子はA相用とB相用にそれぞれ2個ずつ有し、前記A相用の磁気抵抗効果素子と前記B相用の磁気抵抗効果素子の間隔は、λ/4の奇数倍に設定されており、前記A相用とB相用の各相の4個の磁気抵抗効果素子を相毎に相互にブリッジ状に差動増幅的に接続し、該ブリッジの直列接続される磁気抵抗効果素子間の距離を、高調波成分をキャンセルする距離に設定するように構成したことを特徴とする磁気センサ。
A magnetic sensor disposed opposite to a rotating drum having a multipolar magnetic pattern in which N and S poles are magnetized at a predetermined pitch λ, and a plurality of plus side magnets connected to the plus side of a detection DC power source In a magnetic sensor in which a resistance effect element and a plurality of minus side magnetoresistance effect elements connected to the minus side of the detection DC power source are arranged at a specific pitch along the rotation direction of the rotary drum,
The plus side magnetoresistive effect element and the minus side magnetoresistive effect element are alternately arranged adjacent to each other , and the plus side magnetoresistive effect element and the minus side magnetoresistive effect element are used for the A phase and the B phase. And the interval between the A-phase magnetoresistive effect element and the B-phase magnetoresistive effect element is set to an odd multiple of λ / 4. Four magnetoresistive elements of each phase for the phase are connected to each other in a differential manner in the form of a bridge for each phase, and the distance between the magnetoresistive elements connected in series of the bridge is determined as a harmonic component. A magnetic sensor configured to be set to a distance to be canceled .
前記高調波成分をキャンセルする距離は、第3高調波成分をキャンセルする距離であり、該第3高調波成分をキャンセルする距離は、実質的にλ/2×奇数倍±λ/6の距離であることを特徴とする請求項記載の磁気センサ。The distance to cancel the harmonic components, the distance der to cancel the third harmonic component is, the distance to cancel the third harmonic component is, distance substantially lambda / 2 × odd multiple ± lambda / 6 the magnetic sensor according to claim 1, characterized in that. 前記ブリッジの対向辺となる位置に接続される磁気抵抗効果素子間の距離は、実質的にλ/6の距離であることを特徴とする請求項または記載の磁気センサ。The magnetic sensor according to claim 1 or 2, wherein the distance between the magnetoresistive element is connected to a position where the opposite sides of the bridge is the distance substantially lambda / 6. 前記高調波成分をキャンセルする距離は、第2高調波成分をキャンセルすべく実質的にλ/2の奇数倍の距離であることを特徴とする請求項記載の磁気センサ。The distance to cancel the harmonic components, the magnetic sensor according to claim 1, wherein the substantially lambda / 2 of the distance of an odd multiple so as to cancel the second harmonic component. 前記ブリッジの対向辺となる位置に接続される磁気抵抗効果素子間の距離は、実質的に同じ位置となるような微小間隔であることを特徴とする請求項または記載の磁気センサ。The distance between the magnetoresistive element is connected to a position where the opposite sides of the bridge, the magnetic sensor according to claim 1 or 4, wherein it is a small gap such that substantially the same location. 前記各磁気抵抗効果素子の配列は、前記A相用のブリッジの一方の対向辺の2つの磁気抵抗効果素子、前記B相用のブリッジの一方の対向辺の2つの磁気抵抗効果素子、前記A相用のブリッジの他方の対向辺の2つの磁気抵抗効果素子及び前記B相用のブリッジの他方の対向辺の2つの磁気抵抗効果素子の順序で配列されていることを特徴とする請求項1または2記載の磁気センサ。  The arrangement of the magnetoresistive effect elements includes two magnetoresistive effect elements on one opposing side of the A-phase bridge, two magnetoresistive effect elements on one opposing side of the B-phase bridge, and the A 2. The two magnetoresistive elements on the other opposite side of the phase bridge and the two magnetoresistive elements on the other opposite side of the B phase bridge are arranged in this order. Or the magnetic sensor of 2. 前記各磁気抵抗効果素子の配列は、前記B相用のブリッジの一方の対向辺の内の一方の磁気抵抗効果素子、前記A相用のブリッジの一方の対向辺の2つの磁気抵抗効果素子、前記B相用のブリッジの他方の対向辺の2つの磁気抵抗効果素子、前記A相用のブリッジの他方の対向辺の2つの磁気抵抗効果素子及び前記B相用のブリッジの前記一方の対向辺の他方の磁気抵抗効果素子の順序で配列されていることを特徴とする請求項1または2記載の磁気センサ。  The arrangement of the magnetoresistive effect elements includes one magnetoresistive effect element in one opposing side of the B-phase bridge, two magnetoresistive effect elements on one opposing side of the A-phase bridge, Two magnetoresistive elements on the other opposite side of the B-phase bridge, two magnetoresistive elements on the other opposite side of the A-phase bridge, and the one opposite side of the B-phase bridge 3. The magnetic sensor according to claim 1, wherein the other magnetoresistive effect elements are arranged in the order.
JP29820796A 1996-10-22 1996-10-22 Magnetic sensor Expired - Lifetime JP3610420B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29820796A JP3610420B2 (en) 1996-10-22 1996-10-22 Magnetic sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29820796A JP3610420B2 (en) 1996-10-22 1996-10-22 Magnetic sensor

Publications (2)

Publication Number Publication Date
JPH10122808A JPH10122808A (en) 1998-05-15
JP3610420B2 true JP3610420B2 (en) 2005-01-12

Family

ID=17856608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29820796A Expired - Lifetime JP3610420B2 (en) 1996-10-22 1996-10-22 Magnetic sensor

Country Status (1)

Country Link
JP (1) JP3610420B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4543396B2 (en) * 2006-07-28 2010-09-15 日立金属株式会社 Magnetic encoder, lens barrel and autofocus camera
KR100872091B1 (en) * 2007-04-26 2008-12-05 에스앤티대우(주) Sensor module for detecting relative displacement and method of detecting moving direction using the same
JP5687083B2 (en) * 2011-02-02 2015-03-18 日本電産サンキョー株式会社 Magnetic sensor and linear encoder
JP6396677B2 (en) * 2014-05-14 2018-09-26 日本電産サンキョー株式会社 Manual pulse generator

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58154612A (en) * 1982-03-10 1983-09-14 Copal Co Ltd Detector of displacement quantity
JPS62115319A (en) * 1985-11-13 1987-05-27 Denki Onkyo Co Ltd Rotation detector
JPS62204118A (en) * 1986-03-05 1987-09-08 Hitachi Ltd Magnetically detecting device for position or speed
JPH01297508A (en) * 1988-05-26 1989-11-30 Hitachi Metals Ltd Magnetic sensor
JPH02150715A (en) * 1988-11-30 1990-06-11 Sharp Corp Magnetic encoder
JPH0682268A (en) * 1991-02-28 1994-03-22 Japan Servo Co Ltd Magnetic type position detector

Also Published As

Publication number Publication date
JPH10122808A (en) 1998-05-15

Similar Documents

Publication Publication Date Title
KR101078078B1 (en) Magnetic rotational-angle detector
US5019776A (en) Magnetic position detection apparatus having two magnetic recording medium tracks with magnetoresistors arranged in a bridge circuit so as to eliminate even order harmonic distortion
JP3610420B2 (en) Magnetic sensor
JPH0443915A (en) Position detector
JPH04282417A (en) Magnetic sensor
JPH1019602A (en) Magnetic encoder
JP2722605B2 (en) Magnetic encoder
JPH01318917A (en) Magnetic encoder using magnetoresistance element
CN111829557B (en) Rotation angle detecting device
JP4211278B2 (en) Encoder
JPH0552583A (en) Magnetic encoder
JP2556383B2 (en) Magnetic resolver
JP7463593B2 (en) Magnetic sensor system and lens position detection device
JP7527603B2 (en) Angle detector
JPS63311117A (en) Magnetic sensor for detecting position
JPS63305211A (en) Magnetic encoder for clearing absolute position
JPH0723690Y2 (en) Magnetic encoder signal processing circuit
JP2957130B2 (en) Rotational position detector
JPH03191820A (en) Magnetic encoder
JP2004233311A (en) Impedance element reduced type position displacement sensor
JPH03191815A (en) Magnetic encoder
JPH03191819A (en) Magnetic encoder
JPH01318916A (en) Magnetic encoder
JPH03191821A (en) Magnetic encoder
JP2004184115A (en) Rotation sensor device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040921

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041004

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081029

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091029

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091029

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101029

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111029

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111029

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121029

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121029

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 9

EXPY Cancellation because of completion of term