JPS6215325A - Production of polyester fiber - Google Patents

Production of polyester fiber

Info

Publication number
JPS6215325A
JPS6215325A JP14730285A JP14730285A JPS6215325A JP S6215325 A JPS6215325 A JP S6215325A JP 14730285 A JP14730285 A JP 14730285A JP 14730285 A JP14730285 A JP 14730285A JP S6215325 A JPS6215325 A JP S6215325A
Authority
JP
Japan
Prior art keywords
particles
spinning
particle diameter
average primary
polyester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14730285A
Other languages
Japanese (ja)
Inventor
Yoshimitsu Ito
伊藤 良光
Kenichiro Oka
岡 研一郎
Masanori Mineo
嶺尾 昌紀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP14730285A priority Critical patent/JPS6215325A/en
Publication of JPS6215325A publication Critical patent/JPS6215325A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce the titled fibers without defects stably for a long period, by stirring fine inert inorganic particles having a specific particle diameter with particles having a large particle diameter in a solvent, separating the large particles, adding the resultant slurry to produce a polymer and melt spinning and resultant polymer at a high speed. CONSTITUTION:(A) Fine inert particles having <=2mu average primary particle diameter are stirred with (B) particles having an average primary particle diameter of 10-4,000 times based on the average primary particle diameter of the component (A) and <=0.5mm average particle diameter in a solvent, and the particles of the component (B) are separated to give a slurry of the particles of the component (A), which are then added to a reaction system for polyester production to prepare the polyester. The resultant polyester is then filtered through a filter having <=20mu absolute filtration diameter in a spinning pack 1, melt spun at >=5,000m/min spinning speed, passed through a quench stack 3 and oiling device 4 and godet rolls 5 and 5' and then wound by a winder 6 to afford the aimed fibers.

Description

【発明の詳細な説明】 [技術分野] 本発明は無機微粒子含有ポリエステル繊維を5000m
/分以上の超高速で溶融紡糸して得る方法に関する。さ
らに詳しくは5000m/分以上の超高速紡糸を行なう
に際し、糸切れがなく、パック内圧上昇も少なく、かつ
長時間安定に紡糸し、かつ欠陥のない超高速紡糸糸を得
る方法に関する。
Detailed Description of the Invention [Technical Field] The present invention is directed to the production of polyester fibers containing inorganic fine particles in a length of 5000 m.
The present invention relates to a method of obtaining the present invention by melt spinning at an ultra-high speed of 1 minute or more. More specifically, the present invention relates to a method for obtaining ultrahigh-speed spun yarn without yarn breakage, little increase in pack internal pressure, stable spinning for a long period of time, and no defects when performing ultrahigh-speed spinning at 5000 m/min or more.

[従来技術及びその問題点] ポリエステルは無機微粒子、主に酸化チタンを用途に応
じて添加して紡糸するのが一般的である。かかるポリエ
ステルを溶融紡糸する場合、1000〜3500m/分
の紡糸速度で行なうのが一般的であり、かつこの程度の
速度では紡糸性も安定しており、かつ均一な糸条が得−
られる。
[Prior art and its problems] Polyester is generally spun by adding inorganic fine particles, mainly titanium oxide, depending on the purpose. When such polyester is melt-spun, it is generally carried out at a spinning speed of 1,000 to 3,500 m/min, and at this speed, spinnability is stable and a uniform yarn can be obtained.
It will be done.

一方、近年紡糸速度はますます高速化されてきており、
これに伴って高速紡糸技術も長足の進歩を遂げているが
、紡糸速度が5000m/分以上になると、急激に紡糸
中の糸切れや単糸切れか発生し始め、安定した紡糸はで
きないのが現状である。このため、超高速紡糸の高生産
性メリットがまったく生かされていない。これを解決す
るため、例えば米国特許第4,134゜882号明細書
等で、吐出する糸の半径方向の配向度分布を小さくする
紡糸方法等が提案されている。
On the other hand, spinning speeds have been increasing rapidly in recent years.
Along with this, high-speed spinning technology has also made great progress, but when the spinning speed exceeds 5000 m/min, yarn breakage or single yarn breakage suddenly begins to occur during spinning, making stable spinning impossible. This is the current situation. For this reason, the high productivity benefits of ultra-high speed spinning are not fully utilized. To solve this problem, for example, US Pat. No. 4,134.882 proposes a spinning method that reduces the radial orientation distribution of the discharged yarn.

又、特開昭56−96913号公報には糸切れ抑制のた
め超高速紡糸における分子配向時の結晶化を抑制する方
法が提案されているが、これらの結晶化を抑制する方法
を用いても工業生産プロセスの規模になると安定した紡
糸成績が得られないのが実情である。さらに得られた超
高速紡糸糸中にはボイドあるいはクラック等の欠点が存
在し、糸物性に悪影響を及ぼすなどの問題があり、これ
らは解決されていない。
In addition, Japanese Patent Application Laid-open No. 56-96913 proposes a method of suppressing crystallization during molecular orientation during ultrahigh-speed spinning in order to suppress yarn breakage, but even if these methods of suppressing crystallization are used, The reality is that stable spinning results cannot be obtained at the scale of industrial production processes. Furthermore, the resulting ultra-high speed spun yarn has defects such as voids and cracks, which adversely affect the physical properties of the yarn, and these problems have not been resolved.

一方、超高速紡糸時の糸切れ抑制のため、特開昭59−
1712号公報に示されるような、特定のパック内でろ
過を実施すると改善の効果は一応認められるものの、紡
糸開始時のパック内圧が高くなり、ざらに経時による内
圧の上昇も大きく、パックライフが短くなる等の致命的
問題は十分に解決されていないのが現状である。
On the other hand, in order to suppress yarn breakage during ultra-high speed spinning,
When filtration is carried out in a specific pack as shown in Publication No. 1712, an improvement effect can be recognized, but the internal pressure of the pack at the start of spinning increases, and the increase in internal pressure over time is also large, which shortens the pack life. The current situation is that fatal problems such as shortening have not been sufficiently resolved.

本発明者らは無機微粒子添加ポリエステルでの超高速紡
糸における前述の問題点の原因について鋭意検討を続【
プた結果、 ■ポリマ中に添加した無機微粒子の大きさや分散状態が
、糸切れ及びiqられる超高速紡糸に生じるボイドある
いはクラック状欠陥と大いに関係すること、 ■ざらにポリマ中に添加した無機微粒子の大ぎざや分散
状態が紡糸時のパック内圧上昇に密接に関係すること を見い出し本発明に到達したのである。
The present inventors have continued to earnestly study the causes of the above-mentioned problems in ultra-high speed spinning of polyester containing inorganic fine particles.
As a result, it was found that: 1. The size and dispersion state of the inorganic fine particles added to the polymer are greatly related to yarn breakage and voids or crack-like defects that occur during ultra-high speed spinning. 2. The inorganic fine particles added to the polymer It was discovered that the large serrations and the state of dispersion are closely related to the increase in pack internal pressure during spinning, and the present invention was achieved.

[発明の目的コ 本発明は無機微粒子添加ポリエステルを5000m/分
以上の超高速で紡糸を行なうに際し、糸切れなく、紡糸
パック内圧の上昇も少なく長時間安定して紡糸でき、か
つ欠陥のない超高速紡糸糸を得ることを目的とするもの
である。
[Purpose of the Invention] The present invention aims to produce a polyester containing inorganic fine particles that can be spun stably for a long period of time without yarn breakage, with little increase in the internal pressure of the spinning pack, and without defects when spinning polyester containing inorganic fine particles at ultra high speeds of 5,000 m/min or higher. The purpose is to obtain high-speed spun yarn.

[発明の構成] 前記した本発明の目的はポリエステル繊維を製造するに
際し、平均一次粒子径が2μ以下の不活性無機微粒子(
A>を溶媒中で無機微粒子(A>の平均一次粒子径の1
0〜4000倍の径を有し、かつ平均粒子径が0.5m
m以下の粒子(B)とともに撹拌し、しかるのら粒子(
B)を分離して得た、無機微粒子(A>のスラリをポリ
エステルの製造反応系に添加して得たポリエステルを紡
糸パック内の絶対−過径20μ以下のフィルターで一過
後、5000m/分以上の紡糸速度で溶融紡糸すること
を特徴とするポリエステル繊維の製造法によって達成さ
れる。
[Structure of the Invention] The object of the present invention is to produce polyester fibers using inert inorganic fine particles (with an average primary particle diameter of 2μ or less).
A> is inorganic fine particles (1 of the average primary particle diameter of A>) in a solvent.
It has a diameter of 0 to 4000 times and the average particle diameter is 0.5 m.
m or less particles (B), and then the particles (
The polyester obtained by adding the slurry of inorganic fine particles (A>) obtained by separating B) to the polyester production reaction system is passed through a filter with an absolute diameter of 20 μm or less in a spinning pack, and then heated at a speed of 5000 m/min or more. This is achieved by a polyester fiber production method characterized by melt spinning at a spinning speed of .

以下に、詳細に本発明について説明する。The present invention will be explained in detail below.

本発明の重要な構成要件の1つは超高速紡糸に供するポ
リマの製造工程で添加する無機微粒子の分散方法の規定
にある。すなわら、■平均一次粒子径が2μ以下の不活
性無機微粒子(A>を ■無機微粒子(A>の平均一次粒子径の10〜4000
倍の径を有し、かつ平均粒子径が0゜5mm以下の粒子
とともに撹拌し、 ■しかるのち、粒子(B)を分離して得た無機微粒子ス
ラリを用いることが必須である。
One of the important constituent elements of the present invention lies in the regulation of the method for dispersing the inorganic fine particles added in the manufacturing process of the polymer to be subjected to ultra-high speed spinning. In other words, ■ inert inorganic fine particles with an average primary particle size of 2 μ or less (A>) and ■ inorganic fine particles (10 to 4000 of the average primary particle size of A>)
It is essential to use an inorganic fine particle slurry obtained by stirring together with particles having twice the diameter and an average particle diameter of 0.5 mm or less, and then separating the particles (B).

本発明の他の重要な構成要件は上記方法で得た無機微粒
子スラリをポリエステルの製造系に添加して1qだポリ
エステルを溶融紡糸パック内で絶対−過径20μ以下の
フィルターでシ濾過した後、5000m/分以上で超高
速紡糸する点にある。
Another important component of the present invention is that the inorganic fine particle slurry obtained by the above method is added to a polyester production system, and 1 q of polyester is filtered in a melt-spinning pack using a filter with an absolute diameter of 20 μm or less. The point is that ultra-high speed spinning is performed at 5000 m/min or more.

本発明で用いる不活性無機微粒子(A>の平均一次粒子
径は2μ以下とする必要があり、好マシクは1μ以下、
更に好ましくは0.7μ以下のものが使用されるが、合
成時2μ以下のものであれば、そのまま使用することが
できる。
The average primary particle diameter of the inert inorganic fine particles (A>) used in the present invention must be 2μ or less, preferably 1μ or less,
More preferably, it is 0.7μ or less, but if it is 2μ or less during synthesis, it can be used as is.

一方、2μより大きい粒子径を有する合成無機化合物や
天然無機化合物の場合には、あらかじめ平均一次粒子径
が2μ以下となるように粉砕、分級して使用する。
On the other hand, in the case of a synthetic inorganic compound or a natural inorganic compound having a particle size larger than 2μ, it is used after being crushed and classified in advance so that the average primary particle size is 2μ or less.

平均一次粒子径が2μより大きい場合には紡糸時に糸切
れや系中にクラックやボイドの欠陥が発生し、また紡糸
パック内圧上昇の原因となり好ましくない。
If the average primary particle diameter is larger than 2 μm, fiber breakage occurs during spinning, defects such as cracks and voids occur in the system, and the internal pressure of the spinning pack increases, which is undesirable.

本発明の粒子(B)の平均粒子径は不活性無機微粒子(
A)の平均一次粒子径の10〜4000倍であり、かつ
Q、5mm以下であることが必要である。好ましくは1
5〜3000倍、更に好ましくは20〜2000倍の粒
子径の粒子が使用され、粒子(B)の粒子径は0.3m
r71以下が好ましく、更に好ましくは0.1mm以下
のものが使用される。
The average particle diameter of the particles (B) of the present invention is the inert inorganic fine particles (
It is necessary that the average primary particle diameter of A) is 10 to 4000 times, and Q is 5 mm or less. Preferably 1
Particles with a particle size of 5 to 3000 times, more preferably 20 to 2000 times, are used, and the particle size of particle (B) is 0.3 m.
Preferably, r is 71 or less, more preferably 0.1 mm or less.

本発明の粒子(B)の平均粒子径は不活性無機微粒子(
A)の平均一次粒子径の10倍より小さい場合にはスラ
リとの分離が困難となり、一方、4000倍より大きい
場合や、4000倍よりも小さくてもQ、5mmを越え
る場合には、分散効率が不十分となり凝集を解くことが
できない。
The average particle diameter of the particles (B) of the present invention is the inert inorganic fine particles (
If the average primary particle diameter of A) is smaller than 10 times, it will be difficult to separate it from the slurry, while if it is larger than 4000 times, or even if it is smaller than 4000 times, Q, if it exceeds 5 mm, the dispersion efficiency will decrease. is insufficient and the agglomeration cannot be broken down.

アルミナ、ジルコニア等の金属酸化物、カオリナイト、
タルク、ゼオライト等の酸化物、炭酸カルシウム等の炭
酸塩、リン酸リチウム、リン酸カルシウム等のリン酸塩
、硫酸カルシウム、硫酸バリウム等の硫酸塩などの無機
化合物で平均一次粒子径が2μ以下のものをいう。面記
無機化合物のうちでも特に二酸化チタ、ン、カオリナイ
ト、タルり、炭酸カルシウムおよび硫酸バリウムが好ま
しい。
Metal oxides such as alumina and zirconia, kaolinite,
Inorganic compounds such as oxides such as talc and zeolite, carbonates such as calcium carbonate, phosphates such as lithium phosphate and calcium phosphate, and sulfates such as calcium sulfate and barium sulfate, with an average primary particle size of 2μ or less. say. Among the planar inorganic compounds, titanium dioxide, kaolinite, tar, calcium carbonate, and barium sulfate are particularly preferred.

粒子(B)としては、アルミナ、ジルコニア等のセラミ
ックス、ガラス、スチールなどの粒子が使用される。中
でもセラミックス、ガラスの小球体が好ましい。
As the particles (B), particles of ceramics such as alumina and zirconia, glass, steel, etc. are used. Among these, ceramic and glass small spheres are preferred.

本発明では不活性無機微粒子(A>および(B>からな
るスラリ中に、後述する分散剤(C)を併用すると本発
明の効果が一層発揮される。
In the present invention, the effect of the present invention is further exhibited when a dispersant (C), which will be described later, is used in combination with the slurry consisting of inert inorganic fine particles (A> and (B>).

分散剤(C)としては、リン化合物およびアンモニア又
は低級アミン化合物が使用される。
As the dispersant (C), a phosphorus compound and ammonia or a lower amine compound are used.

好ましいリン化合物としては、リン酸、亜リン酸、ホス
ホン酸およびこれらの部分エステル化合物であり、具体
的には、リン酸、亜リン酸、リン酸モノエチルエステル
、リン酸メチルエチルエステル、リン酸ジブチルエステ
ル、メチルホスホン酸、フェニルホスホン酸、モノメチ
ルエステル等を挙げることができる。もちろん、これら
のリン化合物の2種以上を併用してもかまわない。この
中でも、リン酸、亜リン酸、酸性リン酸エステルが特に
好ましい。アンモニア又は低級アミン化合物とは一般式
R+ R2R3R4N又はR1R2R3R4N+X″″
(式中R1〜R4は水素基又はC5以下の低級アルキル
基、X−は水vI、ハロゲン等の対イオンを示す)で示
される1〜4級アミン化合物が使用され、具体的にはア
ンモニア、メチルアミン、メチルエチルアミン、トリエ
チルアミン、テトラエチルアンモニウムハイドHイサイ
ド、ジメチルプロピルアミンを挙げることができる。勿
論、これらのアンモニア又は低級アミン化合物の2種以
上を併用してもかまわない。特に好ましいアンモニア又
は低級アミン化合物としては3級アミン、4級アンモニ
ウム化合物でおる。アルキル基の炭素数が5以下である
と重合時ポリマの着色等の点で好ましい。リン化合物お
よびアンモニア又は低級アミン化合物の添加は、スラリ
調整時に別々に又は同時に添加してもかまわないし、前
もって適当な溶媒中で混合し、添加する方法も好適であ
る。好ましいリン化合物/アンモニア又は低級アミン化
合物のモル比は5/1〜115であり、より好ましくは
2/1〜1/4、最も好ましくは1/1〜1/3である
。モル比が上記範囲外になると分散効果が不十分になり
、ポリマ中で粒子が再度凝集する傾向がおる。分散剤の
添加伍はリン化合物とアンモニア又は低級アミン化合物
の総計として、使用する無機微粒子に対し重量比で、好
ましくは1/1〜0.0001/1、より好ましくは0
.5/1〜0.001/1、最も好ましくは0.3/1
〜0.01/1である。分散剤の添加層が重量比で1/
1より多い場合には重合速度の低下、ジエチレングリコ
ールの副生量が増加する傾向にあり、一方0゜0001
/1より少ない場合には分散性の改良効果が小さい。
Preferred phosphorus compounds include phosphoric acid, phosphorous acid, phosphonic acid, and partial ester compounds thereof; specifically, phosphoric acid, phosphorous acid, phosphoric acid monoethyl ester, phosphoric acid methylethyl ester, phosphoric acid Dibutyl ester, methylphosphonic acid, phenylphosphonic acid, monomethyl ester, etc. can be mentioned. Of course, two or more of these phosphorus compounds may be used in combination. Among these, phosphoric acid, phosphorous acid, and acidic phosphoric acid esters are particularly preferred. Ammonia or lower amine compound has the general formula R+ R2R3R4N or R1R2R3R4N+X″″
(In the formula, R1 to R4 are a hydrogen group or a lower alkyl group of C5 or less, and X- is a counter ion such as water vI or halogen.) A primary to quaternary amine compound is used, and specifically, ammonia, Mention may be made of methylamine, methylethylamine, triethylamine, tetraethylammonium hydride, and dimethylpropylamine. Of course, two or more of these ammonia or lower amine compounds may be used in combination. Particularly preferred ammonia or lower amine compounds are tertiary amines and quaternary ammonium compounds. It is preferable that the number of carbon atoms in the alkyl group is 5 or less in terms of coloring of the polymer during polymerization. The phosphorus compound and ammonia or lower amine compound may be added separately or simultaneously during slurry preparation, or it is preferable to mix them in a suitable solvent in advance and then add them. The preferred molar ratio of phosphorus compound/ammonia or lower amine compound is from 5/1 to 115, more preferably from 2/1 to 1/4, and most preferably from 1/1 to 1/3. If the molar ratio is outside the above range, the dispersion effect will be insufficient and the particles will tend to aggregate again in the polymer. The amount of the dispersant added is preferably 1/1 to 0.0001/1, more preferably 0, as the total of the phosphorus compound and ammonia or lower amine compound, based on the weight ratio of the inorganic fine particles used.
.. 5/1 to 0.001/1, most preferably 0.3/1
~0.01/1. The weight ratio of the dispersant added layer is 1/
When the amount is more than 1, the polymerization rate tends to decrease and the amount of diethylene glycol by-produced increases;
When the ratio is less than /1, the effect of improving dispersibility is small.

本発明で使用するスラリ溶媒としては、水、メタノール
、エタノール、エチレングリコール等のアルコール、ト
ルエン、キシレン、ペンタン等の炭化水素等を挙げるこ
とができる。特に好ましくはポリエステル製造原料とし
て使用するグリコールと同一のグリコールを使用するの
がポリマの品質の低下が少なく、また工程の汚染、紡糸
や操作の容易性から好ましい。
Examples of the slurry solvent used in the present invention include water, alcohols such as methanol, ethanol, and ethylene glycol, and hydrocarbons such as toluene, xylene, and pentane. It is particularly preferable to use the same glycol as the one used as the raw material for producing polyester, since this will cause less deterioration in the quality of the polymer and will also prevent contamination during the process and facilitate spinning and operations.

撹拌処理は、用いる不活性無機微粒子(A)の種類、平
均一次粒子径および共存して使用する粒子(B)の種類
および径により変化するが通常の撹拌装置を用いて行な
うことができる。
The stirring treatment can be carried out using a conventional stirring device, although it varies depending on the type of inert inorganic fine particles (A) used, the average primary particle size, and the type and size of the particles (B) used together.

すなわち、プロペラ翼、かい型翼、タービン翼、十字翼
ディスク等の滑拌翼を1枚又は複数枚装置した版拌装置
で、好ましくは100−10゜ooorpm、更に好ま
しくは5分〜10時間、更に好ましくは30分〜8時間
撹拌して行なう。
That is, a plate stirring device equipped with one or more smoothing blades such as propeller blades, paddle blades, turbine blades, cross blade discs, etc., preferably at 100-10°ooorpm, more preferably for 5 minutes to 10 hours. More preferably, stirring is carried out for 30 minutes to 8 hours.

分散方法は連続式処理でも、回分式処理でもかまわない
が、回分式処理がより好ましい。
The dispersion method may be continuous processing or batch processing, but batch processing is more preferable.

本発明の撹拌処理を行なったスラリは)−過、デカンテ
ーション、その他の方法で粒子(B)を分離し、そのま
ま、あるいはスラリを再度;濾過又はスーパーデカンタ
等で、スラリ中に残存する粗大粒子を除去した後、ポリ
ニスチルの製造反応系に添加される。
The slurry that has been subjected to the stirring treatment of the present invention) - Separate the particles (B) by filtration, decantation, or other methods, and use it as it is, or reuse the slurry; After removing it, it is added to the polynistil production reaction system.

本発明の無機微粒子グリコールスラリはポリエステル製
造工程の任意の時点で添加することができる。好適には
エステル化又はエステル交換反応開始以前から重縮合開
始まで、すなわち、重合反応中、ポリマの固有粘度が0
.2を越えない間に添加される。本発明の不活性微粒子
(A)の添加口は本発明の効果を十分に発揮させるため
には重合反応後、得られるポリマに対して5.0重d%
以下の母添加することが好ましい。
The inorganic fine particle glycol slurry of the present invention can be added at any point in the polyester manufacturing process. Preferably, the intrinsic viscosity of the polymer is 0 from before the start of the esterification or transesterification reaction to the start of the polycondensation reaction, that is, during the polymerization reaction.
.. Added at no more than 2 times. In order to fully exhibit the effects of the present invention, the addition port of the inert fine particles (A) of the present invention must be 5.0% by weight based on the resulting polymer after the polymerization reaction.
It is preferable to add the following mother.

また、本発明で言うポリエステルとは、繊維に成形し得
るポリエステルを主体とするものであればどのようなも
のでもよく、たとえばポリエチレンテレフタレート、ポ
リ−1,4−シクロヘキシレンジメヂレンテレフタレー
ト、ポリテトラメチレンテレフタレート、ポリエチレン
2.6−ナフタリンジカルボキシレート、ポリエヂレン
ーα、β−ビス(2−クロルフェノキシ)エタン−4,
4′−ジカルボキシレート等が挙げられるが、ポリエス
テル製造工程で添加する無機微粒子の凝集を促進させな
い程度に、主成分以外の一部を他の二官能性カルボン酸
成分で置き換えたポリエステルであっても、またエチレ
ングリコール成分の一部を他のジオール成分で置き換え
たポリエステルであってもよい。
Furthermore, the polyester referred to in the present invention may be any material as long as it is mainly composed of polyester that can be molded into fibers, such as polyethylene terephthalate, poly-1,4-cyclohexylene dimethylene terephthalate, polytetra Methylene terephthalate, polyethylene 2.6-naphthalene dicarboxylate, polyethylene-α,β-bis(2-chlorophenoxy)ethane-4,
Examples include 4'-dicarboxylate, etc., but it is a polyester in which a portion other than the main component is replaced with another difunctional carboxylic acid component to the extent that it does not promote aggregation of inorganic fine particles added in the polyester manufacturing process. It may also be a polyester in which part of the ethylene glycol component is replaced with another diol component.

更に、各種添加剤、たとえば易染剤、難燃剤、制電剤、
親水剤を必要に応じて共重合又は混合したポリエステル
であってもよい。
Furthermore, various additives such as dye-facilitating agents, flame retardants, antistatic agents,
It may also be a polyester copolymerized or mixed with a hydrophilic agent if necessary.

このように、得られた不活性無機微粒子含有ポリエステ
ルを紡糸パック内の絶対)濾過径20μ以下のフィルタ
ーで濾過を行なった後、5000m/分以上で超高速紡
糸することにより、従来の方法における超高速紡糸の問
題点が解決される。ここで、本発明で規定する絶対−退
任とは、JIS−B8356の方法により、フィルタメ
ディアを透過したガラスピーズ最大径を指す。本発明に
おける絶対濾過径は20μ以下、好ましくは15μ以下
である。ただし、あまり細かい)−過、例えば絶対)濾
過径2μというようなフィルターを用いるとパック内圧
の上昇が激しくなり好ましくない。一方、20μより甘
い濾過では、たとえ本発明の不活性無機微粒子含有ポリ
エステルを使用しても紡糸時に毛羽、糸切れなどの発生
等が多発して紡糸不良となり、本発明の目的を達成し得
ない。絶対)濾過径20μ以下のフィルターとしては、
特にステンレススチールからなる繊維が好ましく、繊維
は特に不織布であることが一層効果的である。紡糸のパ
ック内のフィルターの少なくとも一層は20μで必るこ
とか好ましい。また、パック内圧のフィルターの絶対濾
過径を上層より下層に順次細かくして、構成することが
紡糸内圧をより有効に抑制できる点で好ましい。また、
絶対r退任20μ以下のフィルターとワイアーメツシュ
P材あるいは粉末焼結金属P材、あるいは従来一般に用
いられてきたサンド等の2層との併用が可能である。し
かし、いかなるP材との組み合わせにおいても、絶対ろ
過径20μ以下のフィルターを用いることが本発明にお
いては必須まである。
In this way, the resulting inert inorganic fine particle-containing polyester is filtered through a filter with an absolute filtration diameter of 20μ or less in a spinning pack, and then ultra-high-speed spinning is performed at a speed of 5000 m/min or more. The problems of high speed spinning are solved. Here, the term "absolute retirement" defined in the present invention refers to the maximum diameter of the glass beads that have passed through the filter media according to the method of JIS-B8356. The absolute filtration diameter in the present invention is 20μ or less, preferably 15μ or less. However, if a filter with a too fine (absolute) filtration diameter of 2 microns is used, the internal pressure of the pack will increase rapidly, which is not preferable. On the other hand, if the filtration is softer than 20μ, even if the inert inorganic fine particle-containing polyester of the present invention is used, fuzz and yarn breakage occur frequently during spinning, resulting in poor spinning, and the object of the present invention cannot be achieved. . Absolute) As a filter with a filtration diameter of 20μ or less,
In particular, fibers made of stainless steel are preferred, and it is more effective that the fibers are nonwoven fabrics. At least one layer of filter within the spinning pack is necessarily or preferably 20μ. Further, it is preferable to configure the pack internal pressure filter so that the absolute filtration diameter is made smaller in order from the upper layer to the lower layer, since the spinning internal pressure can be suppressed more effectively. Also,
It is possible to use a filter with an absolute r of 20μ or less and two layers such as wire mesh P material, powder sintered metal P material, or sand which has been commonly used in the past. However, in the present invention, it is essential to use a filter with an absolute filtration diameter of 20 μm or less in combination with any P material.

また本発明においては、5000m/分以上の超高速紡
糸で得られる単糸デニールが5d以下、更に2d以下の
糸に関してその効果は著しい。
Further, in the present invention, the effect is remarkable for yarns with a single yarn denier of 5 d or less, further 2 d or less obtained by ultra-high speed spinning of 5000 m/min or more.

ここで、本発明の5000m/分以上の紡糸速度の意味
を明確にするため、溶融紡糸工程の具体的な実施形態の
一例を第1図をもって説明する。溶融されたポリマはパ
ックハウジング2内のパック1から吐出されて糸条とな
る。吐出された糸条は冷却筒3で冷却同化されて給油装
置4にて給油され、5000m/分以上の紡糸速度で回
転する第1ゴテイロール(以下第1GDという)5と第
2ゴテイロール(以下第2GDという)5 を経て巻取
機6に巻き取られる。
Here, in order to clarify the meaning of the spinning speed of 5000 m/min or more in the present invention, one example of a specific embodiment of the melt spinning process will be described with reference to FIG. 1. The molten polymer is discharged from the pack 1 within the pack housing 2 and becomes yarn. The discharged yarn is cooled and assimilated in a cooling cylinder 3, and oiled in an oil supply device 4, and then transferred to a first Gotei roll (hereinafter referred to as 1st GD) 5 and a second Gotei roll (hereinafter referred to as 2nd GD) that rotate at a spinning speed of 5000 m/min or more. ) 5 before being wound up by a winding machine 6.

このように紡糸速度とは、口金から吐出された糸条が最
初に接する駆動ロール(第1GD)の表面速度を意味し
、巻取速度ではない。ただし、第10D、第2GDを用
いない場合は巻取速度が紡糸速度となる。
As described above, the spinning speed refers to the surface speed of the drive roll (first GD) with which the yarn discharged from the spinneret first contacts, and is not the winding speed. However, when the 10D and 2nd GD are not used, the winding speed becomes the spinning speed.

また、本発明においては第1GDと第2GDで連続的に
延伸を行なういわゆる直接紡糸延伸等も適用される。
In addition, in the present invention, so-called direct spinning drawing, etc., in which drawing is performed continuously in the first GD and the second GD, is also applied.

[発明の効果] 本発明の特許請求の範囲に記載した無機微粒子の分散方
法を採用した特定の無機微粒子含有スラリを用いると、
ポリマ中に存在する″ii集粒子量が極めて少なく、か
つ均一に分散せしめたポリエステルを得ることができる
ため、かかるポリニス本チルを得、かかるポリエステル
を紡糸パック内の絶対r退任20μ以下のフィルターで
)−過を行なった後、5000m/分以上の紡糸速度で
溶融紡糸することによって、次のような効果が発揮され
る。
[Effect of the invention] When a specific inorganic fine particle-containing slurry employing the inorganic fine particle dispersion method described in the claims of the present invention is used,
Since the amount of collected particles present in the polymer is extremely small and it is possible to obtain a polyester that is uniformly dispersed, such a polyvarnish is obtained, and the polyester is passed through a filter with an absolute r of 20μ or less in a spinning pack. ) - After performing the filtration, the following effects are exhibited by melt spinning at a spinning speed of 5000 m/min or more.

すなわち、 (1)5000m/分以上の超高速紡糸において、糸切
れ、毛羽の発生もなく長時間にわたり安定して紡糸する
ことが可能となる。特に、細デニール糸の場合、その効
果が著しい。
That is, (1) In ultra-high speed spinning of 5000 m/min or more, it becomes possible to perform stable spinning for a long period of time without yarn breakage or generation of fuzz. This effect is particularly remarkable in the case of fine denier yarns.

(2>5000m/分以上で安定して紡糸が可能となる
ことは超高速紡糸の高い生産性のメリットを生かし、ま
た、5000m/分以上の紡糸で得られる糸条は後で延
伸工程を経ずども実用繊維として十分使用できるため、
工程合理化メリットをも産み出す。従って、大幅なコス
トダウンができる。
(2> Stable spinning at speeds of 5,000 m/min or higher takes advantage of the high productivity of ultra-high-speed spinning, and the yarn obtained by spinning at 5,000 m/min or higher undergoes a drawing process later. Because it can be used as a practical fiber,
It also produces process rationalization benefits. Therefore, it is possible to significantly reduce costs.

(3)紡糸パック内圧上昇が少ないため、長時間にわた
り、安定して紡糸することが可能となる。
(3) Since there is little increase in the internal pressure of the spinning pack, stable spinning can be performed over a long period of time.

(4)得られる系中にはボイドあるいはクラック状の欠
陥がないため、均一性の高い繊維となり、糸物性も向上
する。
(4) Since there are no defects such as voids or cracks in the resulting system, the fibers are highly uniform and the physical properties of the yarn are also improved.

以下本発明を実施例により更に詳細に説明する。The present invention will be explained in more detail below with reference to Examples.

なお。実施例中の物性は次のようにして測定した。In addition. The physical properties in the examples were measured as follows.

A、平均一次粒子径 BET方法で測定した。A, average primary particle diameter Measured using the BET method.

B、スラリ中粒度分布 光透過式遠心沈降型粒度分析器(呂律製作所CP−2型
)で測定した。
B. Particle size distribution in slurry Measured using a light transmission type centrifugal sedimentation type particle size analyzer (Ryotsu Seisakusho CP-2 model).

C,ポリマ中の凝集粗大粒子 少量のポリマを2枚のカバーグラス間にはさみ280℃
にて溶融プレスし、急冷した後、顕微鏡観察し、複数個
の一次粒子同志が凝集し、粒径の粗くなった部分を凝集
粗大粒子と判定した。
C. A small amount of aggregated coarse particles in the polymer was sandwiched between two cover glasses at 280°C.
After melt-pressing and quenching, microscopic observation was performed, and portions where a plurality of primary particles aggregated with each other and the particle size became coarse were determined to be aggregated coarse particles.

粒子の分散性については、”1mm2に存在する平均一
次粒子径の4倍を越す大きざの凝集粗大粒子を観察して
次のように判定した。
The dispersibility of the particles was determined as follows by observing aggregated coarse particles having a size more than four times the average primary particle size present in 1 mm2.

1級:平均一次粒子径の4倍を越える大きさの凝集粗大
粒子が10個/mm2未満でおる。
Grade 1: less than 10 aggregated coarse particles with a size more than 4 times the average primary particle size/mm2.

2級:平均一次粒子径の4倍を越える大きざの凝集粗大
粒子が10個/mm:2以上30個/mm2未満存在す
る。
2nd class: 10 aggregated coarse particles with a size more than 4 times the average primary particle size are present at a size of 2 or more and less than 30 particles/mm2.

3級:平均一次粒子径の4倍を越える大ぎさの凝集粗大
粒子が30個/mm2以上50個/mm2未満存在する
Grade 3: 30 or more and less than 50 pieces/mm2 of aggregated coarse particles having a size more than 4 times the average primary particle size are present.

4級:平均一次粒子径の4倍を越える大きざの凝集粗大
粒子が50個/mm2以上存在する。
Grade 4: 50 or more aggregated coarse particles with a size exceeding 4 times the average primary particle diameter are present.

D、 固有粘度 0−クロロフェノールを溶媒として25°Cにおいて測
定した。
D. Intrinsic viscosity 0 Measured at 25°C using chlorophenol as a solvent.

E、 絶対濾過径 J l5−88356の方法によりフィルターメディア
を透過したガラスピーズの最大粒径をいう。
E. Absolute filtration diameter J Refers to the maximum particle diameter of glass beads that passed through the filter media by the method of 15-88356.

実施例1 平均一次粒子径0.35μの二酸化チタン12部にリン
酸0.4部、トリエチルアミン0゜4部、エチレングリ
コール100部および粒子径100μのガラスピーズ1
50部を、タービン翼を備えた撹拌装置に仕込み、25
0Orpmで3時間30’分渭拌した。撹拌終了後、4
00メツシユの金網でガラスピーズを分離除去して二酸
化チタンのエヂレングリコールを得た。
Example 1 12 parts of titanium dioxide with an average primary particle size of 0.35μ, 0.4 parts of phosphoric acid, 0.4 parts of triethylamine, 100 parts of ethylene glycol, and 1 glass bead with a particle size of 100μ
50 parts were charged into a stirring device equipped with turbine blades, and 25 parts
The mixture was stirred at 0 rpm for 3 hours and 30 minutes. After stirring, 4
The glass beads were separated and removed using a 0.00 mesh wire mesh to obtain ethylene glycol of titanium dioxide.

スラリ中の二酸化チタンの平均径は0.4μでおった。The average diameter of titanium dioxide in the slurry was 0.4μ.

一方、ジメチルテレフタレート100部とエチレングリ
コール65部および酢酸マンガン0゜04部を仕込み1
40〜240℃でエステル交換反応を行なった。次いで
、三酸化アンチモン0.03部および前述した二酸化チ
タンのエチレングリコールスラリ3部を添加し、250
〜290℃で高真空下に重合反応を行ない固有粘度0.
62のポリマを1qた。
Meanwhile, 100 parts of dimethyl terephthalate, 65 parts of ethylene glycol, and 0.04 parts of manganese acetate were added.
The transesterification reaction was carried out at 40-240°C. Next, 0.03 parts of antimony trioxide and 3 parts of the titanium dioxide ethylene glycol slurry mentioned above were added, and 250 parts of ethylene glycol slurry of titanium dioxide was added.
The polymerization reaction was carried out at ~290°C under high vacuum, and the intrinsic viscosity was 0.
1q of 62 polymer.

ポリマ中の粒子の分散状態を観察したところ凝集粗大粒
子は4個/mm2であり良好な分散状態であった。得ら
れたポリマを用いて、紡糸温度298℃、口金単孔当り
の吐出ff11.3g/分、パック内で絶対濾過径10
μのステンレススチール繊維の不織布からなるフィルタ
一層を通過後、紡糸速度8200m/分で溶融紡糸した
。その結果、ボリア1トン当りの紡糸糸切れ回数は3回
と少なく、しかもパック寿命は15日間であり、長時間
にわたって、安定して紡糸することができた。また、得
られた高速紡糸糸中にはボイドやクラックが存在してい
なかった。
When the dispersion state of particles in the polymer was observed, the number of aggregated coarse particles was 4 pieces/mm2, indicating a good dispersion state. Using the obtained polymer, the spinning temperature was 298°C, the discharge rate per single hole of the spinneret was 11.3 g/min, and the absolute filtration diameter was 10 in the pack.
After passing through a single layer of a filter made of a non-woven fabric of stainless steel fibers of μ, it was melt-spun at a spinning speed of 8200 m/min. As a result, the number of spun yarn breakages per ton of boria was as low as 3, and the pack life was 15 days, allowing stable spinning over a long period of time. Moreover, no voids or cracks were present in the obtained high-speed spun yarn.

実施例2 紡糸パック内のフィルタの種類及び絶対r退任を変更し
た以外は実施例1と同様にして8100m/分の紡糸速
度で溶融紡糸を行なった。
Example 2 Melt spinning was carried out at a spinning speed of 8100 m/min in the same manner as in Example 1, except that the type of filter in the spinning pack and the absolute r retirement were changed.

紡糸工程中のガイドでの毛羽発生回数、紡糸時の糸切れ
発生回数は表1に示すとおりであった。
The number of occurrences of fuzz on the guide during the spinning process and the number of occurrences of yarn breakage during spinning were as shown in Table 1.

水準C,D、Eは本発明である。水準A、Bは絶対;濾
過径が本発明外である。表1で示されるように、水準C
,D、Eは紡糸時の毛羽発生、糸切れ発生が少なく、紡
糸性は極めて良好であった。さらにEはDよりパック内
圧上昇が小さかった。
Levels C, D, and E are of the present invention. Levels A and B are absolute; the filtration diameter is outside the scope of the present invention. As shown in Table 1, level C
, D, and E showed very good spinnability, with little occurrence of fluff or yarn breakage during spinning. Furthermore, E had a smaller increase in pack internal pressure than D.

実施例3 二酸化チタンの平均一次粒子径と使用するガラスピーズ
の平均径および分散剤の種類と添加量を表2に示したよ
うに変更してスラリを調製したこと以外は実施例1と同
様にしてポリエチレンテレフタレートを合成した。得ら
れたポリエチレンテレフタレートを紡糸温度296℃、
口金単孔当り吐出ff12.50/分、パック内で絶対
;濾過径20μのステンレススチール繊維の不織布から
なるフィルタを通過後、紡糸速度78001:n/分で
溶融紡糸した。ポリマ中の粒子の分散状態、紡糸時のパ
ック内圧上昇の程度及び紡糸時の糸切れ発生回数は表2
に示す通りであった。
Example 3 A slurry was prepared in the same manner as in Example 1, except that the average primary particle diameter of titanium dioxide, the average diameter of the glass beads used, and the type and amount of dispersant added were changed as shown in Table 2. Polyethylene terephthalate was synthesized. The obtained polyethylene terephthalate was spun at a spinning temperature of 296°C.
After passing through a filter made of a stainless steel fiber non-woven fabric with a filtration diameter of 20 μm at a discharge rate of ff 12.50/min per single hole of the spinneret and a filtration diameter of 20 μm, melt spinning was performed at a spinning speed of 78001: n/min. Table 2 shows the dispersion state of particles in the polymer, the degree of pack internal pressure increase during spinning, and the number of yarn breaks during spinning.
It was as shown in

表2において、水準Fは不活性無機微粒子(A)の平均
一次粒子径が本発明の範囲外であり、水準Gは粒子(B
)を使用していず、また水準Hは粒子(B)の粒子径が
本発明外であるため、いずれも紡糸性が不良であった。
In Table 2, level F indicates that the average primary particle diameter of the inert inorganic fine particles (A) is outside the range of the present invention, and level G indicates that the particles (B
) was not used, and in Level H, the particle size of particles (B) was outside the scope of the present invention, so the spinnability was poor in all cases.

一方、本発明の水準I、Jは無機微粒子(A>の平均一
次粒子径と粒子(B)の粒子径がともに満足し、かつ本
発明の範囲内にあるパック内濾過を行なうことににって
超高速紡糸の紡糸性は大幅に改善された。紡糸時のパッ
ク内圧上昇の程度が小さく、かつ糸切れ回数も少ないた
め、極めて長時間安定に紡糸することができた。
On the other hand, levels I and J of the present invention are those in which the average primary particle diameter of the inorganic fine particles (A>) and the particle diameter of the particles (B) are both satisfied, and filtration within the pack is performed within the scope of the present invention. The spinnability of ultra-high-speed spinning has been greatly improved.The increase in pack internal pressure during spinning is small, and the number of yarn breakages is also small, making it possible to spin yarn stably for an extremely long period of time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の溶融紡糸工程の一例を示す概略図であ
る。 1:パック 2:パックハウジング 3:冷却筒 4:給油装置 5:第1GD 5′:第2GD 6:捲取機
FIG. 1 is a schematic diagram showing an example of the melt spinning process of the present invention. 1: Pack 2: Pack housing 3: Cooling cylinder 4: Oil supply device 5: 1st GD 5': 2nd GD 6: Winding machine

Claims (3)

【特許請求の範囲】[Claims] (1)ポリエステル繊維を製造するに際し、平均一次粒
子径が2μ以下の不活性無機微粒子(A)を溶媒中で無
機微粒子(A)の平均一次粒子径の10〜4000倍の
径を有し、かつ平均粒子径が0.5mm以下の粒子(B
)とともに撹拌し、しかるのち粒子(B)を分離して得
た、無機微粒子(A)のスラリをポリエステルの製造反
応系に添加して得たポリエステルを紡糸パック内の絶対
ろ過径20μ以下のフィルターでろ過後、5000m/
分以上の紡糸速度で溶融紡糸することを特徴とするポリ
エステル繊維の製造法。
(1) When producing polyester fibers, inert inorganic fine particles (A) with an average primary particle size of 2 μ or less are 10 to 4000 times the average primary particle size of the inorganic fine particles (A) in a solvent, and particles with an average particle diameter of 0.5 mm or less (B
), and then the particles (B) were separated, and the slurry of inorganic fine particles (A) was added to the polyester production reaction system. After filtration, 5000m/
A method for producing polyester fiber characterized by melt spinning at a spinning speed of 1 minute or more.
(2)フィルターがステンレススチール繊維であること
を特徴とする特許請求の範囲第(1)項記載のポリエス
テル繊維の製造法。
(2) The method for producing polyester fibers according to claim (1), wherein the filter is a stainless steel fiber.
(3)フィルターが多層で構成され、かつ少なくとも1
つの層の絶対ろ過径が20μであることを特徴とする特
許請求の範囲第(1)項記載のポリエステル繊維の製造
法。
(3) The filter is composed of multiple layers, and at least one
The method for producing polyester fiber according to claim (1), characterized in that the absolute filtration diameter of each layer is 20μ.
JP14730285A 1985-07-04 1985-07-04 Production of polyester fiber Pending JPS6215325A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14730285A JPS6215325A (en) 1985-07-04 1985-07-04 Production of polyester fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14730285A JPS6215325A (en) 1985-07-04 1985-07-04 Production of polyester fiber

Publications (1)

Publication Number Publication Date
JPS6215325A true JPS6215325A (en) 1987-01-23

Family

ID=15427126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14730285A Pending JPS6215325A (en) 1985-07-04 1985-07-04 Production of polyester fiber

Country Status (1)

Country Link
JP (1) JPS6215325A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01314723A (en) * 1988-06-13 1989-12-19 Kuraray Co Ltd Far-infrared light irradiating polyester fiber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01314723A (en) * 1988-06-13 1989-12-19 Kuraray Co Ltd Far-infrared light irradiating polyester fiber

Similar Documents

Publication Publication Date Title
US8163841B2 (en) Polyethylene naphthalate fibers and method for producing the same
US8158718B2 (en) Polyethylene naphthalate fibers and method for producing the same
JP6100979B2 (en) Polytrimethylene terephthalate composition, polyester fiber and method for producing them
JPS6254723A (en) Polyester, its production and spinning
JPS626913A (en) Production of polyester yarn
JPS6215325A (en) Production of polyester fiber
JPS626906A (en) Production of polyester fiber
JPS60112849A (en) Polyester for fiber use
JPS6147826A (en) Manufacture of pitch-based carbon fiber
CN110092898B (en) Modified polyester, preparation method thereof and application of modified polyester as pillow inner
JPH11217492A (en) Polyester resin composition for fiber
JPH0433888B2 (en)
JPS60139750A (en) Preparation of particle slurry for polyester
JPH03234810A (en) Production of low shrinkage polyester fiber
JPS626911A (en) Inorganic fine particle-containing polyester yarn
KR930000254B1 (en) Composite fiber
JPS62232431A (en) Production of polyester
JPH0376715A (en) Production of particle-containing polyester
JPS6123623A (en) Production of polyester
JPS5947727B2 (en) Highly oriented unstretched polyester filament
JP2004217752A (en) Polyester composition for deep color dyeing and fiber
JPH02277818A (en) Polyester monofilament for screen gauze
KR940004689B1 (en) Method of preparing polyester fiber
JPH11314260A (en) Wearproofing method of metallic member
JPH08100325A (en) High-tenacity polyester fiber