JPH01315988A - Full color display type film electroluminescence element - Google Patents

Full color display type film electroluminescence element

Info

Publication number
JPH01315988A
JPH01315988A JP63147132A JP14713288A JPH01315988A JP H01315988 A JPH01315988 A JP H01315988A JP 63147132 A JP63147132 A JP 63147132A JP 14713288 A JP14713288 A JP 14713288A JP H01315988 A JPH01315988 A JP H01315988A
Authority
JP
Japan
Prior art keywords
light
green
emitting layer
blue
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63147132A
Other languages
Japanese (ja)
Inventor
Ryuzo Fukao
隆三 深尾
Tsunemi Oiwa
大岩 恒美
Akira Kawakami
章 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP63147132A priority Critical patent/JPH01315988A/en
Publication of JPH01315988A publication Critical patent/JPH01315988A/en
Pending legal-status Critical Current

Links

Landscapes

  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

PURPOSE:To emit light in 3 elementary colors of red, green and blue and a color between them or white at a high luminous efficiency and a high luminance by installing a light emitting layers in a 3-layer structure consisting of specific emitters to take off 3 kinds of light emission through filters. CONSTITUTION:A back-side electrode 2, an insulation layer 3, a ZnS:Tb, F light emitting layer 4, SrS:Ce light emitting layer 5, ZnS:Mn light emitting layer 6 and a display side insulation layer 7 are laminated in order on a substrate 1. Electrodes 2 and 8 are formed in a parallel stripe pattern is such a direction that films made of transparent conductive material perpendicularly intersect each other. Transmission filters 9r, 9g and 9b for red light, green light and blue light are alternately installed in the same order and both directions such that they cover the respective stripes of the electrode 8. The light emitting layers 4, 5 and 6 green, blue green and yellow orange, and those mixed light emissions emit red, green blue at the display side with prescribed wavelength cut off through the filters 9r, 9g and 9b. According to the composition of the mixed light emissions, red, green and blue and all the colors between them or white can be emitted at a high efficiency and a high luminance.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明はデイスプレィ装置などに使用されるエレクト
ロルミネッセンス(以下、ELという)素子、とくに赤
、緑、青の3原色とこれらの間の全ての中間色ならびに
白色つまりフルカラーの発光表示が可能な薄膜EL素子
に関する。
[Detailed Description of the Invention] [Industrial Application Field] This invention relates to electroluminescence (hereinafter referred to as EL) elements used in display devices, etc. The present invention relates to a thin film EL device capable of displaying neutral and white light, that is, full color.

〔従来の技術〕[Conventional technology]

従来、フルカラーの発光表示を行う薄膜EL素子として
、ZnS:Tb、F発光層を有する緑色発光EL素子と
ZnS:Sm、F発光層を有する赤色発光EL素子を積
層し、この積層物にさらにZnS:Tm、F発光層を有
する青色発光EL素子を重ね合わせたもの(第31回春
季応用物理学会予稿集)や、Ca S : Eu発光層
を有する赤色発光E L素子とSrS:Ce発光層を有
する青緑色発光E+、素子を積層するとともに、青緑色
発光E■、素子の表面に青色光透過フ・イルターと緑色
光透過フィルターとを面方向に交互に設りて青緑色発光
を青色成分と緑色成分とに分離してフルカラー化するも
の(ProCeedingof  ’875II) I
nt、 Symp、)などか提案されている。
Conventionally, as a thin-film EL device that performs full-color light-emitting display, a green-emitting EL device having a ZnS:Tb,F light-emitting layer and a red-light-emitting EL device having a ZnS:Sm,F light-emitting layer are laminated, and this laminate is further layered with ZnS. :Tm,F light-emitting layer stacked blue light-emitting EL elements (31st Spring Applied Physics Society Proceedings), CaS:Eu light-emitting layer red light-emitting EL elements and SrS:Ce light-emitting layer. In addition to laminating the blue-green light emitting E+ and blue-green light emitting elements, blue-green light-transmitting filters and green light-transmitting filters are alternately provided on the surface of the element to convert the blue-green light into a blue component. Separate into green component and create full color (ProCeedingof '875II) I
nt, Symp, ), etc. have been proposed.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上記前者の3種のEL素子を積層したも
のでは、素子全体としての薄1模積層数が非常に多くな
ることから特性的に不安定になりやすく素子形成にも多
大の手間を要する」二、赤色および青色発光体として用
いるZ n : S m 、FとZnS+Tm、Fはと
もに輝度が低いため、E 1.−パネルなどの表示装置
としては輝度不足で実用性に乏しいという問題があった
。また、上記後者の2種のE L、素子を積層して青色
および緑色の発光をフィルターを介して行うものでは、
やはり赤色と緑色の発光輝度が低いため、E Lパネル
などとしては実用性に乏しかった。
However, in the case of the former three types of EL elements stacked together, the number of thin layers in the entire element is very large, so the characteristics tend to be unstable and it takes a lot of effort to form the element. 2. Since both Zn:Sm,F and ZnS+Tm,F used as red and blue light emitters have low luminance, E1. - As a display device such as a panel, there was a problem that the brightness was insufficient and it was not practical. In addition, in the latter two types of EL, which emit blue and green light through a filter by stacking elements,
As expected, the luminance of red and green light was low, making it impractical as an EL panel.

なお、フルカラー表示用として実用的な発光輝度は、カ
ラーCRT(Cathode Ray Tube)に相
当する値として、5Kltz駆動で赤色では2,000
cd/d以上、同しく緑色でば4.600cd/ m以
上、同しく青色では600cd/g以上がそれぞれ必要
とされている。
In addition, the practical luminance for full-color display is 2,000 for red with 5Kltz drive, which corresponds to a color CRT (Cathode Ray Tube).
cd/d or higher, 4.600 cd/m or higher for green, and 600 cd/g or higher for blue.

この発明は、上記従来の課題を解決し、赤、緑、青のい
ずれかの発光でも実用的に充分な輝度が得られ、かつ発
光効率も高く、しかも素子構成が簡素で製作容易なフル
カラー表示型薄膜E L素子を1か供することを目的と
している。
This invention solves the above-mentioned conventional problems, and provides a full-color display that can provide practically sufficient brightness even when emitting red, green, or blue light, has high luminous efficiency, and has a simple element configuration and is easy to manufacture. The purpose is to provide one type of thin film EL device.

〔課題を解決するだめの手段〕[Failure to solve the problem]

この発明者らは、」二記目的を達成するために鋭意検討
を重ねた結果、発光層をそれぞれ特定の発光体からなる
3層構造とするとともに、これら発光層の発光を3種の
フィルターを通して取り出すようにした場合に、赤、緑
、青の3原色ならびにこれら原色間の全ての中間色なら
びに白色の発光が高輝度かつ高発光効率で得られ、しか
も素子構成が簡素で容易に製作しうろことを見い出し、
この発明をなすに至った。
As a result of intensive studies to achieve the above object, the inventors created a three-layer structure for the light-emitting layer, each consisting of a specific light-emitting substance, and passed the light emitted from these layers through three types of filters. When extracted, the three primary colors of red, green, and blue, all intermediate colors between these primary colors, and white light can be obtained with high brightness and high luminous efficiency, and the element configuration is simple and easy to manufacture. find out,
This invention has been made.

すなわち、この発明は、透光性の表示側電極と背面側電
極との間に発光層および絶縁層が配設されてなる薄膜E
 L素子において、」−2発光層がZnS:Mn発光層
とZnS:Tb、F発光層とSrS:Ce発光層との3
層からなるとともに、表示側表面に赤色光透過フィルタ
ーと緑色光透過フィルターと青色光透過フィルターとが
面方向に交互に形成されてなるフルカラー表示型薄膜E
 L素子に係るものである。
That is, the present invention provides a thin film E in which a light-emitting layer and an insulating layer are provided between a transparent display-side electrode and a back-side electrode.
In the L element, the ``-2 light-emitting layer is composed of a ZnS:Mn light-emitting layer, a ZnS:Tb, F light-emitting layer, and a SrS:Ce light-emitting layer.
A full-color display type thin film E consisting of layers, and a red light transmitting filter, a green light transmitting filter, and a blue light transmitting filter are alternately formed in the surface direction on the display side surface.
This relates to the L element.

そして、この発明のEl−素子では、」二組両電極の少
なくとも一方を多数の電極部に区割して各電極部に対応
する各表示側表面部に上記3種のフィルターのうちのい
ずれか一種の力を有し、隣接する」二組各表面部のフィ
ルター同志が互いに異なるようにした構成、ならびにS
rS+Ce発光層をZnS+Mn発光層とZnS:Tb
、F発光層との間に配置した構成をそれぞれ好適態様と
している。
In the El-element of the present invention, at least one of the two sets of electrodes is divided into a large number of electrode parts, and one of the above three types of filters is attached to each display side surface part corresponding to each electrode part. It has a kind of force, and has a structure in which two sets of adjacent filters on each surface part are different from each other, and S
rS+Ce light emitting layer, ZnS+Mn light emitting layer and ZnS:Tb
, F light-emitting layer, respectively, are preferred embodiments.

〔発明の構成・作用〕[Structure and operation of the invention]

第1図はこの発明を適用した二重絶縁形のフルカラー表
示型薄膜E L素子の一例を示すものである。
FIG. 1 shows an example of a double insulation type full color display type thin film EL device to which the present invention is applied.

このE 1.素子は、ガラス製の基板1上にAg薄)1
りあるい(J゛インジウムスズ複合酸化物(以下、I 
T Oという)やフッ素を含む酸化スズの如き透明性導
電材料の薄膜などからなる背面側電極2が平行ストライ
ブパターンで形成されており、この電極2を設げた基板
1の表面に順次、背面側絶縁層3、ZnS:Tb、F発
光層4、SrS:Ce発光層5、ZnS:Mn発光層6
、表示側絶縁層7が積層形成され、さらに表示側絶縁層
7上に前記同様の透明性導電材料の薄膜からなる表示側
電極8が背面側電極2に対して直交する方向の平行スト
ライプパターンで形成されている。この表示側表面には
赤色光透過フィルター 9rと緑色光透過フィルター9
gと青色光透過フィルター9bとが表示側電極8の各ス
トライプを覆うように面方向に同一順序で交互に設けで
ある。
This E1. The element is made of Ag (thin) 1 on a glass substrate 1.
Indium tin composite oxide (hereinafter referred to as I
A back side electrode 2 made of a thin film of a transparent conductive material such as tin oxide containing fluorine, etc. is formed in a parallel stripe pattern on the surface of the substrate 1 on which this electrode 2 is provided. Side insulating layer 3, ZnS:Tb,F light emitting layer 4, SrS:Ce light emitting layer 5, ZnS:Mn light emitting layer 6
, a display-side insulating layer 7 is laminated, and a display-side electrode 8 made of a thin film of a transparent conductive material similar to that described above is formed on the display-side insulating layer 7 in a parallel stripe pattern in a direction perpendicular to the back side electrode 2. It is formed. On this display side surface, there is a red light transmitting filter 9r and a green light transmitting filter 9.
The blue light transmitting filters 9b and 9b are alternately provided in the same order in the plane direction so as to cover each stripe of the display side electrode 8.

1ユ記構成のE L素子では、画電極2,8間に発光層
4.5.6の発光開始電圧以上の交流電圧を印加した際
に、側電極2,8の各交差部分においてこれら発光層4
.5.6が発光する。この発光は、発光層4ではZnS
:Tb、Fによる緑色発光、発、光層5ではSrS:C
eによる青緑色発光、発光層6ではlns:Mnによる
黄橙色発光であり、これら発光層4,5.6が上下に重
なっていることから表示側表面へはこれらの混色発光と
して到達するが、赤色光透過フィルター9rの各領域で
は赤色よりも短波長側の光がカットされて赤色発光とし
て放出され、緑色光透過フィルター9gの各領域では緑
色よりも長波長側および短波長側の光がカットされて緑
色発光として放出され、さらに青色光透過フィルター9
bの各領域では青色よりも長波長側の光がカットされて
青色発光として放出される。
In the E L element having the 1U configuration, when an AC voltage higher than the emission starting voltage of the light emitting layer 4.5.6 is applied between the picture electrodes 2 and 8, these light emission occur at each intersection of the side electrodes 2 and 8. layer 4
.. 5.6 emits light. This light emission is caused by ZnS in the light emitting layer 4.
: Green light emission due to Tb, F, SrS:C in the light layer 5
The light-emitting layer 6 emits blue-green light due to e, and the light-emitting layer 6 emits yellow-orange light due to lns:Mn. Since these light-emitting layers 4 and 5.6 are stacked vertically, the mixed color light reaches the display side surface. In each region of the red light transmitting filter 9r, light with a shorter wavelength than red is cut and emitted as red light emission, and in each region of the green light transmitting filter 9g, light with a longer wavelength and shorter wavelength than green is cut. is emitted as green light, and is further passed through a blue light transmitting filter 9.
In each region b, light with wavelengths longer than blue is cut off and emitted as blue light.

したがって、側電極2,8のパターンをそのス(・ライ
ブが一画素上で多数配置するように細かく設定し、表示
側電極8を赤色光透過フィルター9rで覆われるストラ
イプ群(以下、赤色電極部という)と緑色光透過フィル
ター9gで覆われるストライプ群(以下、緑色電極部と
いう)と青色光透過フィルター9bで覆われるストライ
プ群(以下、青色電極部という)とに分離してそれぞれ
個別に背面側電極2との間で電圧を印加しうる構成とす
れば、同一画素を赤緑青の3原色およびこれら原色間の
全ての中間色の発光で任意に表示することができる。す
なわち、赤色電極部のみの使用によって赤色の原色発光
表示、緑色電極部のみの使用により緑色の原色発光表示
、青色電極部のみの使用によって青色の原色発光表示が
それぞれ行えるとともに、いずれか2種もしくは3種の
電極部の使用によって発光色の混合による中間色発光表
示が行える。さらに3種の全部の電極部の使用により、
3原色の混合による白色発光表示も可能となる。
Therefore, the patterns of the side electrodes 2 and 8 are finely set so that a large number of stripes are arranged on one pixel, and the display side electrode 8 is formed into a group of stripes (hereinafter referred to as the red electrode section) covered with the red light transmitting filter 9r. ), a stripe group covered by the green light transmission filter 9g (hereinafter referred to as the green electrode part), and a stripe group covered by the blue light transmission filter 9b (hereinafter referred to as the blue electrode part), and each is separately placed on the back side. If the configuration is such that a voltage can be applied between the electrode 2, the same pixel can be displayed arbitrarily by emitting light in the three primary colors of red, green, and blue, as well as all intermediate colors between these primary colors. Depending on the use, a red primary color luminescence display can be achieved, a green primary color luminescence display can be achieved by using only the green electrode section, a blue primary color luminescence display can be achieved by using only the blue electrode section, and any two or three types of electrode sections can be used. Intermediate color luminescent display can be achieved by mixing luminescent colors.Furthermore, by using all three types of electrode parts,
White light emitting display is also possible by mixing the three primary colors.

なお、中間色発光は、マトリックス表示つまり画素上に
細かいドツト状の各色発光部が平面的に交互に並んでい
るために視覚的に3原色の中間色として認められるもの
で、2種の電極部に印加する電圧、パルス幅、パルス数
、周波数などを変化させて2原色もしくは3原色の相互
の発光の強度を変えることにより、赤〜緑間、緑−青間
、青−扉間の全ての中間色発光を任意に選択できるとと
もに、連続的な色調変化も可能である。ただし、各発光
層の輝度−電圧特性が異なるため、電圧および周波数変
調の場合には連続的変化は行いにくい。
Note that intermediate color light emission is visually recognized as a color intermediate between the three primary colors due to the matrix display, in which fine dot-shaped light emitting parts of each color are arranged alternately on a pixel, and when the light is applied to two types of electrode parts. By changing the voltage, pulse width, number of pulses, frequency, etc., and changing the mutual intensity of light emission of two or three primary colors, all intermediate color light emission between red and green, between green and blue, and between blue and door can be achieved. can be selected arbitrarily, and continuous color tone changes are also possible. However, since the brightness-voltage characteristics of each light-emitting layer are different, continuous changes are difficult to achieve in the case of voltage and frequency modulation.

ここで、上記EL素子の発光層6を構成するZnS:M
nは、本来の発光色がオレンジ色であるが、波長500
〜700nmにわたる広い発光スペクトルを有し、波長
600〜700nmにかけてかなりの赤色成分を含んで
おり、しかも5K)lz駆動で6.000cd/ rr
r以上という非常に高い発光輝度と311m/W以上の
高い発光効率を示すものである。したがって、このEL
素子における赤色発光は、赤色光透過フィルター9rの
透過によっである程度は減衰しているが、なお実用性充
分な2,000cd/n(以上の輝度が得られ、従来の
赤色発光用EL材料として一般的なZnS : Sm、
FJ?:lCa5:Euによる発光に比較して格段に高
輝度でより赤の原色に近く、カラーCRTの赤色にほぼ
一致するものとなしうる。
Here, ZnS:M constituting the light emitting layer 6 of the EL element
The original emission color of n is orange, but the wavelength is 500
It has a wide emission spectrum spanning ~700 nm, contains a significant red component over the wavelength range of 600 to 700 nm, and has an emission rate of 6.000 cd/rr when driven at 5K)lz.
It exhibits extremely high luminance of more than r and high luminous efficiency of more than 311 m/W. Therefore, this EL
Although the red light emitted by the device is attenuated to some extent by the transmission through the red light transmitting filter 9r, it still achieves a luminance of 2,000 cd/n or more, which is sufficient for practical use, and is suitable for use as a conventional red light emitting EL material. General ZnS: Sm,
FJ? :lCa5: Compared to the light emitted by Eu, this light has much higher luminance and is closer to the primary color of red, and can almost match the red color of a color CRT.

また緑色発光は、ZnS:Tb、F発光層4による緑色
発光の輝度自体が高い上に、SrS:Ce発光層5によ
る発光中の緑色成分が加わることから、4.800cd
/n(以上という実用性充分な高輝度が得られる。さら
に青色発光もSrS:Ce発光層5による発光中の青色
成分に加え、ZnS:Tb、F発光層4による発光中に
一部含まれる青色成分が加わるため、前記提案に係るS
rS:Ce発光層とフィルターとを用いたEL素子の青
色発光よりも高輝度となり、600cd/rd以上とい
う実用性充分な値が得られる。
In addition, the green light emission is 4.800 cd because not only the brightness of the green light emission by the ZnS:Tb,F light-emitting layer 4 is high, but also the green component in the light emission by the SrS:Ce light-emitting layer 5 is added.
/n(above, a sufficiently high luminance for practical use can be obtained.Furthermore, in addition to the blue component emitted by the SrS:Ce emitting layer 5, a part of the blue light emission is also included in the emitted light from the ZnS:Tb,F emitting layer 4. Since the blue component is added, S according to the above proposal
The luminance is higher than that of blue light emitted by an EL element using an rS:Ce light emitting layer and a filter, and a value of 600 cd/rd or more, which is sufficient for practical use, can be obtained.

なお、発光層4,5.6の上下関係は任意に設定できる
が、例示のようにSrS:Ce発光層5を両ZnS系発
光層4.6間に配置した場合に最も高い発光効率が得ら
れることが確認されている。
Although the vertical relationship between the light emitting layers 4 and 5.6 can be set arbitrarily, the highest light emitting efficiency can be obtained when the SrS:Ce light emitting layer 5 is disposed between both the ZnS light emitting layers 4.6 as shown in the example. It has been confirmed that

赤色光透過フィルター9rとしては、波長570nm以
下の光をカットするものがよく、とくに波長580nm
以下の光を力′ン卜するものが好ましい。
The red light transmitting filter 9r is preferably one that cuts light with a wavelength of 570 nm or less, especially a wavelength of 580 nm.
It is preferable to use one that emits the following light.

青色光透過フィルター 95としては、波長520nm
以上の光をカッl−するものがよく、とくに波長510
nm以」二の光をカットするものが好ましい。
The blue light transmission filter 95 has a wavelength of 520 nm.
It is best to use a device that cuts light with a wavelength of 510 or more.
It is preferable to use one that cuts out light of 2 nm or less.

また緑色光透過フィルター9gとしては、透過光の波長
域が500〜580nmの範囲、とくに好ましくは51
0〜570nmの範囲であるものがよい。
Further, as the green light transmission filter 9g, the wavelength range of transmitted light is in the range of 500 to 580 nm, particularly preferably 51 nm.
The wavelength is preferably in the range of 0 to 570 nm.

これらフィルター9r、9g、9bを形成するにば、通
常では所要の選択的光吸収能を有する色素とバインダを
含む塗料を調製し、これをスクリーン印刷法などの印刷
塗布手段によって表示側電極8上にそのパターンに対応
したパターン形状で乾燥後の厚さが0.5〜20μm程
度となるように塗布、乾燥すればよいが、後述する各層
3〜7および電極2.))と同様の真空中薄膜形成法も
採用できる。なお、これらフィルター9r、9g、9b
は例示のように表示側電極8上に直接形成する代わりに
、表示側電極8」二にガラス板などの透光性基板を配し
て、この基板」二に形成する構成としてもよい。
In order to form these filters 9r, 9g, and 9b, a paint containing a pigment and a binder having the required selective light absorption ability is usually prepared, and this is applied onto the display side electrode 8 by printing coating means such as screen printing. The layers 3 to 7 and the electrodes 2. to 7, which will be described later, may be coated and dried in a pattern shape corresponding to the pattern with a dry thickness of about 0.5 to 20 μm. )) can also be used to form a thin film in vacuum. In addition, these filters 9r, 9g, 9b
Instead of being directly formed on the display-side electrode 8 as shown in the example, a light-transmitting substrate such as a glass plate may be disposed on the display-side electrode 8, and the structure may be formed on this substrate.

絶縁層3,7の構成祠籾としては、既存の絶縁R14を
いずれも使用でき、たとえばTa205、△f!203
 、Y2 (Ll 、5iOz 、Si3N4、T i
 O□、Nb2O5、BaTi0..5rTi○3 、
P ))−f’ i 03などが挙げられ、各絶縁層で
異なるものを使用してもよい。なお、背面側および表示
側絶縁層3,7としては、それぞれの層を構成材料の異
なる2層以」二の積層物としても差し支えない。さらに
、各発光層4..5.6の層間に同様の絶縁層を介在さ
せることもできる。
As the structure of the insulating layers 3 and 7, any existing insulating material R14 can be used, such as Ta205, △f! 203
, Y2 (Ll, 5iOz, Si3N4, T i
O□, Nb2O5, BaTi0. .. 5rTi○3,
P))-f' i 03, etc., and different ones may be used for each insulating layer. Note that the back side and display side insulating layers 3 and 7 may each be a laminate of two or more layers made of different constituent materials. Furthermore, each light emitting layer 4. .. A similar insulating layer can also be interposed between the layers of 5.6.

各層の厚さは、発光層4,6では2.000〜6゜OO
O人程度、発光層5で6才やや厚<4.000〜12.
000人程度、両絶縁層3.7では3.000〜8.0
00人程度、側電極2,8でば]、、 OOO〜3、0
00人程度である。なお、これら各層の形成手段として
しJ、電子ビーム蒸着や抵抗加熱蒸着の如き真空蒸着法
、高周波スパッタリングの如きスパッタリング法、イオ
ンブレーティング法などの既存の種々の真空中薄膜形成
法を使用材料種に応じて適宜採用できる。
The thickness of each layer is 2.000 to 6°OO for light emitting layers 4 and 6.
About 0 people, 6 years old with light emitting layer 5, slightly thick <4.000~12.
000 people, 3.000 to 8.0 for both insulation layers 3.7
About 00 people, side electrodes 2 and 8],, OOO ~ 3, 0
Approximately 00 people. In addition, various existing vacuum thin film forming methods such as vacuum evaporation methods such as electron beam evaporation and resistance heating evaporation, sputtering methods such as high-frequency sputtering, and ion blating methods are used to form each of these layers. Can be adopted as appropriate.

この発明のE 1.素子では、例示したように背面側お
よび表示側の側電極2,8をパターン化する以外に、側
電極の一方のみをパターン化してもよく、またそのパタ
ーンは平行ス1〜ライブに限らず種々設定できる。
E of this invention 1. In the device, in addition to patterning the side electrodes 2 and 8 on the back side and the display side as illustrated, only one side electrode may be patterned, and the pattern is not limited to parallel strips 1 to 2, but can be patterned in various ways. Can be set.

ずなわぢ、一方の電極を多数の電極部に区割して他方の
電極をこれら電極部に対する共通電極とし、各電極部に
対応する各表示側表面部に前記三種のフィルターのうち
のいずれか一種を有し、かつ隣接する上記各表面部のフ
・イルター同志が相互に異なるものとなるようにするこ
とにより、前記同様の発光色変化によるフルカラー表示
が可能である。
Zunawaji, one electrode is divided into a large number of electrode parts, the other electrode is used as a common electrode for these electrode parts, and one of the above three types of filters is placed on each display side surface part corresponding to each electrode part. By making the filters of one kind and the filters of the adjacent surface portions different from each other, it is possible to perform a full-color display by changing the emitted light color in the same manner as described above.

また、この発明では、素子全体の発光色を変化させる以
外に、フ第1〜リソグラフィーなどを利用して電極パタ
ーンを精細化すれば、タイナミツク駆動つまり線順次走
査を用いたドラ1〜マトリツクス駆動方式によって一画
素ごとに3原色およびこれらの中間色さらには白色の発
光色変化を行うことができる。
Furthermore, in this invention, in addition to changing the emitted light color of the entire element, if the electrode pattern is made finer using lithography, it is possible to use a dynamic drive, that is, a matrix drive system using line sequential scanning. Accordingly, it is possible to change the emission color of the three primary colors, their intermediate colors, and even white for each pixel.

また、この発明は、」−述した二重絶縁形のE Ll2 素子として適用効果が大きいが、一方の電極と発光層と
の間のみに絶縁層を介在させた単絶縁層形のE L素子
にも適用可能である。
Furthermore, although this invention is highly effective in application as the double insulation type E Ll2 element mentioned above, it can also be applied to a single insulation layer type E L element in which an insulating layer is interposed only between one electrode and the light emitting layer. It is also applicable to

〔発明の効果〕〔Effect of the invention〕

この発明に係るフルカラー表示型薄膜E L素子は、発
光層がZnS:Mn発光層とZnS:Tb。
The full color display type thin film EL device according to the present invention has a light emitting layer of a ZnS:Mn light emitting layer and a ZnS:Tb light emitting layer.

F発光層とSrS : Ce発光層との3層からなり、
表示側表面に赤色光i3過フィルターと緑色光透過フィ
ルターと青色光透過フィルターとが面方向に交互に形成
されたものであるため、赤緑青の3原色とこれらの間の
全ての中間色ならびに白色の発光を高輝度かつ高発光効
率で行うことができ、しかも素子作製が容易であるとい
う利点がある。
Consisting of three layers: F light emitting layer and SrS:Ce light emitting layer,
Since a red light i3 filter, a green light transmitting filter, and a blue light transmitting filter are formed alternately in the surface direction on the display side surface, the three primary colors of red, green, and blue, all intermediate colors between these, and white It has the advantage that it can emit light with high brightness and high luminous efficiency, and that it is easy to manufacture the device.

また、上記E L素子の表示側電極と背面側電極の少な
くとも一方を多数の電極部に区割し、各電極部に対応す
る各表示側表面部に上記3種のフィルターのうちの一種
のみを有し、隣接する上記各表面部のフィルター同志が
互いに異なるような構成とすることにより、フルカラー
の発光を確実に行うことができる。さらに、SrS:C
e発光層をZnS:Mn発光層とZnS:Tb、F発光
層との間に配置した構成とすれば、他の発光層配置構成
に比べて高い発光効率が得られるという利点がある。
Furthermore, at least one of the display-side electrode and the back-side electrode of the EL element is divided into a large number of electrode parts, and only one of the above three types of filters is applied to each display-side surface part corresponding to each electrode part. By having a configuration in which the filters on the adjacent surface portions are different from each other, full-color light emission can be reliably performed. Furthermore, SrS:C
The structure in which the e-emitting layer is arranged between the ZnS:Mn light-emitting layer and the ZnS:Tb,F light-emitting layer has the advantage that higher luminous efficiency can be obtained compared to other light-emitting layer arrangement configurations.

〔実施例〕〔Example〕

以下、この発明を実施例によって具体的に説明する。 Hereinafter, the present invention will be specifically explained with reference to Examples.

実施例1 縦34龍、横3411厚さ1.1鰭のガラス製基板の一
面側に厚さ1,500人のAI薄膜からなる背面側電極
を抵抗加熱蒸着法によって各ストライプ幅が300μm
の平行ストライプパターンとなるように形成した。
Example 1 A back side electrode consisting of an AI thin film with a thickness of 1,500 fins was formed on one side of a glass substrate with a length of 34 fins and a width of 3411 fins and a thickness of 1.1 fins, and each stripe width was 300 μm using the resistance heating vapor deposition method.
It was formed into a parallel stripe pattern.

つぎに、この背面側電極上に高周波スパッタリング法に
よってTaz 05からなる厚さ5.000人の背面側
絶縁層を形成し、この」二に順次、高周波スパッタリン
グ法による厚さ5.000人のZnS:Tb、F発光層
、電子ビーム蒸着法による厚さ9,000人のSrS:
Ce発光層、電子ビーム蒸着法による厚さ4,000人
のZnS:Mn発光層を積層形成し、この上にさらに高
周波スパッタリング法によってTazOsからなる厚さ
5,000人の表示側絶縁層を積層形成した。
Next, a back side insulating layer made of Taz 05 with a thickness of 5,000 thick is formed on this back side electrode by high frequency sputtering, and then a ZnS layer with a thickness of 5,000 thick is formed by high frequency sputtering. :Tb, F emissive layer, 9,000-layer thick SrS by electron beam evaporation method:
A Ce luminescent layer, a ZnS:Mn luminescent layer of 4,000 thick by electron beam evaporation are laminated, and a display-side insulating layer of 5,000 thick of TazOs is further laminated on top of this by high-frequency sputtering. Formed.

ついで、この表示側絶縁層上に厚さ2.000人のIT
O膜からなる表示側電極を電子ビーム蒸着法によって背
面側電極のストライプパターンに対して直交する同様の
平行ストライプパターンで形成したのち、厚さ約5μm
の赤色光透過フィルターと緑色光透過フィルターと青色
光透過フィルターをスクリーン印刷法によって表示側電
極の各ストライプを同順序で交互に覆うように形成し、
第1図で示す構造のフルカラー表示型薄膜EL素子を作
製した。
Next, an IT layer with a thickness of 2,000 people is placed on this display side insulating layer.
A display-side electrode made of an O film was formed with a parallel stripe pattern perpendicular to the stripe pattern of the back-side electrode by electron beam evaporation, and then a thickness of about 5 μm was formed.
A red light transmitting filter, a green light transmitting filter and a blue light transmitting filter are formed by a screen printing method so as to alternately cover each stripe of the display side electrode in the same order,
A full color display type thin film EL device having the structure shown in FIG. 1 was manufactured.

なお、このEL素子の赤色光透過フィルターは波長58
0nm以下の光をカットするもの、緑色光透過フィルタ
ーは透過波長域が510〜570nmのバンドパスフィ
ルター、青色光透過フィルターは波長510nm以上の
光をカットするものであった。また、表示側電極は各色
の透過フィルターで覆われたストライプ群の電極部ごと
に別途に印加電圧、パルス幅、パルス数、周波数などを
調整しろるように設定した。
Note that the red light transmission filter of this EL element has a wavelength of 58
The green light transmitting filter was a bandpass filter with a transmission wavelength range of 510 to 570 nm, and the blue light transmitting filter was a filter that cuts light with a wavelength of 510 nm or more. In addition, the display side electrodes were set so that the applied voltage, pulse width, number of pulses, frequency, etc. could be adjusted separately for each electrode part of the stripe group covered with the transmission filter of each color.

このようにして作製したEL素子について、交流電圧を
用いて駆動させたところ、表示側電極の赤色電極部と背
面側電極との間の電圧印加では第2図で示す発光スペク
トルの赤色発光、同緑色電極部と背面側電極との電圧印
加では第3図で示す発光スペクトルの緑色発光、同青色
電極部と背面電極との電圧印加では第4図で示す青色発
光が得られた。
When the EL element produced in this way was driven using an alternating current voltage, when a voltage was applied between the red electrode part of the display side electrode and the back side electrode, red light emission with the emission spectrum shown in Figure 2, and the same When voltage was applied between the green electrode section and the back electrode, green light emission with the emission spectrum shown in FIG. 3 was obtained, and when voltage was applied between the same blue electrode section and the back electrode, blue light emission was obtained as shown in FIG. 4.

ちなみに、フィルターを設けずに他は上記EL素子と同
一構成したEL素子を同様にして駆動させた場合では、
第5図で示すように波長440〜650nmのブロード
な発光スペクトルの発光が得られる。
By the way, when an EL element with the same configuration as the above EL element is driven in the same way without providing a filter,
As shown in FIG. 5, light with a broad emission spectrum of wavelengths from 440 to 650 nm can be obtained.

なお、5KHz駆動による発光輝度は、赤色発光が2.
100cd/ rrr、緑色発光が4,900cd/r
rf、青色発光が650cd/n(であった。
Note that the luminance of red light when driven at 5KHz is 2.
100cd/rrr, green emission 4,900cd/r
rf, blue emission was 650 cd/n.

また、上記素子について、背面側電極に一定のパルス電
圧を印加するとともに、表示側電極の各色電極部ごとに
加えるパルス幅を変化させて各原色発光の相対輝度を調
整することにより、全体の発光色を様々な中間色に変化
できた。
In addition, for the above element, by applying a constant pulse voltage to the back side electrode and changing the pulse width applied to each color electrode part of the display side electrode to adjust the relative brightness of each primary color light emission, the overall light emission I was able to change the color to various neutral colors.

第6図は色度図であり、図中の実線aで示す範囲が上記
実施例のEL素子による表現可能な色範囲、同しく破線
すで示す範囲がカラーCRTの色範囲である。この図よ
り、この発明に係るEL素子の表現色がカラーCRTの
色範囲に極めて近僚していることが明らかである。なお
、第6図中、上記の実線aおよび破線すを取り囲む略半
楕円状の包囲線は、CXE色度図の表示によるもので、
可視域の色範囲を示したものである。
FIG. 6 is a chromaticity diagram, in which the range indicated by the solid line a is the color range that can be expressed by the EL element of the above embodiment, and the range also indicated by the broken line is the color range of the color CRT. From this figure, it is clear that the expressed colors of the EL element according to the present invention are very close to the color range of a color CRT. In addition, in FIG. 6, the substantially semi-elliptical encircling line surrounding the above-mentioned solid line a and broken line A is based on the display of the CXE chromaticity diagram.
This shows the visible color range.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明に係るフルカラー表示型エレクトロル
ミネッセンス素子の構造例を示す縦断面図、第2図、第
3図および第4図はこの発明の実施例の同素子における
各原色発光時の発光スペクトル特性図、第5図は上記実
施例の同素子においてフィルターを設けていない場合の
発光スペクトル特性図、第6図は上記実施例の素子によ
る表現可能な値範囲とカラーCRTの値範囲を示す色度
図である。 2・・・背面側電極、3,7・・・絶縁層、4・・・Z
nS:Tb、F発光層、5−3rS:Ce発光層、6・
・・Z n S : M n発光層、8・・・表示側電
極、9r・・・赤色光透過フィルター、9g・・緑色光
透過フィルター、9b・・・青色光透過フィルター 特許出願人  ]」立マクセル株式会社第2図 第3図    X表(nm) 第5図 逐表(nrn) 第6図 第4図    シ虐養(nm) 兼−辰(nm)
FIG. 1 is a vertical cross-sectional view showing an example of the structure of a full-color display type electroluminescent device according to the present invention, and FIGS. 2, 3, and 4 show luminescence of the same device according to an embodiment of the present invention when emitting light of each primary color. Figure 5 shows the emission spectrum characteristic of the same device of the above example without a filter, and Figure 6 shows the range of values that can be expressed by the element of the example above and the value range of a color CRT. It is a chromaticity diagram. 2... Back side electrode, 3, 7... Insulating layer, 4... Z
nS: Tb, F light emitting layer, 5-3 rS: Ce light emitting layer, 6.
...ZnS: Mn light emitting layer, 8...display side electrode, 9r...red light transmission filter, 9g...green light transmission filter, 9b...blue light transmission filter patent applicant] Maxell Co., Ltd. Figure 2 Figure 3 X table (nm) Figure 5 sequential table (nrn) Figure 6 Figure 4

Claims (3)

【特許請求の範囲】[Claims] (1) 透光性の表示側電極と背面側電極との間に発光
層および絶縁層が配設されてなる薄膜エレクトロルミネ
ツセンス素子において、上記発光層がZnS:Mn発光
層とZnS:Tb、F発光層とSrS:Ce発光層との
3層からなるとともに、表示側表面に赤色光透過フイル
ターと緑色光透過フイルターと青色光透過フイルターと
が面方向に交互に形成されてなるフルカラー表示型薄膜
エレクトロルミネッセンス素子。
(1) In a thin film electroluminescent device in which a light emitting layer and an insulating layer are disposed between a light-transmitting display side electrode and a back side electrode, the light emitting layer is a ZnS:Mn light emitting layer and a ZnS:Tb light emitting layer. , a full-color display type consisting of three layers: an F light-emitting layer and an SrS:Ce light-emitting layer, and a red light-transmitting filter, a green light-transmitting filter, and a blue light-transmitting filter being alternately formed in the surface direction on the display side surface. Thin film electroluminescent device.
(2) 両電極の少なくとも一方が多数の電極部に区割
され、各電極部に対応する各表示側表面部に上記三種の
フイルターのうちのいずれか一種のみを有し、隣接する
上記各表面部のフイルター同志が互いに異なるものであ
る請求項(1)に記載のフルカラー表示型薄膜エレクト
ロルミネツセンス素子。
(2) At least one of the two electrodes is divided into a large number of electrode parts, and each display side surface part corresponding to each electrode part has only one of the three types of filters, and each of the adjacent surfaces 2. The full-color display type thin film electroluminescent device according to claim 1, wherein the filters in the portions are different from each other.
(3) SrS:Ce発光層がZnS:Mn発光層とZ
nS:Tb、F発光層との間に配置された請求項(1)
または(2)に記載のフルカラー表示型薄膜エレクトロ
ルミネッセンス素子。
(3) SrS:Ce luminescent layer and ZnS:Mn luminescent layer
Claim (1) Arranged between nS:Tb,F light emitting layer
Or the full color display type thin film electroluminescent device according to (2).
JP63147132A 1988-06-15 1988-06-15 Full color display type film electroluminescence element Pending JPH01315988A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63147132A JPH01315988A (en) 1988-06-15 1988-06-15 Full color display type film electroluminescence element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63147132A JPH01315988A (en) 1988-06-15 1988-06-15 Full color display type film electroluminescence element

Publications (1)

Publication Number Publication Date
JPH01315988A true JPH01315988A (en) 1989-12-20

Family

ID=15423287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63147132A Pending JPH01315988A (en) 1988-06-15 1988-06-15 Full color display type film electroluminescence element

Country Status (1)

Country Link
JP (1) JPH01315988A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0451495A (en) * 1990-06-18 1992-02-19 Komatsu Ltd Thin-film el element
US6653778B1 (en) 1999-09-24 2003-11-25 Fuji Electric Co., Ltd. Fluorescent color conversion film, fluorescent color conversion filter using the conversion film, and organic light-emitting device equipped with the conversion filter
JP2004012571A (en) * 2002-06-04 2004-01-15 Toyota Industries Corp Display apparatus
US7446472B2 (en) 2002-07-15 2008-11-04 Fuji Electric Holdings Co., Ltd. Organic multicolor emission and display device and method for manufacturing same
US7871714B2 (en) 2002-12-25 2011-01-18 Semiconductor Energy Laboratory Co., Ltd. Polymer, electroluminescent device, and light emitting device
CN108373335A (en) * 2018-01-29 2018-08-07 毕舒 It is a kind of that there is the heat-preserving complex material and preparation method thereof for increasing the thermal efficiency

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0451495A (en) * 1990-06-18 1992-02-19 Komatsu Ltd Thin-film el element
US6653778B1 (en) 1999-09-24 2003-11-25 Fuji Electric Co., Ltd. Fluorescent color conversion film, fluorescent color conversion filter using the conversion film, and organic light-emitting device equipped with the conversion filter
JP2004012571A (en) * 2002-06-04 2004-01-15 Toyota Industries Corp Display apparatus
US7446472B2 (en) 2002-07-15 2008-11-04 Fuji Electric Holdings Co., Ltd. Organic multicolor emission and display device and method for manufacturing same
US7871714B2 (en) 2002-12-25 2011-01-18 Semiconductor Energy Laboratory Co., Ltd. Polymer, electroluminescent device, and light emitting device
CN108373335A (en) * 2018-01-29 2018-08-07 毕舒 It is a kind of that there is the heat-preserving complex material and preparation method thereof for increasing the thermal efficiency

Similar Documents

Publication Publication Date Title
US5598059A (en) AC TFEL device having a white light emitting multilayer phosphor
US4945009A (en) Electroluminescence device
US4954747A (en) Multi-colored thin-film electroluminescent display with filter
JPH01315988A (en) Full color display type film electroluminescence element
JPH0377640B2 (en)
JPH0521278Y2 (en)
JPH03214593A (en) Full color el display panel
JP3442918B2 (en) Thin-film electroluminescence panel
JPH01315987A (en) Multicolor display type film electroluminescence element
JPH01239793A (en) Polychromatic display type thin film electroluminescence element
JP3722883B2 (en) Multi-color electroluminescent device
JPH08162273A (en) Thin film el element
JPS6388790A (en) Thin film el device
JPH02112195A (en) Multicolor display type electroluminescence element
JPH01315991A (en) Film type electroluminescence element and method for its driving
JP2772679B2 (en) Full color EL panel
JPH02162686A (en) Manufacture of multicolor display type thin film el element
JPH02189888A (en) Multi-color display type el element
JPH02234393A (en) Multi-color display type thin film electroluminescence element
JPH09274991A (en) Multi-color light emission electroluminescence device
JPH0831571A (en) Thin film electroluminescent element and multi-color thin film electroluminescent panel
JPH07121121A (en) Color el element and its production
JPH0773971A (en) El element
JPH0756836B2 (en) Thin film EL device
JPS61142689A (en) Luminescence apparatus and driving thereof