JPH01317017A - Oscillation circuit - Google Patents

Oscillation circuit

Info

Publication number
JPH01317017A
JPH01317017A JP63149462A JP14946288A JPH01317017A JP H01317017 A JPH01317017 A JP H01317017A JP 63149462 A JP63149462 A JP 63149462A JP 14946288 A JP14946288 A JP 14946288A JP H01317017 A JPH01317017 A JP H01317017A
Authority
JP
Japan
Prior art keywords
circuit
oscillation
capacitor
input
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63149462A
Other languages
Japanese (ja)
Inventor
Makoto Sakamoto
誠 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP63149462A priority Critical patent/JPH01317017A/en
Publication of JPH01317017A publication Critical patent/JPH01317017A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the occupied area of an integrated chip and to attain the oscillation at a comparatively lower and wider frequency by controlling the charge/discharge of a capacitor intermittently. CONSTITUTION:A clock with a high frequency obtained comparatively easily is used in an oscillation circuit oscillated through the provision of an input delay means 2 between the input and output of an inverse amplification means 1 and a control means 3 applies charge/discharge of a capacitor C2 of an input delay means 2 intermittently by controlling the turning on/off of switch means S1-S4. The delay between the input and output deciding the oscillating frequency is increased and the oscillation at a low frequency is attained. Thus, the oscillation output with a comparatively lower frequency is obtained and the oscillation circuit with a small occupied area on the chip and facilitating the circuit integration is obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、比較的周波数の低い発振回路に関し、特に集
積回路化が容易である発振回路に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an oscillation circuit with a relatively low frequency, and particularly to an oscillation circuit that can be easily integrated into an integrated circuit.

[従来の技術] 集積回路において、IMHzないし0.IMHz程度の
比較的周波数の低い発振出力を必要とする場合、従来は
以下のような手段が用いられていた。
[Prior Art] In integrated circuits, IMHz to 0. Conventionally, when an oscillation output with a relatively low frequency of about IMHz is required, the following means have been used.

(1)集積回路外においてディスクリートに発振回路を
組む。
(1) Assemble an oscillation circuit discretely outside the integrated circuit.

(2)集積回路のチップ上に水晶発振子による発振回路
を集積化する。
(2) Integrating an oscillation circuit using a crystal oscillator on an integrated circuit chip.

(3)集積回路チップ上に極めて多段のリングオシレー
タを集積化する。
(3) Integrating extremely multi-stage ring oscillators on an integrated circuit chip.

[発明が解決しようとする課題] しかしながら、上記従来の技術における発振回路では、
それぞれ以下のような問題点を抱えていた。
[Problem to be solved by the invention] However, in the oscillation circuit in the above conventional technology,
Each had the following problems.

(1)ディスクリートに組んr!発振回路では、回路を
実装するボードやプリント基板等において実装スペース
を大きく占め、実装効率を低下させたり、ボード面積を
増大させなければならない。
(1) Discretely assembled r! An oscillation circuit occupies a large amount of mounting space on a board, printed circuit board, etc. on which the circuit is mounted, reducing mounting efficiency and requiring an increase in board area.

(2)水晶発振子による発振回路を集積化する場合では
、集積回路の製造プロセスが複雑化する。
(2) When integrating an oscillation circuit using a crystal oscillator, the manufacturing process of the integrated circuit becomes complicated.

(3)リングオシレータを集積化する場合では、リング
オシレータだけでチップ面積を大幅に占有してしまう。
(3) When integrating a ring oscillator, the ring oscillator alone occupies a large amount of chip area.

本発明は、上記問題点を解決するために創案されたもの
で、比較的低い周波数の発振出力が得られ、集積化が容
易でチップ上の占有面積が小さい発振回路を提供するこ
とを目的とする。
The present invention was created in order to solve the above problems, and its purpose is to provide an oscillation circuit that can obtain a relatively low frequency oscillation output, is easy to integrate, and occupies a small area on a chip. do.

[課題を解決するための手段] 上記の目的を達成するための本発明の発振回路の構成は
、 入力に対し出力が反転する増幅手段と、上記入力に接続
されて充放電の電位を該入力として与えるキャパシタを
含む入力遅延手段と、上記出力に接続され、高い周波数
のクロックによってオン/オフするスイッチ手段により
上記キャパシタの充放電を間欠的に行う制御手段とを備
えたことを特徴とする。
[Means for Solving the Problems] The configuration of the oscillation circuit of the present invention for achieving the above object includes: an amplification means whose output is inverted with respect to the input; The present invention is characterized in that it comprises an input delay means including a capacitor given as: and a control means connected to the output and intermittently charging and discharging the capacitor by means of a switch means turned on/off by a high frequency clock.

[作用コ 本発明は、反転増幅手段の入出力の間に入力遅延手段を
設けて発振を行う発振回路において、比較的容易に得ら
れる高い周波数のクロックを用い、スイッチ手段のオン
/オフを制御することによって制御手段が入力遅延手段
のキャパシタの充放電を間欠的に行うことにより、上記
発振の周波数を決める入出力の間の遅延量を増大させ、
低い周波数で発振させる。
[Function] The present invention provides an oscillation circuit that provides input delay means between the input and output of an inverting amplification means to perform oscillation, and uses a relatively easily obtained high frequency clock to control on/off of a switch means. By doing so, the control means intermittently charges and discharges the capacitor of the input delay means, thereby increasing the amount of delay between input and output that determines the frequency of the oscillation,
oscillate at a low frequency.

[実施例] 以下、本発明の実施例を図面に基づいて詳細に説明する
[Example] Hereinafter, an example of the present invention will be described in detail based on the drawings.

第1図は本発明の一実施例を示す発振回路の回路図であ
る。本実施例は反転増幅回路1と、この反転増幅回路l
の入力側に接続されたキャパシタC1から成る入力遅延
回路2と、反転増幅回路1の出力側に接続され高周波の
2相のクロックφ、。
FIG. 1 is a circuit diagram of an oscillation circuit showing one embodiment of the present invention. This embodiment includes an inverting amplifier circuit 1 and an inverting amplifier circuit l.
an input delay circuit 2 consisting of a capacitor C1 connected to the input side of the inverting amplifier circuit 1; and a high frequency two-phase clock φ connected to the output side of the inverting amplifier circuit 1.

φ、を用い、入力遅延回路2の充放電を間欠的に行う制
御手段3と、高周波の2相のクロックφ1゜φ、を発振
するクロック発振回路4から成る。
The control means 3 includes a control means 3 that intermittently charges and discharges the input delay circuit 2 using a clock φ1, and a clock oscillation circuit 4 that oscillates a high frequency two-phase clock φ1°φ.

反転増幅回路lは、奇数個(園側では3個)の反転増幅
を行うインバータ11,12.ta、を直列に接続して
構成し、インバータ11を入力側。
The inverting amplifier circuit l includes an odd number (three on the school side) of inverters 11, 12, . . . which perform inverting amplification. ta are connected in series, and the inverter 11 is connected to the input side.

インバータ13を出力側とする。この反転増幅回路lの
入力側には、履歴ある伝達関数を有する反転増幅器(例
えばシュミットトリガ回路)を少なくとも1つ含むよう
にするのが好適であり、本実施例ではインバータ11を
シュミットトリガ回路を含むものとする。反転増幅回路
!で得られる低い周波数の発振出力は、例えばこのシフ
ミツトトリガ回路(インバータ)11の出力を分岐し、
インバータ5を介して取り出す。
The inverter 13 is on the output side. It is preferable that the input side of the inverting amplifier circuit l includes at least one inverting amplifier (for example, a Schmitt trigger circuit) having a history of transfer function. shall be included. Inverting amplifier circuit! The low frequency oscillation output obtained by, for example, branches the output of this shift trigger circuit (inverter) 11,
It is taken out via the inverter 5.

入力遅延回路2を構成するキャパシタC3は、インバー
タl’lの入力と接地Gの間に接続される。
A capacitor C3 constituting the input delay circuit 2 is connected between the input of the inverter l'l and the ground G.

制御回路3は、キャパシタCIと4つのスイッチs、、
s、、s、、s、とから成り、各スイッチsl。
The control circuit 3 includes a capacitor CI and four switches s,
s,,s,,s,, each switch sl.

S t、 S s、 S 4は、トランジスタで形成さ
れる。
S t, S s, and S 4 are formed of transistors.

キャパシタC3の値は、キャパシタC1より小さい所望
の比率の値とする。キャパシタC8の一方の端子Aは、
スイッチS、を介して反転増幅回路lの出力側(インバ
ータ13の出力)に接続するとともに、スイッチS、を
介して接地Gへ接続する。
The value of capacitor C3 is a desired ratio smaller than that of capacitor C1. One terminal A of capacitor C8 is
It is connected to the output side of the inverting amplifier circuit l (output of the inverter 13) via the switch S, and is connected to the ground G via the switch S.

キャパシタC3の他方の端子Bは、スイッチS3を介し
てキャパシタC3の反転増幅回路lの入力側(インバー
タ11の入力)の端子に接続するとともに、スイッチS
4を介して接地Gへ接続する。
The other terminal B of the capacitor C3 is connected to the input side terminal (input of the inverter 11) of the inverting amplifier circuit l of the capacitor C3 via the switch S3, and is connected to the terminal of the capacitor C3 on the input side (input of the inverter 11)
Connect to ground G via 4.

スイッチSlとSコはクロックφ意でオン/オフが制御
され、スイッチ5tas−はクロックφ、でオン/オフ
が制御される。
The on/off of the switches Sl and S is controlled by the clock φ, and the on/off of the switch 5tas- is controlled by the clock φ.

クロック発振回路4は、奇数個(図では7個)のインバ
ータ41〜47を直列に接続してループを形成すること
により簡単に構成できる。2相のクロックφ5.φ1は
、インバータ43の出力およびインバータ47から分岐
して、それぞれシュミットトリガ回路を含むインバータ
48.49を介して取り出す。2相のクロックφ詠φ、
の関係は、オーバラップする部分がないことが重要であ
る。
The clock oscillation circuit 4 can be easily constructed by connecting an odd number (seven in the figure) of inverters 41 to 47 in series to form a loop. Two-phase clock φ5. φ1 is branched from the output of inverter 43 and inverter 47 and taken out via inverters 48 and 49, each including a Schmitt trigger circuit. 2-phase clock φeiφ,
It is important that there is no overlap in the relationship.

以上のように構成した実施例の作用を述べる。The operation of the embodiment configured as above will be described.

第2図は本実施例の動作説明用の各部波形図である。ま
ず、キャパシタC2がチャージされていない状態におい
て、反転増幅回路lの出力はハイレベル(以下Hと記す
)となる。制御回路3は、クロックφ、がHの期間にス
イッチS、、S、がオンとなり、キャパシタclを通し
て反転増幅回路IのH出力により、キャパシタC1をわ
ずかに充電し、スイッチSt、Ssがオフになるとその
充電電位を保持させる。スイッチSl、S3がオフの期
間中には、クロックφ、がHとなり、キャパシタC1が
接地電位となってディスチャージされる。このサイクル
が繰り返されることにより、キャパシタC2に対し間欠
的な充電が行われ、その充電電位がキャパシタC1とC
3の容量分割で決まる値に向かって徐々に上昇してゆ(
。その充電電位の上昇の途中において、シュミットトリ
ガ回路11の上昇方向のスレショールド(しきい値)レ
ベルVTI(1に達すると、反転増幅回路1の出力はロ
ーレベル(以下りと記す)となる。
FIG. 2 is a waveform diagram of each part for explaining the operation of this embodiment. First, in a state where the capacitor C2 is not charged, the output of the inverting amplifier circuit l becomes a high level (hereinafter referred to as H). In the control circuit 3, the switches S,, S, are turned on during the period when the clock φ, is H, the capacitor C1 is slightly charged by the H output of the inverting amplifier circuit I through the capacitor CL, and the switches St, Ss are turned off. Then, the charged potential is held. While the switches Sl and S3 are off, the clock φ becomes H, and the capacitor C1 becomes the ground potential and is discharged. By repeating this cycle, intermittent charging is performed on capacitor C2, and the charging potential is changed to capacitor C1 and C2.
It gradually increases toward the value determined by the capacity division of 3 (
. During the rise of the charging potential, when the Schmitt trigger circuit 11 reaches the rising threshold level VTI (1), the output of the inverting amplifier circuit 1 becomes a low level (described below). .

次オこ、上記の最終状態において、制御回路3は、クロ
ックφ、によりスイッチS、、S、がオンされ、クロッ
クφ、によりスイッチS2.S4がオフされる期間に、
反転増幅回路1のL出力によりキャパシタC8の放電を
行う。この場合の放電も、充電の場合と同様に間欠的に
行われ、キャパシタC2の電位をキャパシタC3とC3
の容量分割で決まる電位だけ減少させてゆく。このよう
にして、充電電位も接地電位に向かって徐々に下降し、
その下降の途中において、シュミットトリガ回路11の
下降方向のスレショールドレベルV rn’ (V ?
HL<VTH’)に至ると、反転増幅回路lの出力は再
びHとなる 以上が繰り返されて反転増幅回路1は発振する。
Next, in the above final state, the control circuit 3 turns on the switches S, , S, by the clock φ, and switches S2, .,S, by the clock φ. During the period when S4 is turned off,
The capacitor C8 is discharged by the L output of the inverting amplifier circuit 1. Discharging in this case is also performed intermittently as in the case of charging, and the potential of capacitor C2 is changed between capacitors C3 and C3.
The potential is decreased by the amount determined by the capacitance division. In this way, the charging potential also gradually decreases towards the ground potential,
During the downward movement, the downward threshold level Vrn' (V?) of the Schmitt trigger circuit 11 is reached.
HL<VTH'), the output of the inverting amplifier circuit 1 becomes H again, and the above steps are repeated, causing the inverting amplifier circuit 1 to oscillate.

クロック発振回路4の発振周期をT′、電源電圧をVO
Oとすると、反転増幅回路!で得られる発振出力の周期
Tは、 で表される。この式から明らかなように、発振の周期T
は、キャパシタCt、Cmの絶対値ではなく、その比で
決まることになり、CMOSプロセスに好適なものとな
る。本実施例では発振周期を決めるキャパシタC9の遅
延量を間欠的な充放電で増大させ、小さい容量で10 
M Hz〜0 、1 M Hz程度の低い周波数の発振
出力を得る。即ち本実施例は、間欠的な充放電を行わな
い場合に比べて数10−数100倍の周期の低い発振が
可能である。
The oscillation period of the clock oscillation circuit 4 is T', and the power supply voltage is VO.
If it is O, it is an inverting amplifier circuit! The period T of the oscillation output obtained by is expressed as follows. As is clear from this equation, the oscillation period T
is determined not by the absolute values of capacitors Ct and Cm but by their ratio, which is suitable for CMOS process. In this embodiment, the delay amount of the capacitor C9 that determines the oscillation period is increased by intermittent charging and discharging, and a small capacitance is
An oscillation output with a low frequency of about MHz to 0 and 1 MHz is obtained. That is, in this embodiment, oscillation with a period several tens to hundreds of times lower than that in the case where intermittent charging and discharging is not performed is possible.

前述したクロック発振回路4は、高周波の発振回路であ
るため、公知のいかなるクロック発振回路を用いても集
積化が容易であり、チップ上の占有面積も小さく、さら
に本実施例の他の回路も素子数が少なく、全体として集
積化が容易でチップ上の占有面積も小さくすることがで
きる。
Since the clock oscillation circuit 4 described above is a high-frequency oscillation circuit, it can be easily integrated using any known clock oscillation circuit, occupies a small area on a chip, and is compatible with other circuits of this embodiment. The number of elements is small, the overall integration is easy, and the area occupied on the chip can be reduced.

なお、反転増幅回路1の段数は限定されるものではなく
、極端には1段でも良い。また、各キャパシタC+、C
tの形成においても、複数素子を並列あるいは直列に接
続して形成することができる。
Note that the number of stages of the inverting amplifier circuit 1 is not limited, and may be one stage in the extreme. In addition, each capacitor C+, C
t can also be formed by connecting a plurality of elements in parallel or in series.

さらに制御回路3は、キャパシタC1を反転増幅回路I
の出力で間欠的に充放電できれば良く、高抵抗回路によ
って充放電を行うようにしても良い。
Further, the control circuit 3 connects the capacitor C1 to the inverting amplifier circuit I
It is sufficient if the battery can be charged and discharged intermittently with the output of , and charging and discharging may be performed using a high resistance circuit.

本発明はCMOSプロセスだけでなく、種々の半導体の
製造プロセスに、適用できることは当然である。このよ
うに、本発明はその主旨に沿って種々に応用され、種々
の実施態様を取り得るものである。
It goes without saying that the present invention can be applied not only to CMOS processes but also to various semiconductor manufacturing processes. As described above, the present invention can be applied in various ways and can take various embodiments in accordance with its gist.

[発明の効果コ 以上の説明で明らかなように、本発明の発振回路によれ
ば、以下のような効果が得られる。
[Effects of the Invention] As is clear from the above description, the oscillation circuit of the present invention provides the following effects.

(1)集積化か容易となる。(1) Integration becomes easier.

(2)集積化した場合チップ上の占有面積が非常に小さ
い。
(2) When integrated, the area occupied on the chip is very small.

(3)比較的低い広い周波数(P4えばIOMHz〜0
.1MHz)で発振可能である。
(3) Relatively low wide frequency (for example, P4 IOMHz ~ 0
.. 1MHz).

(4)CMOSプロセスだけで製造可能であり、CMO
Sプロセスに好適である。
(4) Can be manufactured using only the CMOS process;
Suitable for S process.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す発振回路の回路図、第
2図は本実施例の動作説明用の各部波形図である。 l・・・反転増幅回路、2・・・入力遅延回路、3・・
・制御回路、4・・・クロック発振回路、CI、Ct・
・・キャパシタ。
FIG. 1 is a circuit diagram of an oscillation circuit showing one embodiment of the present invention, and FIG. 2 is a waveform diagram of each part for explaining the operation of this embodiment. l...inverting amplifier circuit, 2...input delay circuit, 3...
・Control circuit, 4... Clock oscillation circuit, CI, Ct・
・Capacitor.

Claims (1)

【特許請求の範囲】[Claims] (1)入力に対し出力が反転する増幅手段と、上記入力
に接続されて充放電の電位を該入力として与えるキャパ
シタを含む入力遅延手段と、上記出力に接続され、高い
周波数のクロックによってオン/オフするスイッチ手段
により上記キャパシタの充放電を間欠的に行う制御手段
とを備えたことを特徴とする発振回路。
(1) an amplifying means whose output is inverted with respect to the input; an input delay means connected to the input and including a capacitor that provides a charge/discharge potential as the input; and an input delay means connected to the output and turned on/off by a high frequency clock. An oscillation circuit comprising: control means for intermittently charging and discharging the capacitor by means of a switch means for turning off the capacitor.
JP63149462A 1988-06-17 1988-06-17 Oscillation circuit Pending JPH01317017A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63149462A JPH01317017A (en) 1988-06-17 1988-06-17 Oscillation circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63149462A JPH01317017A (en) 1988-06-17 1988-06-17 Oscillation circuit

Publications (1)

Publication Number Publication Date
JPH01317017A true JPH01317017A (en) 1989-12-21

Family

ID=15475656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63149462A Pending JPH01317017A (en) 1988-06-17 1988-06-17 Oscillation circuit

Country Status (1)

Country Link
JP (1) JPH01317017A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5370650A (en) * 1976-12-04 1978-06-23 Michio Morimoto Waveform generating circuit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5370650A (en) * 1976-12-04 1978-06-23 Michio Morimoto Waveform generating circuit

Similar Documents

Publication Publication Date Title
JP3660906B2 (en) Boost circuit capable of adjusting boost voltage, method for generating boost voltage, and integrated circuit including the same
JPH09312968A (en) Charge pump circuit
JPH021620A (en) Voltage controlled oscillation circuit
Intaschi et al. A 220-mV input, 8.6 step-up voltage conversion ratio, 10.45-μW output power, fully integrated switched-capacitor converter for energy harvesting
CN111033274B (en) Low power low duty cycle switched capacitor voltage divider
CN112953526A (en) Ring oscillation circuit, method and integrated chip
US6838928B2 (en) Boosting circuit configured with plurality of boosting circuit units in series
CN115276615B (en) Clock signal frequency multiplier circuit outputting burr-free low duty ratio error
CN112087132A (en) Power supply circuit, integrated circuit, and method for supplying power supply voltage
JPH01317017A (en) Oscillation circuit
JP2005160093A (en) Method and apparatus for generating oscillation signal according to control current
CN215072364U (en) Annular oscillation circuit and integrated chip
JP3345209B2 (en) Multiplier circuit
US20240022211A1 (en) Semiconductor device
JP5952575B2 (en) Charge pump circuit
JP2018042430A (en) Signal generating circuit
CN110752826B (en) External RC frequency adjustable oscillator
CN116647210B (en) Clock signal control module and RF front-end module
EP0926832A1 (en) A dividing circuit for dividing by even numbers
JPH07147512A (en) Semiconductor integraed circuit and high frequency oscillating circuit
JP4452063B2 (en) Dynamic frequency divider
US6384656B1 (en) Stable frequency clock generator
JPS62107A (en) Semiconductor device
CN113691220A (en) On-chip low frequency oscillator
CN117938088A (en) Annular voltage-controlled oscillator for Chua&#39;s chaotic integrated circuit