JPH01315987A - Multicolor display type film electroluminescence element - Google Patents

Multicolor display type film electroluminescence element

Info

Publication number
JPH01315987A
JPH01315987A JP63147131A JP14713188A JPH01315987A JP H01315987 A JPH01315987 A JP H01315987A JP 63147131 A JP63147131 A JP 63147131A JP 14713188 A JP14713188 A JP 14713188A JP H01315987 A JPH01315987 A JP H01315987A
Authority
JP
Japan
Prior art keywords
light
red
emitting element
light emitting
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63147131A
Other languages
Japanese (ja)
Inventor
Ryuzo Fukao
隆三 深尾
Tsunemi Oiwa
大岩 恒美
Akira Kawakami
章 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP63147131A priority Critical patent/JPH01315987A/en
Publication of JPH01315987A publication Critical patent/JPH01315987A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the luminous efficiency of 2 elementary colors of red and green and a color between them by providing a red emission element section and a green emission section and cutting off light with a wavelength of less than 570nm through a filter at a red color takeoff side. CONSTITUTION:A green emission element section B is positioned at a display side, and an electrode 9 is arranged such that the electrode 9 at a light takeoff side of a red emission element section A is opposed to an electrode 15 at one side of the element section B. A light emission layer 7 and insulation layers 6 and 8 made up of ZnS:Mn are installed between an element 5 and the electrode 9 made up of transparent conductive material at the element section A, at least at its light takeoff side. At the element section B, a light emission layer 13 made up of ZnS:Mn and F and insulation layers 12 and 14 is arranged between a pair of an electrode 11 and the electrode 15. A filter 10 installed at the light takeoff side of the element section A cuts off a light with a wavelength of less than 570nm to obtain a red light. Thereby, it is possible to emit 2 elementary colors of red and green and a color between them at high luminance and high efficiency.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明はデイスプレィ装置などに使用されるエレクト
ロルミネッセンス(以下、ELという)素子、とくに赤
および緑の2原色とその間の全ての中間色の発光が可能
な多色表示型の薄膜EL素子に関する。
[Detailed Description of the Invention] [Industrial Application Field] This invention relates to an electroluminescent (hereinafter referred to as EL) element used in display devices, etc., and in particular, to an electroluminescent (hereinafter referred to as EL) element that emits light of two primary colors, red and green, and all intermediate colors between them. The present invention relates to a thin film EL device capable of displaying multiple colors.

〔従来の技術〕[Conventional technology]

従来、赤および緑の2原色とその中間色の発光が可能な
多色表示型の薄膜El、素子として、ZnS:Tb、F
発光層を有する緑色発光EL素子とZnS:Sm、F発
光層を有する赤色発光EL素子とを積層して3端子構造
としたもの(JAPAN DISPLAY  ’83 
DIGEST)、フォトリソグラフィーによるパターン
ニングによってZnS:Tb、FとZns:srn、F
の両全光体部分が平面的に配置された発光層を有するも
の(Praceedrng of  ’87 SID 
Int、 Symp、)、CaS:Euからなる赤色発
光EL素子とSrS:Ceからなる青緑色発光EL素子
とを透明電極同志を対向させて重ね合わせたもの(同上
文献)などが提案されている。
Conventionally, multicolor display type thin film El, which can emit light in the two primary colors of red and green and their intermediate colors, has been used as an element such as ZnS:Tb, F.
A three-terminal structure is obtained by stacking a green light-emitting EL element having a light-emitting layer and a red light-emitting EL element having a ZnS:Sm,F light-emitting layer (JAPAN DISPLAY '83
DIGEST), ZnS:Tb,F and Zns:srn,F by photolithographic patterning
Both of the light body parts have a light emitting layer arranged in a plane (Place of '87 SID
Int, Symp, ), a structure in which a red light-emitting EL device made of CaS:Eu and a blue-green light emitting EL device made of SrS:Ce are stacked with their transparent electrodes facing each other has been proposed (see the above-mentioned document).

し発明が解決しようとする課題」 しかしながら、前記一番目のj3端子構造とした素子で
は、素子全体としての薄膜積層数が多くなることから特
性的に不安定になりやすく素子形成も面倒であった。ま
た、二番1」の発光層をパターンニングした素子では、
発光層の形成とそのパターンに対応しまた電極の形成に
極めて高度な微細加工技術を必要とし、とくに大面積で
高精細なデイスプレィの作製が非常に困触であるという
問題があった。その」二、上記画素子で使用する赤色発
光体であるZnS:Sm、Fは輝度が最大でも1,00
0cd/m程度と低いため、E I−、パネルなどの表
示装置としては輝度不足で実用性に乏しい。
However, the device with the first J3 terminal structure has a large number of laminated thin films in the device as a whole, which tends to result in unstable characteristics and is troublesome to form. . In addition, in an element in which the light-emitting layer of "Number 1" is patterned,
The problem is that extremely advanced microfabrication technology is required for forming the light emitting layer and its pattern, as well as for forming the electrodes, making it particularly difficult to produce a large-area, high-definition display. Second, the red light emitting material used in the above pixel element, ZnS:Sm,F, has a maximum luminance of 1.00
Since it is as low as about 0 cd/m, the brightness is insufficient for use as a display device such as an E I- or panel, making it impractical.

一方、前記三番目の素子でも、現状ではまだ輝度が不充
分で実用段階に達しておらず、かつ両全光層の発光体の
母体材料であるCaSおよびSrSば吸湿による劣化が
著しいために素子の耐久性が悪くなりやずいという欠点
があった。
On the other hand, the third element also has insufficient brightness and has not yet reached a practical stage, and CaS and SrS, which are the base materials of the light emitters in both all-optical layers, are subject to significant deterioration due to moisture absorption. The disadvantage was that the durability of the material deteriorated.

したがって、この発明は、−ト記従来の課題を解決し、
輝度および発光効率に優れて製作容易な多色表示型薄膜
E L素子を提供することを目的としている。
Therefore, the present invention solves the conventional problems mentioned above,
The object of the present invention is to provide a multicolor display type thin film EL element that has excellent brightness and luminous efficiency and is easy to manufacture.

〔課題を解決するための手段〕[Means to solve the problem]

この発明者らは、上記の目的を達成するために鋭意検耐
を重ねた結果、特定の発光層による発光をフィルターを
通して赤色発光として取出しうるようにした赤色発光素
子部と、特定の発光層を有する緑色発光素子部とを、特
定の配置形態で対向配置した形態のE L素子とすれば
、赤および緑の2原色ならびに赤から緑にわたる全ての
中間色の発光が高輝度かつ高発光効率で得られ、しかも
素子作製上で格別高度な微細加工技術を要さず駆動回路
も簡素に構成しうろことを見い出し、この発明をなすに
至った。
In order to achieve the above object, the inventors have conducted extensive testing and have discovered a red light emitting element section that allows light emitted by a specific light emitting layer to be extracted as red light through a filter, and If the green light-emitting element portion is an EL element arranged facing each other in a specific configuration, light emission of the two primary colors red and green and all intermediate colors ranging from red to green can be obtained with high brightness and high luminous efficiency. However, the present inventors have discovered that it is possible to simply configure the drive circuit without requiring particularly advanced microfabrication technology in device fabrication, and have thus come up with this invention.

すなわち、この発明は、少なくとも光取出し側が透明性
導電材料からなる一対の電極間にZnS:Mnからなる
発光層および絶縁層が配設され、かつ光取出し側に波長
570nm以下の光をカットするフィルターが設LJら
れてなる赤色発光素子部と、ともに透明性導電材料から
なる一対の電極間にZnS:Tb、F発光層および絶縁
層が配設されてなる緑色発光素子部とを、表示側に緑色
発光素子部が位置し、かつ赤色発光素子部の光取出し側
の電極が緑色発光素子部の片側の電極と向かい合・う形
で、対向配置してなる多色表示型)W膜E L素子に係
るものである。
That is, the present invention provides a filter in which a light emitting layer and an insulating layer made of ZnS:Mn are disposed between a pair of electrodes made of a transparent conductive material at least on the light extraction side, and which cuts light with a wavelength of 570 nm or less on the light extraction side. A red light-emitting element portion comprising a LJ and a green light-emitting element portion comprising a ZnS:Tb,F light-emitting layer and an insulating layer disposed between a pair of electrodes both made of a transparent conductive material are placed on the display side. A multicolor display type (W film E L) in which a green light emitting element part is located, and the electrode on the light extraction side of the red light emitting element part is arranged opposite to the electrode on one side of the green light emitting element part. It is related to the element.

また、この発明では、上記のE L素子において、赤色
発光素子部と緑色発光素子部との対向間隙に透光性絶縁
物質が介在された構成を好適態様としている。
Further, in the present invention, a preferred embodiment of the above-mentioned EL element is such that a light-transmitting insulating material is interposed in the opposing gap between the red light-emitting element portion and the green light-emitting element portion.

〔発明の構成・作用〕[Structure and operation of the invention]

第1図はこの発明を適用した多色表示型El−素子の一
例を示すものである。
FIG. 1 shows an example of a multicolor display type El-element to which the present invention is applied.

このE L素子は、ガラス製の背面側4%+&la上に
設けた赤色発光素子部へと同様の表示側基板1b」二に
設けた緑色発光部Bとが小間隙を置いて対向配置され、
側基板1a、lbとそれらの周辺部間に介挿された環状
スペーサ2とがエポキシ樹脂などの接着剤3にて固着封
止され、かつ内部にシリコーンオイルなどからなる透光
性絶縁物質4が封入されており、表示側基板1bの表面
が表示面となっている。
In this E L element, a red light emitting element part provided on the back side made of glass and a green light emitting part B provided on a similar display side substrate 1b'2 are placed opposite to each other with a small gap.
The side substrates 1a, lb and an annular spacer 2 inserted between their peripheral parts are fixedly sealed with an adhesive 3 such as epoxy resin, and a translucent insulating material 4 made of silicone oil or the like is inside. The surface of the display-side substrate 1b serves as a display surface.

赤色発光素子部Aは、基板1aの片面全面に形成された
Aβ薄膜あるいはインジウム−スズ複合酸化物(以下、
ITOという)やフッ素を含む酸化スズの如き透明性導
電+4料の薄膜などからなる第4の電極5」二に、順次
、第1の絶縁層6、ZnS+Mnからなる発光層7、第
2の絶縁層8、所定形状にパターン化された上記透明性
導電材料の薄膜からなる第2の電極9が積層形成され、
さらに第2の電極9を覆って赤色光透過フィルター10
が設けられてなる。
The red light emitting element part A is made of an Aβ thin film or an indium-tin composite oxide (hereinafter referred to as
A fourth electrode 5 is made of a thin film of a transparent conductive material such as ITO or tin oxide containing fluorine, and a first insulating layer 6, a light emitting layer 7 made of ZnS+Mn, and a second insulating layer are sequentially formed. A layer 8, a second electrode 9 made of a thin film of the above-mentioned transparent conductive material patterned into a predetermined shape are laminated,
Further, a red light transmitting filter 10 is provided covering the second electrode 9.
will be established.

また緑色発光素子部Bは、基板1bの片面全面に形成さ
れた前記同様の透明性導電材料の薄膜からなる第1の電
極11」二に、順次、第1の絶縁層12、ZnS+Tb
、Fからなる発光層13、第2の絶縁層14、上記同様
の透明性導電材料の薄膜からなる第2の電極15が積層
形成されてなる。
Further, the green light emitting element section B includes a first electrode 11 made of a thin film of the same transparent conductive material formed on the entire surface of one side of the substrate 1b, a first insulating layer 12, a ZnS+Tb
, a light emitting layer 13 made of F, a second insulating layer 14, and a second electrode 15 made of a thin film of the same transparent conductive material as described above.

なお、第2の電極15は、赤色発光素子部への第2の電
極9と同一形状にパターン化されている。
Note that the second electrode 15 is patterned in the same shape as the second electrode 9 to the red light emitting element section.

そして、赤色発光素子部Aと緑色発光素子部Bとは、両
者の第2の電極9,15が上下に重なる形で対向配置さ
れており、画素子部A、BがそれぞれEL素子として個
別に駆動できるように設定されている。
The red light-emitting element section A and the green light-emitting element section B are arranged facing each other with their second electrodes 9 and 15 overlapping vertically, and the pixel element sections A and B are each individually operated as an EL element. It is set up so that it can be driven.

上記構成の多色表示型薄膜E L素子では、各素子部A
またはBの画電極5,9間または11.15間に発光層
7またば13の発光開始電圧以上の交流電圧を印加する
ことG、こより、発光層7または13が発光する。この
発光は、発光層7ではZnS:Mnによる黄橙色発光、
発光層13ではZnS:Tb、Fによる緑色発光である
が、発光層7による黄橙色発光は光取出し側に設けられ
た赤色光透過フィルター10を透過する際に赤色よりも
短波長側の光がカットされて赤色発光として放出される
In the multicolor display type thin film E L element with the above configuration, each element part A
Alternatively, an AC voltage higher than the light emission starting voltage of the light emitting layer 7 or 13 is applied between the picture electrodes 5 and 9 or 11 and 15 in B, so that the light emitting layer 7 or 13 emits light. This light emission is yellow-orange light emission due to ZnS:Mn in the light emitting layer 7,
The light-emitting layer 13 emits green light due to ZnS:Tb, F, but the yellow-orange light emitted by the light-emitting layer 7 is caused by light having a shorter wavelength than red when passing through the red light transmitting filter 10 provided on the light extraction side. It is cut and emitted as red light.

したがって、表示側基板1bの表面において、赤色発光
素子部Aのみの駆動では赤色の発光表示、緑色発光素子
部Bのみの駆動では緑色の発光表示、画素子部A、  
Bの同時駆動では赤色発光と緑色発光とが混合した中間
色の発光表示がなされる。そして、中間色発光は、画素
子部A、Bに印加する電圧、パルス幅、パルス数、周波
数などを変化させて両発光の強度を変えることにより、
赤色に近い混色から緑色に近い混色まで全ての中間色発
光を任意に選択できるとともに、連続的な色調変化も可
能である。
Therefore, on the surface of the display side substrate 1b, driving only the red light emitting element section A produces a red light emitting display, and driving only the green light emitting element section B produces a green light emitting display.
When B is simultaneously driven, an intermediate color light emission display in which red light emission and green light emission are mixed is performed. By changing the voltage, pulse width, number of pulses, frequency, etc. applied to the pixel elements A and B, and changing the intensity of both light emissions, the intermediate color light emission can be achieved.
It is possible to arbitrarily select all intermediate color emissions from a color mixture close to red to a color mixture close to green, and continuous color tone changes are also possible.

ここで、赤色発光素子部への発光層7を構成するZnS
:Mnは、本来の発光色が黄橙色であるが、波長500
〜700nmにわたる広い発光スペクトルを有し、波長
600〜700nmにかけてかなりの赤色成分を含んで
おり、しかも5KHz駆動で6,000cd/m以上と
いう非常に高い発光輝度と311m/W以上の高い発光
効率を示すものである。したがって、素子部Aによる赤
色発光は、赤色光透過フィルター10および緑色発光素
子部Bを透過する際の吸収や反射によっである程度は減
衰しているが、従来の赤色発光用E L材料として一般
的なZnS:Sm、Fによる発光に比較して格段に高輝
度でより赤の原色に近く、カラーCRT (Catho
de Ray Tube)の赤色にほぼ一致するものと
なしうる。
Here, ZnS constituting the light emitting layer 7 to the red light emitting element portion
:The original emission color of Mn is yellow-orange, but the wavelength is 500
It has a wide emission spectrum ranging from ~700nm and contains a considerable red component in the wavelength range of 600 to 700nm.Moreover, it has extremely high luminance of over 6,000cd/m and high luminous efficiency of over 311m/W when driven at 5KHz. It shows. Therefore, the red light emitted by the element part A is attenuated to some extent due to absorption and reflection when it passes through the red light transmitting filter 10 and the green light emitting element part B. ZnS:Sm, F has much higher luminance and is closer to the primary color of red than the light emitted by ZnS:Sm and F.
It can be made to be almost the same as the red color of De Ray Tube).

赤色光透過フィルター10としては、波長570nm以
下の光をカットするものであればよいが、カラーCRT
の赤色に近領する原色発光を得るには波長580nm以
下の光をカットして波長600nm以上の光を90%以
上透過させるものが好ましい。なお、カットする光の波
長の上限が570nmOものではZ’n S : S 
m、  Fにほぼ一致した赤色発光が得られる。しかし
、カットする光の波長の上限が580nmより長波長側
になると、色純度は向上するが、輝度の低下が大きくな
るため好ましくない。
The red light transmission filter 10 may be any filter that cuts light with a wavelength of 570 nm or less, but color CRT
In order to obtain primary color emission close to red, it is preferable to use a material that cuts light with a wavelength of 580 nm or less and transmits 90% or more of light with a wavelength of 600 nm or more. In addition, if the upper limit of the wavelength of the light to be cut is 570 nmO, Z'n S : S
Red light emission almost matching m and F is obtained. However, if the upper limit of the wavelength of the light to be cut is longer than 580 nm, the color purity will improve, but the brightness will decrease significantly, which is not preferable.

このフィルター10を形成するには、通常では所要の選
択的光吸収能を有する色素とバインダを含む塗料を調製
し、これをスクリーン印刷法などの印刷塗布手段によっ
て第2の電極9上に乾燥後の厚さが0.5〜20μm程
度となるように塗布。
In order to form this filter 10, a paint containing a pigment and a binder having the required selective light absorption ability is usually prepared, and this is dried on the second electrode 9 by a printing application method such as a screen printing method. Coat so that the thickness is about 0.5 to 20 μm.

乾燥すればよいが、後述する各層5〜9や11〜15と
同様の真空中薄膜形成法も採用できる。
Although drying may be sufficient, it is also possible to employ a thin film forming method in vacuum similar to that for each layer 5 to 9 and 11 to 15, which will be described later.

絶縁層6,8,12.14の構成材料としては、既存の
絶縁材料をいずれも使用でき、たとえばTa20S、A
7!203、Y203.5iOz、Si、Ns 、、T
iO□、Nbz o3、BaTi0+、5rTiO+ 
、PbTi0+などが挙げられ、各絶縁層で異なるもの
を使用してもよい。なお、これら絶縁層6,8,12.
14としては、それぞれの層を構成材料の異なる2層以
上の積層物としても差し支えない。
As the constituent material of the insulating layers 6, 8, 12.14, any existing insulating material can be used, for example, Ta20S, A
7!203, Y203.5iOz, Si, Ns,,T
iO□, Nbz o3, BaTi0+, 5rTiO+
, PbTi0+, etc., and different materials may be used for each insulating layer. Note that these insulating layers 6, 8, 12 .
14, each layer may be a laminate of two or more layers made of different constituent materials.

各層の厚さは、発光層7,13では3,000〜s、o
oo人程度、絶縁層6,8,12.14では3.000
〜7.000人程度、電極5,9,11゜15では50
0〜3,000人程度である。なお、これら各層の形成
手段としては、電子ビーム蒸着や抵抗加熱蒸着の如き真
空蒸着法、高周波スパッタリングの如きスパッタリング
法、イオンブレーティング法などの既存の種々の真空中
薄膜形成法を使用材料種に応じて適宜採用できる。
The thickness of each layer is 3,000 to 3,000 s, o for the light emitting layers 7 and 13.
oo people, 3.000 for insulation layers 6, 8, 12.14
~7,000 people, 50 for electrodes 5, 9, 11°15
Approximately 0 to 3,000 people. In addition, as means for forming these layers, various existing vacuum thin film forming methods such as vacuum evaporation methods such as electron beam evaporation and resistance heating evaporation, sputtering methods such as high frequency sputtering, and ion blating methods may be used depending on the material type used. It can be adopted as appropriate.

透光性絶縁物質4は、画素子部A、B間の間隙での屈折
率差を縮小して発光の減衰を少なくするとともに、画素
子部のA、Bを保護する機能をもつもので、一般的には
シリコーンオイルなどの絶縁性流体が使用されるが、接
着剤やモールド用樹脂などの樹脂硬化層とすることも可
能である。ただし、その月質は上記の点から第2の電極
9.15およびフィルター10と屈折率が近いものを選
択ずへきである。なお、この透光性絶縁物質4は、場合
により省くこともできる。
The translucent insulating material 4 has the function of reducing the difference in refractive index in the gap between the pixel elements A and B, thereby reducing the attenuation of light emission, and protecting the pixel elements A and B. Generally, an insulating fluid such as silicone oil is used, but it is also possible to use a cured layer of resin such as adhesive or molding resin. However, due to the above-mentioned considerations, it is difficult to select a material whose refractive index is close to that of the second electrode 9.15 and the filter 10 due to the quality of the moon. Note that the light-transmitting insulating material 4 may be omitted depending on the case.

一方、」二組で例示したE L素子では画素子部A2B
の第2の電極9,15を同一パターンとしているか、全
電極5,9,1.1.、]、5が上下に重なる領域が存
在すれば、この領域で中間色発光が得られるため、画素
子部A、Bの間で同一パターンとする電極の組み合わせ
は電極5と]1.5と15.9と11のいずれでも同様
となる。また画素子部A、Bの発光領域をずらせて、重
なる領域で中間色発光を行うと同時に重ならぬ領域で赤
あるいは緑の原色発光を行う複数色発光表示も可能であ
る。
On the other hand, in the E L element illustrated in the two sets, the pixel element part A2B
Are the second electrodes 9, 15 of the same pattern or all the electrodes 5, 9, 1.1. , ], 5 overlap vertically, intermediate color light emission can be obtained in this region. Therefore, the combination of electrodes with the same pattern between pixel parts A and B is electrode 5, ]1.5, and 15. The same is true for both .9 and 11. It is also possible to perform a multi-color light emitting display by shifting the light emitting regions of the pixel elements A and B so that intermediate color light is emitted in the overlapping region and red or green primary color light is emitted in the non-overlapping region.

さらに、各素子部へまたはBにおりる画電極の一方を複
数の電極部に区割し、他方の電極をこれら電極部に対す
る共通電極として、各電極部またはその群ごとに印加電
圧、パルス幅、パルス数、周波数などを変化させる構成
を採用すれば、複数色による表示とその色数変化も行え
る。
Furthermore, one of the picture electrodes going to each element part or B is divided into a plurality of electrode parts, and the other electrode is used as a common electrode for these electrode parts, and the applied voltage and pulse width are applied to each electrode part or each group. By adopting a configuration that changes the number of pulses, frequency, etc., it is possible to display multiple colors and change the number of colors.

また、この発明の1?、L素子は、画素子部A、  B
を例示のように二重絶縁形のE L素子構成したものの
他、各素子部A、Bを絶縁層が一層である卓絶縁形のE
 L素子構成とすることも可能である。
Also, 1 of this invention? , L elements are pixel element parts A and B
In addition to double insulation type E L elements as shown in the example, each element part A and B is composed of a table insulation type E L element with a single insulating layer.
An L element configuration is also possible.

(発明の効果〕 ごの発1!II Qこ係る多色表示型EL素子は、Zn
S・Mnからなる発光層および赤色光透過フィルターを
備えた赤色発光素子部とZnS:Tb、Fからなる発光
層を備えた緑色発光素子部とを特定の配置構成で組み合
わせたものであるから、赤と緑の2原色とその間の全て
の中間色の発光をIE Lパネルなどの表示装置として
実用性充分な高輝度かつ高発光効率で行うことができ、
しかも画素子部自体は通常の単色発光E L素子と同様
の構造であるため、素子全体の構成が非常に簡素であっ
て、格別な微細加工技術を要さず容易に製作できる。
(Effects of the invention) 1! II Q This multicolor display type EL element is made of Zn
Because it is a combination of a red light emitting element section with a light emitting layer made of S/Mn and a red light transmitting filter and a green light emitting element section with a light emitting layer made of ZnS:Tb,F in a specific arrangement, It can emit light in the two primary colors of red and green and all intermediate colors between them with high luminance and luminous efficiency sufficient for practical use as a display device such as an IEL panel.
Furthermore, since the pixel element itself has a structure similar to that of a normal monochromatic light-emitting EL element, the structure of the entire element is very simple and can be easily manufactured without requiring any special microfabrication technology.

また、−ト記EL素子に、画素子部の対向間隙に透光性
絶縁物質を介在させることにより、該間隙における屈折
率差が縮小して赤色発光の減衰が抑圧されるとともに、
画素子部が保護されて附久性が向」二するという利点が
ある。
Furthermore, by interposing a light-transmitting insulating material in the opposing gap between the pixel element portions of the EL element described in (g), the difference in refractive index in the gap is reduced and the attenuation of red light emission is suppressed, and
This has the advantage that the pixel element area is protected and durability is improved.

〔実施例〕〔Example〕

以下、この発明を実施例によって具体的に説明する。 Hereinafter, the present invention will be specifically explained with reference to Examples.

実施例1 縦34龍、横34m、厚さ1.1鰭のガラス製の背面側
基板の片面全面に抵抗加熱蒸着法によって厚さ1.50
0人のAn薄膜からなる第1の電極を形成し、この電極
上に順次、Ta2O,、からなる第1の絶縁層、ZnS
:Mnからなる発光層、′ra205からなる第2の絶
縁層をそれぞれ5,000人の厚めで積層形成し、さら
に第2の絶縁層−ヒに厚さ2,000人のI T Oか
らなる第2の電極を所定パターンで形成した。なお、両
絶縁層は高周波スパッタリング法、発光層および第2の
電極は電子ヒーム蒸着法により形成した。
Example 1 A glass substrate with a thickness of 1.50 mm was deposited on one side of the entire surface of the back side substrate with a length of 34 mm, a width of 34 meters, and a thickness of 1.1 mm using a resistance heating vapor deposition method.
A first insulating layer made of TaO, a first insulating layer made of Ta2O, and a first insulating layer made of ZnS are sequentially formed on this electrode.
: A light-emitting layer made of Mn and a second insulating layer made of RA205 were each laminated to a thickness of 5,000 layers, and the second insulating layer was further made of ITO to a thickness of 2,000 layers. A second electrode was formed in a predetermined pattern. Note that both insulating layers were formed by high frequency sputtering, and the light emitting layer and second electrode were formed by electron beam evaporation.

つぎに、第2の電極を設番フた表面にスクリーン印刷法
によって厚さ5μrnの赤色光透過フィルターを設けて
赤色発光素子部を作製した。なお、このフィルターは、
波長580nm以下の光をカッ1〜して波長600nm
以」二の光を95%透過するものであった。
Next, a red light transmitting filter having a thickness of 5 μrn was provided on the surface of the second electrode by screen printing to produce a red light emitting element portion. In addition, this filter is
Cutting light with a wavelength of 580 nm or less to a wavelength of 600 nm
It transmitted 95% of the following light.

一方、上記背面側基板と同様のガラス製の表示側基板の
片面全面に電子ヒーム蒸着法によって厚さ2□000人
のITOからなる第1の電極を形成し、この電極上に順
次、TazOsからなる第1の絶縁層、ZnS:Tb、
F゛からなる発光層、Ta205からなる第2の絶縁層
をいずれも高周波スノマ゛ンタリング法によってそれぞ
れ5,000人の厚めで積層形成し、さらに第2の絶縁
層」−に厚さ2.000人のドFOからなる第2の電極
を電子ビーム蒸着法によって赤色発光素子部と同一パタ
ーンで形成して、緑色発光素子部を作製した。
On the other hand, a first electrode made of ITO with a thickness of 2□000 was formed on the entire surface of one side of the display side substrate made of glass similar to the back side substrate by electron beam evaporation, and on this electrode, TazOs was sequentially formed. A first insulating layer consisting of ZnS:Tb,
A light-emitting layer made of F' and a second insulating layer made of Ta205 were each laminated to a thickness of 5,000 yen by high-frequency snowmetering, and then a second insulating layer was formed to a thickness of 2,000 yen. A second electrode made of human doped FO was formed in the same pattern as the red light emitting element part by electron beam evaporation to produce a green light emitting element part.

つぎに、上記の画素子部を第2の電極同志が上下同位置
で対向するように100.+1mの間隙を置いて対向配
置させ、かつ両基板の周辺部間にガラス製の環状スペー
サを介装して該スペーサと両基板とをエポキシ系接着剤
にて封着するとともに、内部にシリコーンオイルを封入
し、第1図で示す構造の多色表示型薄膜EL素子を作製
した。
Next, the pixel section is placed in a 100.degree. The two substrates are placed facing each other with a gap of +1 m, and a glass annular spacer is interposed between the peripheral parts of the substrates, and the spacer and both substrates are sealed with epoxy adhesive, and silicone oil is applied inside. A multicolor display type thin film EL device having the structure shown in FIG.

なお、このBL素子は赤色発光素子部と緑色発光素子部
とで別個に駆動でき、かつそれぞれ印加電圧、パルス幅
、パルス数、周波数などを調整しうるように設定した。
Note that this BL element was set so that the red light emitting element section and the green light emitting element section could be driven separately, and the applied voltage, pulse width, number of pulses, frequency, etc., could be adjusted respectively.

このようにして作製したE L素子について、±200
V、60Hzの正弦波電圧を用いて各素子部を駆動させ
たところ、赤色発光は18cd/n(、緑色発光は60
cd/r&であり、カラーCRTにほぼ匹敵する輝度が
得られた。なお、赤色発光の色度座標値はX=0.62
、Y=0.33であり、カラーCRTの赤色とほぼ一致
していた。
For the E L element produced in this way, ±200
When each element was driven using a sine wave voltage of V, 60 Hz, red light emission was 18 cd/n (green light emission was 60 cd/n).
cd/r&, and a brightness almost comparable to that of a color CRT was obtained. In addition, the chromaticity coordinate value of red light emission is X=0.62
, Y=0.33, which almost matched the red color of a color CRT.

また、画素子部を同時駆動して、画素子部の印加電圧を
変化させて赤色発光と緑色発光の相対輝度を変化させた
ところ、第2図の色度図における直線して示すような赤
から緑に至る連続的な発光色変化が得られた。なお、第
2図中、直線りを取り囲む略半楕円状の包囲線は、CJ
E色度図の表示によるもので、可視域の色範囲を示した
ものである。
In addition, when we simultaneously drove the pixel elements and changed the applied voltage to the pixel elements to change the relative brightness of red and green light, we found that the red A continuous change in luminescent color from green to green was obtained. In addition, in Fig. 2, the approximately semi-elliptical encircling line surrounding the straight line is CJ
This is based on the display of the E chromaticity diagram, which shows the visible color range.

実施例2 赤色光透過フィルターとして波長510nm以下の光を
カッ1〜して波長590nm以上の光を95%透過する
ものを使用した以外は、実施例1と同様にして多色表示
型薄膜EL素子を作製した。
Example 2 A multicolor display type thin film EL element was prepared in the same manner as in Example 1, except that a red light transmitting filter was used that filters out light with a wavelength of 510 nm or less and transmits 95% of light with a wavelength of 590 nm or more. was created.

このEL素子を実施例1のEL素子と同様にして駆動さ
せたところ、赤色発光は色度座標値がX−0,64、Y
=0.38であってZnS:Sm、Fによる赤色発光と
ほぼ一致する色調であったが、その輝度は22cd’/
−という高い値を示した。なお、緑色発光は実施例1の
ものと同じであった。
When this EL element was driven in the same manner as the EL element of Example 1, red light emission had chromaticity coordinate values of X-0,64 and Y.
= 0.38, and the color tone was almost the same as the red emission by ZnS:Sm,F, but the luminance was 22cd'/
It showed a high value of −. Note that the green light emission was the same as that of Example 1.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明に係る多色表示型薄膜エレクトロルミ
ネッセンス素子の構造例を示す要部縦断面図、第2図は
この発明の実施例1の同素子における発光色変化を示す
色度図である。 A・・・赤色発光素子部、B・・・緑色発光素子部、4
・・・透明性絶縁物質、5,9.II、15・・・電極
、6,8.12.14・・・絶縁層、7.13・・・発
光層、10・・・フィルター特許出願人  日立マクセ
ル株式会社
FIG. 1 is a vertical cross-sectional view of essential parts showing a structural example of a multicolor display type thin film electroluminescent device according to the present invention, and FIG. 2 is a chromaticity diagram showing changes in emitted light color in the device according to Example 1 of the present invention. be. A... Red light emitting element part, B... Green light emitting element part, 4
...transparent insulating material, 5,9. II, 15...Electrode, 6,8.12.14...Insulating layer, 7.13...Light emitting layer, 10...Filter patent applicant Hitachi Maxell, Ltd.

Claims (2)

【特許請求の範囲】[Claims] (1) 少なくとも光取出し側が透明性導電材料からな
る一対の電極間にZnS:Mnからなる発光層および絶
縁層が配設され、かつ光取出し側に波長570nm以下
の光をカットするフイルターが設けられてなる赤色発光
素子部と、ともに透明性導電材料からなる一対の電極間
にZnS:Tb、F発光層および絶縁層が配設されてな
る緑色発光素子部とを、表示側に緑色発光素子部が位置
し、かつ赤色発光素子部の光取出し側の電極が緑色発光
素子部の片側の電極と向かい合う形で、対向配置してな
る多色表示型薄膜エレクトロルミネツセンス素子。
(1) A light emitting layer and an insulating layer made of ZnS:Mn are disposed between a pair of electrodes made of a transparent conductive material at least on the light extraction side, and a filter for cutting light with a wavelength of 570 nm or less is provided on the light extraction side. A red light-emitting element section consisting of a red light-emitting element section, and a green light-emitting element section consisting of a ZnS:Tb, F light-emitting layer and an insulating layer disposed between a pair of electrodes both made of a transparent conductive material, are arranged on the display side. A multi-color display type thin film electroluminescent element in which the electrodes on the light extraction side of the red light emitting element part are arranged opposite to each other so that the electrodes on the light extraction side of the red light emitting element part face the electrodes on one side of the green light emitting element part.
(2) 赤色発光素子部と緑色発光素子部との対向間隙
に透光性絶縁物質が介在されてなる請求項(1)に記載
の多色表示型薄膜エレクトロルミネツセンス素子。
(2) The multicolor display type thin film electroluminescent device according to claim (1), wherein a translucent insulating material is interposed in the opposing gap between the red light emitting element portion and the green light emitting element portion.
JP63147131A 1988-06-15 1988-06-15 Multicolor display type film electroluminescence element Pending JPH01315987A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63147131A JPH01315987A (en) 1988-06-15 1988-06-15 Multicolor display type film electroluminescence element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63147131A JPH01315987A (en) 1988-06-15 1988-06-15 Multicolor display type film electroluminescence element

Publications (1)

Publication Number Publication Date
JPH01315987A true JPH01315987A (en) 1989-12-20

Family

ID=15423262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63147131A Pending JPH01315987A (en) 1988-06-15 1988-06-15 Multicolor display type film electroluminescence element

Country Status (1)

Country Link
JP (1) JPH01315987A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0895502A (en) * 1994-09-26 1996-04-12 Nec Corp On-vehicle display device
US5539424A (en) * 1991-11-22 1996-07-23 Nippondenso Co., Ltd. Thin-film electroluminescence display device
US5958610A (en) * 1996-02-22 1999-09-28 Denso Corporation El element having a color filter formed on an upper electrode

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5539424A (en) * 1991-11-22 1996-07-23 Nippondenso Co., Ltd. Thin-film electroluminescence display device
JPH0895502A (en) * 1994-09-26 1996-04-12 Nec Corp On-vehicle display device
JP2616459B2 (en) * 1994-09-26 1997-06-04 日本電気株式会社 In-vehicle display device
US5958610A (en) * 1996-02-22 1999-09-28 Denso Corporation El element having a color filter formed on an upper electrode

Similar Documents

Publication Publication Date Title
US4945009A (en) Electroluminescence device
US5507404A (en) Color electroluminescence display element and the manufacturing method thereof
US5346776A (en) Electroluminescent panel
JPH06160850A (en) Liquid crystal display device
JPH0737688A (en) El element
US4954747A (en) Multi-colored thin-film electroluminescent display with filter
JPH01315987A (en) Multicolor display type film electroluminescence element
JPH01315988A (en) Full color display type film electroluminescence element
JPH03214593A (en) Full color el display panel
JPH0377640B2 (en)
JPH0521278Y2 (en)
JPH04359B2 (en)
JPS63299092A (en) Thin film electroluminescent panel
JP2621057B2 (en) Thin film EL element
JPH08162273A (en) Thin film el element
JPH01239793A (en) Polychromatic display type thin film electroluminescence element
JP3222925B2 (en) Line emission dispersion type EL element and method of manufacturing the same
JPH01315991A (en) Film type electroluminescence element and method for its driving
JPH09274991A (en) Multi-color light emission electroluminescence device
JPS6252533A (en) Liquid crystal color display panel
KR100207588B1 (en) Electroluminescence element and manufacturing method
JPS6397992A (en) Color thin film el display panel
JPH02189888A (en) Multi-color display type el element
JPH02112195A (en) Multicolor display type electroluminescence element
JPH10134962A (en) Electroluminescent display device