JPH01314723A - Far-infrared light irradiating polyester fiber - Google Patents

Far-infrared light irradiating polyester fiber

Info

Publication number
JPH01314723A
JPH01314723A JP14636088A JP14636088A JPH01314723A JP H01314723 A JPH01314723 A JP H01314723A JP 14636088 A JP14636088 A JP 14636088A JP 14636088 A JP14636088 A JP 14636088A JP H01314723 A JPH01314723 A JP H01314723A
Authority
JP
Japan
Prior art keywords
silica
far
titanium oxide
polyester
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14636088A
Other languages
Japanese (ja)
Other versions
JPH089805B2 (en
Inventor
Hisashi Nagi
比佐志 凪
Nobusuke Takeuchi
竹内 信亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP63146360A priority Critical patent/JPH089805B2/en
Publication of JPH01314723A publication Critical patent/JPH01314723A/en
Publication of JPH089805B2 publication Critical patent/JPH089805B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)

Abstract

PURPOSE:To obtain the subject fiber suitable for wadding cotton, carpet, inner stuff of underwear or winter cloth, etc., containing a specific amount in total of titanium oxide and silica having individually smaller particle diameters than specific value, containing specific range of ratio of titanium oxide and silica and irradiating far-infrared light. CONSTITUTION:5-15wt.% in total of titanium oxide (TiO2) having <=2mum, preferably <=1mum average particle diameter and silica (SiO2) having <=1mum, preferably 1-100mmum in a ratio of TiO2/SiO2=8/1-1/4, preferably 6/1-5/5 (in weight ratio) are contained in the aimed fiber.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、遠赤外線を放射する新規なポリエステル繊維
に関するもので、特にふとん綿、カーペット、肌着内地
、防寒着等の用途に用いた場合好ましい保温効果を示す
ポリエステル繊維に関するものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a novel polyester fiber that emits far-infrared rays, and is particularly suitable for use in futons, carpets, inner underwear, winter clothing, etc. It relates to polyester fibers that exhibit heat retention effects.

〈従来の技術〉 遠赤外線を用いて物体を加熱する場合の特徴としては、
輻射特性が極めて強く、被加熱物体は直接加熱され中間
に空気層があっても阻害されず、被加熱物体の表面と内
部との熱伝達時間差が少なく、全体がほとんど同時に加
熱されることおよび有機高分子化合物に対する加熱効果
が高く、人体に対する暖房感覚が柔らかであることが挙
げられる。このような特徴を利用して、加熱、乾燥用と
しての産業用のほか、民生用としての暖房器具に加えて
遠赤外線サウナや温灸器として医療および保健面などの
用途が開発されている。
<Conventional technology> The characteristics of heating an object using far infrared rays are as follows:
It has extremely strong radiation characteristics, and the object to be heated is directly heated and is not hindered even if there is an air layer in between.The difference in heat transfer time between the surface and the inside of the object is small, and the entire object is heated almost simultaneously. It has a high heating effect on polymer compounds and a gentle heating sensation on the human body. Utilizing these characteristics, in addition to industrial use for heating and drying, in addition to heating appliances for consumer use, medical and health applications such as far-infrared saunas and moxibustion devices have been developed.

遠赤外線放射源用の材料としては、有機化合物の赤外線
吸収剤も知られているが金属酸化物が中でも優れている
ものの一つに挙げられている。実際、耐熱性、遠赤外線
吸収特性と整合のとれた放射特性をもつ金属酸化物は、
今日、遠赤外線ヒーターや遠赤外線染料として量産され
ている。
Although infrared absorbers made of organic compounds are also known as materials for far-infrared radiation sources, metal oxides are cited as one of the most excellent materials. In fact, metal oxides with heat resistance, far-infrared absorption properties, and radiation properties consistent with
Today, it is mass-produced as far-infrared heaters and far-infrared dyes.

尚、人体に対して効果のある好ましい遠赤外線の波長は
、3〜20ミクロン(μm)と言われており、この波長
域のものを放射する素材が良好なものである。
The preferred wavelength of far infrared rays that are effective for the human body is said to be 3 to 20 microns (μm), and materials that emit radiation in this wavelength range are preferred.

〈発明が解決しようとする課題〉 金属酸化物を用いた繊維製品は、特開昭61−1290
8号公報及び特開昭62−238811号公報等におい
て公知てある。前者に用いられている金属酸化物は、ジ
ルコン(ZrO2・5IO2)、チタニア(TiO2/
SiO、)を主成分とし、これに必要に応じてマンガン
酸化物(MnO2)、酸化鉄(Fe、03)、酸化コバ
ルト(C,O)、酸化ニッケル(Nip)、酸化クロム
(Cr、05)を適宜添加し、1100〜17006C
で焼成し、粉砕したセラミックスの微粉を用いており、
後者はアルミナ、マグネノア、ノルコニア、ムライト(
3A1203・2Si02)の粉末を用いている。しか
しながら、従来技術において用いられているセラミック
スは、高価であるばかりでなく硬度が高いため1μm以
下の粒径にするために、粉砕費がかなりかかるというコ
ストデメリットがあった。又、従来の遠赤外線放射ポリ
エステル繊維は紡糸時の曳糸性に問題があった。
<Problem to be solved by the invention> Textile products using metal oxides are disclosed in Japanese Patent Application Laid-open No. 1290-1983.
This method is known in Japanese Patent Publication No. 8 and Japanese Patent Application Laid-Open No. 62-238811. The metal oxides used in the former include zircon (ZrO2.5IO2) and titania (TiO2/
The main component is SiO, ), and if necessary, manganese oxide (MnO2), iron oxide (Fe, 03), cobalt oxide (C, O), nickel oxide (Nip), chromium oxide (Cr, 05) Add as appropriate, 1100-17006C
We use fine ceramic powder that has been fired and crushed in
The latter include alumina, magnenoir, norconia, and mullite (
3A1203/2Si02) powder is used. However, the ceramics used in the prior art are not only expensive but also have high hardness, so they have a cost disadvantage in that grinding them to a particle size of 1 μm or less requires considerable cost. Furthermore, conventional far-infrared emitting polyester fibers have had problems with spinnability during spinning.

本発明者等は、こうした欠点を改善すべく鋭意研究する
と同時に人体に対して最も有効な3〜20μmの遠赤外
線を放射する特定粒径の酸化チタンおよびシリカ粉末を
ポリエステル繊維に対して特定量含有させることによっ
て人体に有効な遠赤外線放射特性を有し、かつ紡糸調子
の良好なポリエステル繊維が得られることを見い出し本
発明に到達した。
The present inventors conducted intensive research to improve these drawbacks, and at the same time, they added a specific amount of titanium oxide and silica powder of a specific particle size to the polyester fiber, which emits far infrared rays of 3 to 20 μm, which are most effective for the human body. The inventors have discovered that by doing this, it is possible to obtain polyester fibers that have far-infrared radiation characteristics that are effective for the human body and have good spinning conditions, and have thus arrived at the present invention.

く課題を解決するための手段〉 即ち、本発明は、平均粒径が2μm以下の酸化チタン(
TiO2)および平均粒径が14m以下のシリカ(Si
O2)を合計で5〜15重量%含有しており、かつ、酸
化チタンとシリカの割合がTiO7/ SiO,−8/
1〜1/4(重量比)であることを特徴とする遠赤外線
放射ポリエステル繊維である。
Means for Solving the Problems> That is, the present invention provides titanium oxide (with an average particle size of 2 μm or less)
TiO2) and silica (Si) with an average particle size of 14 m or less
O2) in total from 5 to 15% by weight, and the ratio of titanium oxide and silica is TiO7/SiO,-8/
It is a far-infrared emitting polyester fiber characterized by having a ratio of 1 to 1/4 (weight ratio).

本発明においてポリエステルは、特に限定されることは
なく、繊維形成能を有するポリエステルであればよい。
In the present invention, the polyester is not particularly limited, and any polyester that has fiber-forming ability may be used.

又、ポリエステルはDMT法、直接重合法のどちらの方
法で製造されるものでもよく、重合成分としては、例え
ば、テレフタル酸、イソフタル酸、5−ナトリウムスル
ホイソフタル酸、アジピン酸、セバシン酸、またはそれ
らのエステル類等のンカルボン酸成分を用いることがで
き、グリコール成分としては、エチレングリコール、1
.4−ブチレングリコール等の脂肪族グリコール、ある
いは、脂肪族グリコールの一部をジエチレングリコール
、プロピレングリコール、ポリアルキレングリコール等
に置き換えて用いることができる。更にオキシ酸やポリ
オール等も適宜共重合可能である。本発明におけるポリ
エステルは安定剤、染料や顔料などの着色剤等通常のポ
リエステル繊維に適用される改質剤や機能性付与剤を含
んでいてもよい。
Further, the polyester may be produced by either the DMT method or the direct polymerization method, and the polymerization components include, for example, terephthalic acid, isophthalic acid, 5-sodium sulfoisophthalic acid, adipic acid, sebacic acid, or the like. Carboxylic acid components such as esters can be used, and glycol components include ethylene glycol, 1
.. An aliphatic glycol such as 4-butylene glycol, or a part of the aliphatic glycol can be replaced with diethylene glycol, propylene glycol, polyalkylene glycol, or the like. Furthermore, oxyacids, polyols, etc. can also be appropriately copolymerized. The polyester in the present invention may contain modifiers and functional agents that are applied to ordinary polyester fibers, such as stabilizers and colorants such as dyes and pigments.

本発明で使用する酸化チタン(以下、単にTi0zと記
すこともある。)は、平均粒径が2μm以下であり、好
ましくは、1μm以下がよい。2μmより大きくなると
凝集しやすくなったり、あるいは、可紡性の点で問題が
発生し易くなる。また、本発明で使用する酸化チタンは
Al2O,ls 5if2、P2O5、Fe2e3、あ
るいはに、0等で表面を被覆させたものを用いてもかま
わない。
The titanium oxide (hereinafter sometimes simply referred to as TiOz) used in the present invention has an average particle size of 2 μm or less, preferably 1 μm or less. If it is larger than 2 μm, it tends to aggregate easily, or problems tend to occur in terms of spinnability. Furthermore, the titanium oxide used in the present invention may be coated with Al2O, Is5if2, P2O5, Fe2e3, or 0, for example.

また本発明て使用するシリカ(以下、単にSiO2と記
すこともある。)は、平均粒径が1μm以下であり、好
ましくは1〜100ミリミクロンのものがよく中でも微
粒孕が単粒子状で存在するコロイダルシリカの使用が推
奨される。このコロイダルシリカとは、ケイ素酸化物を
主成分とする微粒子が水または単価のアルコール類また
はジオール類またはこれらの混合物を分散媒としてコロ
イドとして存在するものを言う。
Furthermore, the silica used in the present invention (hereinafter sometimes simply referred to as SiO2) has an average particle size of 1 μm or less, preferably 1 to 100 millimicrons, in which fine particles exist in the form of single particles. The use of colloidal silica is recommended. This colloidal silica is one in which fine particles containing silicon oxide as a main component exist as a colloid using water, monohydric alcohols, diols, or a mixture thereof as a dispersion medium.

本発明における平均粒径とはメンアン径(積算分布曲線
の50%に相当する粒子径)であり、粉砕された微粉末
の分散希釈液について光の透過率を測定して求められる
光透過法によるものであり、例えば、具体的には(株)
セイシン企業製、ミクロン・フォトサイザーS K C
−200O8を用いて測定されるものである。
The average particle size in the present invention is the Menuan diameter (particle size corresponding to 50% of the integrated distribution curve), and is determined by the light transmission method, which is determined by measuring the light transmittance of a diluted dispersion of pulverized fine powder. For example, specifically,
Micron Photosizer S K C manufactured by Seishin Enterprises
-200O8.

本発明においては、ポリエステル中で酸化チタンとシリ
カの合計量が5〜15重量%であることか重要である。
In the present invention, it is important that the total amount of titanium oxide and silica in the polyester is 5 to 15% by weight.

これらの微粉末の含有量が5重量%未満では遠赤外線の
放射効果は僅かであるが5重量%以上で温感効果が増大
する。しかし15重量%を越えると繊維化が困難になっ
たり、繊維物性が劣ってくる。また含有する酸化チタン
とシリカの重量割合は、T’i02/ 5iO2= 8
/1〜1/4さらに好ましくは、671〜515の重量
割合がよい。これらの範囲を外れた場合、人体に有効で
ある導赤外線の波長域(3〜20μm)での効果は低く
なる。また、TiO2/SiO2/5102が8/1よ
りも大きくなくなると、即ちシリカの量が少な過ぎると
曳糸性が悪くなる傾向にある。
When the content of these fine powders is less than 5% by weight, the far-infrared radiation effect is slight, but when the content is 5% by weight or more, the warming effect increases. However, if it exceeds 15% by weight, it becomes difficult to form fibers and the physical properties of the fibers deteriorate. The weight ratio of titanium oxide and silica contained is T'i02/5iO2=8
A weight ratio of /1 to 1/4, more preferably 671 to 515, is good. Outside these ranges, the effect in the wavelength range (3 to 20 μm) of guiding infrared rays that is effective for the human body will be reduced. Furthermore, when the TiO2/SiO2/5102 ratio becomes less than 8/1, that is, when the amount of silica is too small, the stringiness tends to deteriorate.

特に、本発明においては酸化チタンとシリカを併用する
点に大きな特徴がある。これらのうち、いずれが欠けて
も十分な遠赤外線放射効果は得られない。これは、酸化
チタンとシリカが互いに放射効率の悪い部分を補って全
体として人体に対して最も有効な波長域である3〜20
μの範囲の遠赤外線を満遍無く効率よく放射する為であ
ると想像される。
In particular, the present invention is characterized by the combined use of titanium oxide and silica. If any of these is missing, a sufficient far-infrared radiation effect cannot be obtained. This is the wavelength range of 3 to 20, which is the most effective wavelength range for the human body as a whole, as titanium oxide and silica compensate for each other's poor radiation efficiency.
It is assumed that this is to uniformly and efficiently radiate far infrared rays in the μ range.

更に、一般的に無機粒子の相当量配合されたポリエステ
ルを溶融紡糸する際には切糸など曳糸性が悪くなるとい
う重大な欠点を有していたのであるが、意外にも、シリ
カを酸化チタンと併用した場合は、酸化チタン単独使用
時よりも曳糸性に改善が認められた。
Furthermore, when polyester containing a considerable amount of inorganic particles is generally melt-spun, it has the serious drawback of poor spinnability due to cut threads, but surprisingly, oxidized silica When used in combination with titanium, an improvement in spinnability was observed compared to when titanium oxide was used alone.

本発明のポリエステル繊維の製造方法は従来公知の、無
機粒子をポリエステル繊維に配合および/または付着す
る方法をそのまま適用することが可能である。例えば、 (1)染液に微粉末を添加して染色する方法(2)紡糸
液へ微粉末を添加する方法 (3)重合工程で微粉末を反応系へ添加する方法等があ
る。
As the method for producing polyester fibers of the present invention, conventionally known methods for blending and/or adhering inorganic particles to polyester fibers can be directly applied. For example, there are (1) a method of dyeing by adding fine powder to a dye solution, (2) a method of adding fine powder to a spinning solution, and (3) a method of adding fine powder to a reaction system during the polymerization process.

ここで、(1)の方法は、微粉末を繊維表面上に付着さ
せるものであるので曳糸性については特に問題はないが
、微粉末が脱落し、遠赤外線放射性能が漸時低下し易い
。尚、「付着」は本発明でいう「含有」に含まれるもの
である。また、(2)の方法は、重縮九終了後に微粉末
を添加するものであるが、この場合の添加は、溶剤なし
で混合するため、巨大な粒子となり、紡糸口金のフィル
ター詰り、あるいは、単糸切れ等を起こし易い。
Here, in method (1), since the fine powder is attached to the fiber surface, there is no particular problem with spinnability, but the fine powder tends to fall off and the far-infrared radiation performance gradually deteriorates. . Note that "adhesion" is included in "containing" as used in the present invention. In addition, in method (2), fine powder is added after the completion of polycondensation, but since the addition in this case is mixed without a solvent, it becomes huge particles, which may clog the spinneret filter or Easy to cause single thread breakage, etc.

本発明においては、優れた遠赤外線放射効果と良好な紡
糸調子の両立を図るものであるので、(3)の方法、即
ち、ポリエステルの製造時重縮合反応完結までに酸化チ
タンおよqシリカの微粉末を反応系に添加することが好
ましく、特に、エステル化から重縮合反応完結までの間
に添加することが好ましい。この時期に酸化チタン、シ
リカを添加して得られたポリエステル繊維は、繊維内部
でこれらの微粉末が凝集することなく均一に分散されて
いる。これに対し、従来方法のように、溶融紡糸原液に
酸化物セラミックスを混練したものは、前述したように
酸化物セラミックスの微粉末が、凝集して巨大な粒子と
なり易いので、良好な紡糸調子を得ることができず、単
糸切れ、あるいは、ローラー捲付き等が発生してあまり
好ましくない。
In the present invention, in order to achieve both an excellent far-infrared radiation effect and a good spinning condition, the method (3), that is, the use of titanium oxide and q-silica before the completion of the polycondensation reaction during the production of polyester is used. It is preferable to add the fine powder to the reaction system, and it is particularly preferable to add the fine powder between the esterification and the completion of the polycondensation reaction. In polyester fibers obtained by adding titanium oxide and silica at this stage, these fine powders are uniformly dispersed within the fibers without agglomeration. On the other hand, in the conventional method in which oxide ceramics are kneaded into the melt spinning dope, as mentioned above, the fine powder of oxide ceramics tends to agglomerate into huge particles, so it is difficult to maintain good spinning conditions. However, single yarn breakage or roller winding occurs, which is not very preferable.

酸化チタン、シリカの添加方法としては、例えば、予め
ジカルボン酸成分とジオール成分とのスラリー中にこれ
らの微粉末を加えておいて該スラリーをエステル化槽へ
供給する方法と、これらの微粉末を直接エステル化槽へ
供給する方法とがある。前者の場合、微粉末は先ずジオ
ール成分と混合し、十分に撹拌した後にジカルボン酸成
分と混を 合し、スラリーとするのが好ましい。なお、酸化チタン
とシリカは、それぞれ別にジオール成分に添加しておい
てほうが取扱い性の点で有利である。
Examples of methods for adding titanium oxide and silica include adding these fine powders to a slurry of a dicarboxylic acid component and a diol component in advance and feeding the slurry to an esterification tank; There is a method of directly feeding it to the esterification tank. In the former case, it is preferable that the fine powder is first mixed with the diol component, sufficiently stirred, and then mixed with the dicarboxylic acid component to form a slurry. Note that it is advantageous in terms of handling that titanium oxide and silica are added separately to the diol component.

かかる方法で製造して得られるポリエステル繊維は微粉
末が繊維中で高濃度でしかも高い分散状態で存在し、特
に耐久性のある遠赤外線放射効果を発揮できる。
The polyester fiber produced by this method has fine powder present in the fiber at a high concentration and in a highly dispersed state, and can exhibit a particularly durable far-infrared radiation effect.

尚、本発明において溶融紡糸そのものは、従来公知の溶
融紡糸の装置等をそのまま利用して行うことが可能であ
る。
In the present invention, the melt spinning itself can be carried out using a conventionally known melt spinning apparatus as is.

このようにして得られる本発明の遠赤外線放射ポリエス
テル繊維は、優れた保温効果を有するものであるので、
例えばふとん綿、カーペット、防寒着、肌着、座ふとん
等の用途が考えられる。
The far-infrared emitting polyester fiber of the present invention thus obtained has an excellent heat-retaining effect;
For example, it can be used in futon cotton, carpets, winter clothing, underwear, cushions, etc.

〈実施例〉 次に実施例をもって本発明を説明するが、本発明は以下
の実施例に限定されるものではない。
<Examples> Next, the present invention will be explained using Examples, but the present invention is not limited to the following Examples.

実施例1〜5、比較例1〜5 実施例、比較例に用いた酸化チタンは08〜005μm
の粒径益布(平均粒径0.3μm)をもつチタン工業社
製の市販品で顔料用の酸化チタンである。
Examples 1 to 5, Comparative Examples 1 to 5 Titanium oxide used in Examples and Comparative Examples has a diameter of 08 to 005 μm
It is a commercial product manufactured by Titan Kogyo Co., Ltd. and has a particle size of 0.3 μm (average particle size), and is a titanium oxide for pigments.

また、シリカは10〜20ミリミクロンの範囲の粒子径
分布(平均粒径14mμ)をもつ濃度20重量%の水系
シリカゲルである。これらの酸化チタンとシリカを所定
の濃度となるよう室温でエチレングリコールに混合し、
十分撹拌した後、テレフタル酸と該テレフタル酸とのモ
ル比が12となるように調整して混合し、スラリーを作
成した。このスラリーをエステル化槽に連続的に供給し
てエステル化を行いエステル化率98%のエステル化物
を得、続いて重合を行い、ポリエステルを得た。尚、重
合触媒は、Sb、03を使用した。このようなポリマー
の製造法にしたがい、酸化チタン、シリカの添加量も変
更した。
The silica is an aqueous silica gel having a particle size distribution in the range of 10 to 20 millimicrons (average particle size 14 mμ) and a concentration of 20% by weight. These titanium oxide and silica are mixed with ethylene glycol at room temperature to a predetermined concentration,
After sufficient stirring, the molar ratio of terephthalic acid to the terephthalic acid was adjusted to 12 and mixed to prepare a slurry. This slurry was continuously supplied to an esterification tank and esterified to obtain an esterified product with an esterification rate of 98%, followed by polymerization to obtain a polyester. Incidentally, Sb, 03 was used as the polymerization catalyst. In accordance with this polymer manufacturing method, the amounts of titanium oxide and silica added were also changed.

公知の方法により、紡糸延伸を行い極限粘度[η]06
4、繊度6デニール、繊維長64mmの中空ふとん綿タ
イプの遠赤外線放射ポリエステル繊維を得た。
Spinning and drawing is performed by a known method to obtain an intrinsic viscosity [η]06
4. A hollow comforter type far-infrared emitting polyester fiber having a fineness of 6 denier and a fiber length of 64 mm was obtained.

なお、ポリエステルの極限粘度[η]は、フェノールと
四塩化エタンとの等重量混合物を溶媒として、温度30
°Cで測定した溶液粘度から換算して求めた値である。
Note that the intrinsic viscosity [η] of polyester is determined by using an equal weight mixture of phenol and tetrachloroethane as a solvent at a temperature of 30°C.
This is a value calculated from the solution viscosity measured at °C.

遠赤外線放射効果の評価方法としては、赤外線映像処理
装置(商品名サーモヴユア・日本電子(株)製)を用い
て試料の発する温度を測定した。
As a method for evaluating the far-infrared radiation effect, the temperature emitted by the sample was measured using an infrared image processing device (trade name: Thermovyure, manufactured by JEOL Ltd.).

すなイっち、黒体熱板上に測定試料および対照試料を載
せ、試料の真上の位置にカメラを設置し、20分放置後
、スクリーン上のそれぞれの試料の温度表示を読みとっ
た。評価は対照試料(TiO20,4%含有繊維)に対
し、どの程度高くなるか(温度差:ΔT ℃)にて行っ
た。各種評価結果を第1表に示したが、本発明の製法に
よる繊維は良好な繊維物性を有し、紡糸時の糸切れも全
く認められず、かつ優れた遠赤外線放射特性を有するも
のであった。一方、比較例1〜5では遠赤外線放射特性
に劣り、特にシリカを含有していない系では洩糸性が悪
く(比較例1)、TiO2および5102の合計量が1
5wt%を越えてしまうと紡糸調子が不調であった(比
較例4)。
A measurement sample and a control sample were placed on a black body heating plate, a camera was placed directly above the sample, and after being left for 20 minutes, the temperature display of each sample on the screen was read. Evaluation was performed based on how much higher the temperature was (temperature difference: ΔT°C) compared to a control sample (fiber containing 20.4% TiO). The various evaluation results are shown in Table 1, and the fiber produced by the manufacturing method of the present invention has good fiber properties, no yarn breakage was observed during spinning, and it has excellent far-infrared radiation characteristics. Ta. On the other hand, in Comparative Examples 1 to 5, the far-infrared radiation characteristics were poor, and in particular, the system containing no silica had poor threadability (Comparative Example 1), and the total amount of TiO2 and 5102 was 1
When it exceeded 5 wt%, the spinning condition was poor (Comparative Example 4).

〈発明の効果〉 本発明によれば、紡糸調子が極めて良好で、得られた繊
維の物性も殆ど損われず、しかも優れた遠赤外線放射特
性を有するポリエステル繊維を得ることが可能となった
<Effects of the Invention> According to the present invention, it has become possible to obtain a polyester fiber with extremely good spinning condition, with almost no loss in the physical properties of the resulting fiber, and having excellent far-infrared radiation characteristics.

以下余白Margin below

Claims (1)

【特許請求の範囲】[Claims] (1)平均粒径が2μm以下の酸化チタン(TiO_2
)および平均粒径が1μm以下のシリカ(SiO_2)
を合計で5〜15重量%含有しており、かつ、酸化チタ
ンとシリカの割合がTiO_2/SiO_2=8/1〜
1/4(重量比)であることを特徴とする遠赤外線放射
ポリエステル繊維。
(1) Titanium oxide (TiO_2) with an average particle size of 2 μm or less
) and silica (SiO_2) with an average particle size of 1 μm or less
It contains 5 to 15% by weight in total, and the ratio of titanium oxide and silica is TiO_2/SiO_2 = 8/1 to
A far-infrared emitting polyester fiber characterized by having a weight ratio of 1/4.
JP63146360A 1988-06-13 1988-06-13 Far infrared radiation polyester fiber Expired - Fee Related JPH089805B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63146360A JPH089805B2 (en) 1988-06-13 1988-06-13 Far infrared radiation polyester fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63146360A JPH089805B2 (en) 1988-06-13 1988-06-13 Far infrared radiation polyester fiber

Publications (2)

Publication Number Publication Date
JPH01314723A true JPH01314723A (en) 1989-12-19
JPH089805B2 JPH089805B2 (en) 1996-01-31

Family

ID=15405958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63146360A Expired - Fee Related JPH089805B2 (en) 1988-06-13 1988-06-13 Far infrared radiation polyester fiber

Country Status (1)

Country Link
JP (1) JPH089805B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001090455A1 (en) * 2000-05-22 2001-11-29 Toray Industries, Inc. Polyester fiber and method for producing a polyester composition
WO2003056075A1 (en) * 2001-12-24 2003-07-10 Ibeks Technologies Co., Ltd. Multi-functional fiber containing natural magma-stone and manufacturing process for the same
JP2009097105A (en) * 2007-10-16 2009-05-07 Kuraray Co Ltd Far-infrared radiation fiber, fabric including the same and method for producing the same
JP2011506668A (en) * 2007-12-14 2011-03-03 ロディア・ポリアミダ・エ・エスペシアリダデス・リミターダ POLYMER COMPOSITION, METHOD FOR PRODUCING THE POLYMER COMPOSITION, ARTICLES BASED ON THE POLYMER COMPOSITION AND USES OF THESE ARTICLES
JP2020084185A (en) * 2018-11-15 2020-06-04 ポリプラスチックス株式会社 Method for producing high thermal conductive resin composition

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5645922A (en) * 1979-09-21 1981-04-25 Kuraray Co Ltd Production of silica-containing polyester
JPS6112908A (en) * 1984-06-28 1986-01-21 Hoton Ceramic Kk Textile product containing ceramic powder
JPS626906A (en) * 1985-07-03 1987-01-13 Toray Ind Inc Production of polyester fiber
JPS626913A (en) * 1985-07-02 1987-01-13 Toray Ind Inc Production of polyester yarn
JPS6215325A (en) * 1985-07-04 1987-01-23 Toray Ind Inc Production of polyester fiber
JPS62238811A (en) * 1986-04-08 1987-10-19 Toko Gijutsu Kaihatsu Kk Mixed spinning process
JPS6392720A (en) * 1986-10-03 1988-04-23 Nobuhide Maeda Sheath-core composite fiber emitting far infrared radiation

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5645922A (en) * 1979-09-21 1981-04-25 Kuraray Co Ltd Production of silica-containing polyester
JPS6112908A (en) * 1984-06-28 1986-01-21 Hoton Ceramic Kk Textile product containing ceramic powder
JPS626913A (en) * 1985-07-02 1987-01-13 Toray Ind Inc Production of polyester yarn
JPS626906A (en) * 1985-07-03 1987-01-13 Toray Ind Inc Production of polyester fiber
JPS6215325A (en) * 1985-07-04 1987-01-23 Toray Ind Inc Production of polyester fiber
JPS62238811A (en) * 1986-04-08 1987-10-19 Toko Gijutsu Kaihatsu Kk Mixed spinning process
JPS6392720A (en) * 1986-10-03 1988-04-23 Nobuhide Maeda Sheath-core composite fiber emitting far infrared radiation

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001090455A1 (en) * 2000-05-22 2001-11-29 Toray Industries, Inc. Polyester fiber and method for producing a polyester composition
US6838173B2 (en) * 2000-05-22 2005-01-04 Toray Industries, Inc. Polyester fiber and production method of polyester composition
WO2003056075A1 (en) * 2001-12-24 2003-07-10 Ibeks Technologies Co., Ltd. Multi-functional fiber containing natural magma-stone and manufacturing process for the same
JP2009097105A (en) * 2007-10-16 2009-05-07 Kuraray Co Ltd Far-infrared radiation fiber, fabric including the same and method for producing the same
JP2011506668A (en) * 2007-12-14 2011-03-03 ロディア・ポリアミダ・エ・エスペシアリダデス・リミターダ POLYMER COMPOSITION, METHOD FOR PRODUCING THE POLYMER COMPOSITION, ARTICLES BASED ON THE POLYMER COMPOSITION AND USES OF THESE ARTICLES
US9044384B2 (en) 2007-12-14 2015-06-02 Rhodia Poliamida E Especialidades Ltda Polymeric compositions containing IR-emitting/absorbing additives and shaped articles comprised thereof
US9421162B2 (en) 2007-12-14 2016-08-23 Rhodia Poliamida E Especialidades Ltda Methods of using polymeric compositions containing IR-emitting absorbing additives
JP2020084185A (en) * 2018-11-15 2020-06-04 ポリプラスチックス株式会社 Method for producing high thermal conductive resin composition

Also Published As

Publication number Publication date
JPH089805B2 (en) 1996-01-31

Similar Documents

Publication Publication Date Title
TW593475B (en) Far infrared radiation composition having excellent static-eliminating properties and fiber and fiber product comprising the same
JP6707725B1 (en) Antibacterial fiber and method for producing antibacterial fiber
JPH11279830A (en) Fiber with excellent thermic ray radiation
JP3301706B2 (en) Deodorant composite fiber and method for producing the same
CN108842217A (en) It is a kind of with magnetism, far infrared, antibacterial functions composite fibre
JP2023508457A (en) Wet-laid nonwoven fabric and articles containing it
JPH01314723A (en) Far-infrared light irradiating polyester fiber
JPS63227828A (en) Warm cloth
JPH01280016A (en) Production of polyester fiber emitting far-infrared ray
JPS63126971A (en) Production of far infrared ray emissive fiber structure
JP6852219B2 (en) Manufacturing method of antibacterial fiber and antibacterial fiber
EP1186628A2 (en) Raw material dispersion for the manufacture of polyester, process for the preparation thereof, and process for the preparation of polyester products using the dispersion
JPH05117910A (en) Radiation shielding fiber or its production
TWI458683B (en) Sodalite-containing composition and polyester composite
JPS63203873A (en) Far infrared ray radiant composite fiber
WO2024190441A1 (en) Fired object
JP2882636B2 (en) Far-infrared radiating composite fiber, woven or knitted fabric containing the fiber and nonwoven fabric
JP2004068215A (en) Negative ion-radiating fiber
JP2003171169A (en) Far infrared radiation material
US3376249A (en) Process incorporating sodium pyrophosphate treated kaolinite within polyester
TW409154B (en) A method of manufacturing the raw material composition for far IR radiation and the synthetic fiber mixed in the raw material composition, and the formed product
KR920007108B1 (en) Producing process of polyester fiber
TW412608B (en) Method of producing fiber with far-infrared light emission characteristics
JPH0714492Y2 (en) Condensation prevention sheet
JP2580715B2 (en) Far infrared radiation acrylic fiber

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees