KR920007108B1 - Producing process of polyester fiber - Google Patents

Producing process of polyester fiber Download PDF

Info

Publication number
KR920007108B1
KR920007108B1 KR1019890019896A KR890019896A KR920007108B1 KR 920007108 B1 KR920007108 B1 KR 920007108B1 KR 1019890019896 A KR1019890019896 A KR 1019890019896A KR 890019896 A KR890019896 A KR 890019896A KR 920007108 B1 KR920007108 B1 KR 920007108B1
Authority
KR
South Korea
Prior art keywords
polymer
periodic table
group
polyester
carbide
Prior art date
Application number
KR1019890019896A
Other languages
Korean (ko)
Other versions
KR910012388A (en
Inventor
안경열
오광수
Original Assignee
주식회사 삼양사
김상응
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 삼양사, 김상응 filed Critical 주식회사 삼양사
Priority to KR1019890019896A priority Critical patent/KR920007108B1/en
Publication of KR910012388A publication Critical patent/KR910012388A/en
Application granted granted Critical
Publication of KR920007108B1 publication Critical patent/KR920007108B1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/62Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyesters

Abstract

The preparing method of polyester fiber with good heat retaining property by distributing evenly of far-infrared radiating ceramic particles into the fiber is characterized; incorporating and dispersing of transitional metal oxides belonged to IV family in periodic table, or carbide whose addition amount against polyester polymer is 0.1-60 wt.% into the polyester polymer, while affinity imparting additive polymer whose adding amount against that of metal oxide or carbide is 0.1-30 wt.% and which is expressed as formulas of A(Y)m(OCOR)n [m = n = 1-3; A= transitional metal belonged to IV family in periodic table; Y= C1-5 roxyl gp.; R= C1-5 methyl or methoxy gp. being added to the ceramic particles, that is, transitional metal oxidesor carbides.

Description

보온성이 우수한 폴리에스테르 섬유의 제조방법Manufacturing method of polyester fiber excellent in heat retention

본 발명은 폴리에스테르 섬유를 제조하는 과정에서 고분자 친화조제를 사용하여 폴리에스테르 섬유 내부에 원적외선을 방사하는 세라믹 미립자가 균일하게 분포되도록 하는 보온성이 우수한 폴리에스테르 섬유의 제조방법에 관한 것이다.The present invention relates to a method for producing polyester fibers having excellent thermal insulation properties such that ceramic fine particles radiating far-infrared rays are uniformly distributed in the polyester fibers using a polymer affinity aid in the process of producing the polyester fibers.

일반적으로 세라믹등은 그 기능면에서 보면, 태양광중에서 에너지 효율이 높은, 비교적 단파장의 가시광선 및 근적외선을 흡수하여 열선인 원적외선으로 치환, 방사하며 이러한 세라믹 미립자를 섬유 구조물에 도입하면, 신체로부터 발산되는 열까지도 재반사시킴으로써 뛰어난 보온성과 함께 혈액의 흐름을 촉진시키는 등 건강증진에도 효과를 나타낸다.In general, ceramics, in terms of their function, absorb energy of visible rays and near infrared rays of relatively short wavelength, which are highly energy efficient in sunlight, and replace and radiate them with far-infrared rays which are hot rays. By re-reflecting even the heat, it is effective for health promotion by promoting blood flow along with excellent warmth.

이와 같은 보온성이 우수한 폴리에스테르 섬유의 제조방법에 관한 종래의 방법으로서, 첫째, 후가공방법인 일본특개소 63-35810에 의하면, 원적외선 방사 세라믹 입자를 섬유 구조물상에 코팅하거나, 필름등에 세라믹 입자를 코팅시킨 다음 다른 섬유 구조물과 라미네이팅 시키는 방법이 있다.As a conventional method for producing a polyester fiber having such excellent thermal insulation, firstly, according to Japanese Patent Laid-Open No. 63-35810, a far-infrared radiation ceramic particle is coated on a fiber structure, or a ceramic particle is coated on a film or the like. And then laminating with other fiber structures.

이 방법은 취급이 용이하며 기술적 적용이 간편한 장점이 있으나, 마찰이나 세탁으로 인해 세라믹 입자가 탈락하는 문제가 있으며 촉감도 좋지 않다.This method has the advantage of easy handling and technical application, but the problem of dropping ceramic particles due to friction or washing, and the touch is also not good.

또한, 일본특개소 63-203873에 의하면, 세라믹 필라멘트를 열가소성 고분자 물질로 피복하는 방법으로서, 세라믹 물질을 용융점 이상의 온도에서 용융시키고 압출, 고화시켜 만든 필라멘트를 열가소성 고분자물질의 용융조를 통과시켜 피복하는 방법이다.Further, according to Japanese Patent Laid-Open No. 63-203873, a method of coating a ceramic filament with a thermoplastic polymer material, wherein the filament formed by melting the ceramic material at a temperature above the melting point, extruding and solidifying the coating is passed through a melting tank of the thermoplastic polymer material. Way.

이 방법은 세라믹을 용융시키기 위해 고온의 처리장치가 필요하며 섬유화시킨 후에도 섬유가 유연하지 못하고 촉감이 나빠서, 의복의 용도로 쓰기에는 부적합하다.This method requires a high temperature treatment apparatus to melt the ceramic and is not suitable for use in clothing because the fibers are inflexible and feel bad even after the fiberization.

한편, 일본특개소 63-196710에 의하면, 세라믹 입자를 미립자화하여 열가소성 고분자물질중에 균일하게 분산시키고 방사, 연신하여 섬유화하는 방법이다. 이 방법은 공업화에 유리하고, 마찰 및 세탁에 내구성이 있으며 촉감에 대한 문제는 없으나, 고분자 물질내에서 세라믹입자간의 응집이 발생하여, 방사시 방사압력이 증가하는 관계가 있다.On the other hand, according to Japanese Patent Application Laid-Open No. 63-196710, a ceramic particle is granulated, uniformly dispersed in a thermoplastic polymer material, spun and stretched to form a fiber. This method is advantageous to industrialization, is durable against friction and washing, and has no problem with touch. However, this method has a relation that agglomeration between ceramic particles occurs in the polymer material, and the spinning pressure is increased during spinning.

세라믹미립자를 원사제조시에 도입시킴에 있어서의 문제점은 섬유에 대한 세라믹미립자의 함량과 밀접한 관계가 있다.The problem in introducing the ceramic fine particles in the yarn production is closely related to the content of the ceramic fine particles in the fiber.

상대적으로 그 함유량이 적은 경우, 방사작업성 및 연신등의 공정수율은 양호하지만, 보온등의 효과를 얻기에는 불충분하다.When the content is relatively small, the process yield such as spinning workability and stretching is good, but it is insufficient to obtain effects such as thermal insulation.

반면에 과량의 세라믹 미립자를 분포시킬 경우, 고분자 내에서 세라믹 입자간에 응집이 발생하여 방사작업성이 불량하며 섬유의 제반 물성도 약화된다.On the other hand, in the case of distributing excess ceramic fine particles, agglomeration occurs between ceramic particles in the polymer, resulting in poor spin workability and weakening of various physical properties of the fiber.

세라믹 미립자를 고분자 물질내에 분포시키는 방법으로서, 고분자 중합공정에 투입하는 방법, 마스타 펠렛화한 후 기본 고분자 물질과 혼합시키는 방법, 방사전에 투입하는 방법등이 있다.As a method of distributing the ceramic fine particles in a polymer material, there are a method of introducing into a polymer polymerization process, a method of mixing with a basic polymer material after master pelletizing, and a method of feeding into a spinning material.

이런 방법들을 통해 세라믹 물질내에 세라믹 미립자를 분포시킬때, 세라믹 미립자들은 고분자와의 친화력이 없고 입자 상호간의 작용에 의해 응집하기 때문에 고분자 물질내에시 조입자를 형성하게 되고 그 결과 방사작업시 작업성을 저하시키는 원인이 된다.In this way, when ceramic fine particles are distributed in ceramic material, ceramic fine particles do not have affinity with polymer and aggregate due to interaction between particles, thus forming coarse particles in polymer material. It causes the deterioration.

본 발명자들은 이런 점에 착안하여 세라믹 미립자로 주기율표 제Ⅳ족에 속하는 천이금속산화물, 또는 탄화물을 사용하였으며, 이것을 폴리에스테르내에 균일하게 분포시키기 위하여 아래와 같은 일반식(Ⅰ)의 고분자 친화조제를 사용한 결과 폴리에스테르내에서 세라믹 미립자의 응집이 방지됨과 동시에 균일하게 분포되어서 조업성이 우수하고 제반 물성이 양호한 원적외선 방사성 폴리에스테르 섬유를 제조하였다.In view of this, the present inventors used transition metal oxides or carbides belonging to group IV of the periodic table as ceramic fine particles, and the polymer affinity aid of the general formula (I) shown below was uniformly distributed in polyester. Agglomeration of the ceramic fine particles in the polyester is prevented and uniformly distributed, thereby producing far-infrared radiation polyester fibers having excellent operability and good physical properties.

Figure kpo00001
Figure kpo00001

여기서 m, n은 1에서 3까지의 정수, A는 주기율표상의 제Ⅳ족 천이금속이며, Y는 수산기, 혹은 1-5개의 탄소수를 포함한 수산기이고, R은 메틸기, 혹은 1-5개의 탄소수를 포함한 메톡시기이다.Where m and n are integers from 1 to 3, A is a Group IV transition metal on the periodic table, Y is a hydroxyl group or a hydroxyl group containing 1-5 carbon atoms, and R is a methyl group or 1-5 carbon atoms It is a methoxy group.

본 발명에 사용된 세라믹 미립자는 주기율표상의 제Ⅳ족 천이금속산화물, 또는 탄화물인바, 구체적인 예로 지르코늄옥사이드, 이산화티탄, 지르코늄카바이드, 티타늄카바이드가 있으며, 폴리머에 대한 첨가량은 0.1∼60중랑%, 좋게는 0.5∼50중량%, 더욱 좋게는 1∼30중량%의 것이다.The ceramic fine particles used in the present invention are group IV transition metal oxides or carbides on the periodic table, and specific examples include zirconium oxide, titanium dioxide, zirconium carbide, and titanium carbide, and the amount of the polymer added is 0.1 to 60% by weight, preferably 0.5-50 weight%, More preferably, it is 1-30 weight%.

그러나 0.1중량% 미만인 경우 보온효과를 기대할 수 없으며, 60중량%를 초과하는 경우 방사 작업성이 나빠진다.However, if less than 0.1% by weight can not be expected thermal effect, if it exceeds 60% by weight spinning workability worsens.

본 발명에 사용된 고분자 친화조제의 구체적인 예로, 하이드록시 지르코늄 메틸카보네이트, 하이드록시지르코늄 메톡시 카보네이트, 하이드록시 티타튬 메톡시 카보네이트, 하이드록시 티타늄 메틸카보네이트를 들 수 있으며, 첨가량은 첨가된 세라믹 미립자에 대해 0.1∼30중량%, 좋게는 1∼20중량%, 더욱 좋게는 2∼10중량%이다.Specific examples of the polymer affinity aid used in the present invention include hydroxy zirconium methyl carbonate, hydroxy zirconium methoxy carbonate, hydroxy titanium lithium carbonate, hydroxy titanium methyl carbonate, and the addition amount is added to the added ceramic fine particles. 0.1 to 30% by weight, preferably 1 to 20% by weight, more preferably 2 to 10% by weight.

친화조제를 0.1중량% 미만으로 첨가할 경우, 세라믹 미립자가 폴리에스테르내에 균일하게 분산되지 않고 조립자를 형성하여 방사작업성이 불량하며, 30중량%를 초과하게 첨가하면, 세라믹 미립자가 폴리에스테르내에 균일하게 분산되나 폴리에스테르의 물성이 저하되며, 방사작업성이 나빠진다.When the affinity aid is added less than 0.1% by weight, the ceramic fine particles are not uniformly dispersed in the polyester, forming coarse particles, resulting in poor spin workability, and when the affinity aid is added in excess of 30% by weight, the ceramic particles are uniform in the polyester. It is dispersed, but the physical properties of the polyester is lowered, spinning workability is worse.

본 발명으로 제조되는 원사는 통상의 방사구금을 사용하여 제조하였는데, 그 단면형태는 원형, 삼각형, 타원형등 기존의 어떤 형상으로도 제조할 수 있다. 본 발명은 제조된 폴리에스테르 섬유를 단독, 또는 통상의 섬유와 혼합하여 종래와 같은 방법으로 목적하는 직, 편물로 구성하여 방한복, 스키복, 겨울유니폼, 작업복 및 커텐 등 보온성이 요구되는 용도에 사용할 수 있으며, 원적외선 방출효과에 의해 인체에 열분자 운동을 일으켜 인체가 자기발열을 하므로 한냉지에서 사용하기에 가장 적합하다.Yarn produced by the present invention was prepared using a conventional spinneret, the cross-sectional shape can be produced in any existing shape, such as circular, triangular, oval. The present invention can be used in applications requiring heat retention, such as winter clothes, ski suits, winter uniforms, work clothes and curtains by combining the polyester fibers produced alone or in combination with ordinary fibers in the desired fabric, knitted fabric in the same way as conventional It is the most suitable for use in a cold area because the human body generates heat by causing the heat-molecule movement by the far-infrared emission effect.

본 발명에 대한 구체적인 실시예를 설명하기에 앞서, 실시예에서의 첨가제의 평균 입경은 다음과 같이 측정하였다.Prior to describing specific examples of the present invention, the average particle diameter of the additives in the examples was measured as follows.

폴리머 시료 10미리그램을 18×18 미리미터 크기의 현미경카바글라스 사이에 놓고 280∼300℃의 핫플래이트상에서 열접착시켜 필름을 제조한 다음, 위상차 현미경으로 첨가제 100개의 크기를 측정하여 평균치를 얻었다.Ten milligrams of the polymer sample was placed between 18 × 18 mm sized microscopy covers and thermally bonded on a hotplate at 280 to 300 ° C. to prepare a film, and then the size of 100 additives was measured by a phase contrast microscope to obtain an average value.

또한 보온성 평가는 36℃로 유지되는 항온실에서 본 발명으로 제조한 원사로 제직한 직물과 이와 동일한 조직으로 되어 있는 통상의 직물에 중심파장이 1미크론이며 용량 500 와트인 고효율반사 전등을 비추고 3분후에 각 직물표면의 온도분포를 적외선 열상장치(Thermograph, NEC-San ei제, 모델 6T62)로 측정한다.In addition, the thermal insulation evaluation was performed for 3 minutes with a high-efficiency reflecting lamp having a center wavelength of 1 micron and a capacity of 500 watts on a fabric woven from the yarn manufactured according to the present invention in a constant temperature chamber maintained at 36 ° C. and a conventional fabric having the same structure. Then, the temperature distribution of each fabric surface is measured by an infrared thermograph (Thermograph, manufactured by NEC-San ei, Model 6T62).

실시예 및 비교예에서의 온도값은 각 시료 직물의 표면온도를 단위면적당 평균값으로 나타낸 것이다.The temperature values in Examples and Comparative Examples represent the surface temperature of each sample fabric as an average value per unit area.

실시예에서의 부는 중량%를 나타낸다.Parts in the examples represent weight percent.

[실시예 1]Example 1

에틸렌 글리콜 100부, 1차 평균 입경이 40미리 미크론인 지르코니아 20부를 교반기에 투입한 후, 1시간 교반시켜 에틸렌 글리콜 슬러리(a)를 얻는다.100 parts of ethylene glycol and 20 parts of zirconia having a primary average particle diameter of 40 microns are charged into a stirrer, followed by stirring for 1 hour to obtain an ethylene glycol slurry (a).

회전주축에 많은 디스크가 달린 습식 분쇄장치에 위의 슬러러를 투입하고, 트리하이드록시 지르코늄 메틸카보네이트를 지르코니아 양에 대하여 6부 첨가한 후, 8시간 이상 교반함으로써, 지르코니아 미립자(c)가 균일하게 분산된 슬러리(b)를 제조한다.Zirconia fine particles (c) are uniformly added by adding the above slur to a wet mill with a large number of disks on a rotating spindle, adding 6 parts of trihydroxy zirconium methyl carbonate to the amount of zirconia, and then stirring for 8 hours or more. Prepare the dispersed slurry (b).

이와 별도로 정류 칼럼이 부착된 유리 플라스크내에 테레프탈산 100부, 에틸렌 글리콜 180부, 초산나트륨 0.18부, 초산아연 0.02부를 투입하여 에스테르 교환반응을 하고 이론량의 물을 제거한 후, 반응생성물을 정류 칼럼이 부착된 중축합 플라스크내에 도입시키고, 위에서 만든 지르코니아 미립자 슬러리(b)를 지르코니아 미립자(c)가 폴리에스테르 고분자에 대하여 0.01∼60부 되도록 3회로 나누어 투입하고, 인산 0.001부와 중축합 촉매로써 3산화 안티몬 0.1부를 첨가하였다.Separately, 100 parts of terephthalic acid, 180 parts of ethylene glycol, 0.18 parts of sodium acetate, and 0.02 parts of zinc acetate were added to the glass flask to which the rectification column was attached to perform a transesterification reaction, and after removing the theoretical amount of water, the reaction product was attached to the rectification column. The zirconia fine particle slurry (b) prepared above was introduced into the above-mentioned polycondensation flask three times so that the zirconia fine particle (c) was 0.01-60 parts with respect to the polyester polymer, and 0.001 part of phosphoric acid and antimony trioxide as a polycondensation catalyst were added. 0.1 part was added.

이 혼합물에 대하여 상압하 280℃에서 20분간, 30㎜Hg의 감압하에서의 15분간, 고진공하에서 120분간 중축합 조작을 행하고 최종 압력은 0.25㎜Hg로 하였다.The mixture was subjected to a polycondensation operation under normal pressure for 20 minutes at 280 ° C. for 15 minutes under a reduced pressure of 30 mmHg, and for 120 minutes under high vacuum, and the final pressure was 0.25 mmHg.

이렇게 하여 생성된 폴리머를 통상의 방법으로 펠렛화하고 통상적인 방법으로 건조한 후, 이 펠렛을 원사의 중심부분으로 하고 통상의 폴리에스테르 펠렛을 바깥부분으로 하여 50 : 50의 함량비로, 방사속도 1.500m/min으로 용융복합방사하여, 225d/36f의 미연신사를 제조한 다음, 연산비율 3.0으로 연신하여 75d/36f의 연신사를 얻었다.The polymer thus produced is pelletized in a conventional manner and dried in a conventional manner, and then the pellet is used as the central portion of the yarn and the ordinary polyester pellet is used as the outer portion at a content ratio of 50:50, with a spinning speed of 1.500 m. Melt-combined spinning at / min produced 225 d / 36 f of undrawn yarn, and then stretched at a computation ratio of 3.0 to obtain 75 d / 36 f of drawn yarn.

이 연신사를 지르코늄계 화합물을 포함하지 않는 통상의 폴리에스테르 직물과 동일한 조건으로 제직하여 일본 공업규격, JIS L 1413에 의거, 보온성을 평가하였다.The stretched yarn was woven under the same conditions as in a conventional polyester fabric containing no zirconium compound, and thermal insulation was evaluated according to Japanese Industrial Standard, JIS L 1413.

표 1은 지르코니아 미립자(c)의 첨가량 변화에 따른 원사의 제반물성과 직물의 보온성을 나타낸 것이다.Table 1 shows the overall physical properties of the yarn and the warmth of the fabric according to the addition amount of the zirconia fine particles (c).

표 1에서 지르코니아 미립자(c)의 첨가량은 폴리머 중량에 대한 것임.In Table 1, the amount of zirconia fine particles (c) added is based on the weight of the polymer.

[표 1]TABLE 1

Figure kpo00002
Figure kpo00002

(범례 : ◎; 아주양호, ○; 양호, △; 보통)(Legend: ◎; Very good, ○; Good, △; Normal)

[비교예 1]Comparative Example 1

실시예 1에서 지르코니아 미립자와 고분자 친화조제를 첨가하지 않고 제조한 통상의 펠렛을 단일성분으로 방사한 것을 제외하고는 모두 동일하게 실험하였으며, 그 결과를 표 2에 나타내었다.Except that the ordinary pellets prepared in Example 1 without the addition of the zirconia microparticles and the polymer affinity aid were spun as a single component, all the same experiments, and the results are shown in Table 2.

[표 2]TABLE 2

Figure kpo00003
Figure kpo00003

(범례 : ◎; 아주양호, ×; 불량)(Legend: ◎; Very good, ×; Poor)

[비교예 2]Comparative Example 2

실시예 1과 사용된 고분자 친화조제를 첨가하지 않은 것을 제외하고는 모두 동일하게 실험하였으며, 그 결과를 표 3에 나타내었다.Except not adding the polymer affinity aid used in Example 1 and all the same experiments, the results are shown in Table 3.

표 3에서의 c의 첨가량은 폴리머중량에 대한 첨가량임.The addition amount of c in Table 3 is addition amount with respect to a polymer weight.

[표 3]TABLE 3

Figure kpo00004
Figure kpo00004

(범례 : ○; 양호, △; 보통, ×; 불량)(Legend: ○; Good, △; Normal, ×; Poor)

[실시예 2]Example 2

실시예 1에서 사용된 지르코니아 미립자(c)의 첨가량을 폴리에스테르 폴리머에 대하여 20부 첨가하였으며, 지르코니아 미립자에 대하여 고분자 친화조제인 트리하이드록시 지르코늄 메틸카보네이트를 각각 0.01, 0.1, 1, 5, 10, 20, 30, 40부를 첨가하여 방사한 것을 제외하고는 모두 동일하게 실험하였으며, 그 결과를 표 4에 나타내었다.20 parts of the zirconia fine particles (c) used in Example 1 were added to the polyester polymer, and trihydroxy zirconium methyl carbonate, a polymer affinity aid, was added to the zirconia fine particles, respectively, 0.01, 0.1, 1, 5, 10, All experiments were the same except that 20, 30, 40 parts were added and spun, and the results are shown in Table 4.

표 4에서 고분자 친화조제의 첨가량은 지르코니아 첨가 중량에 대한 것임.The addition amount of the polymer affinity aid in Table 4 is based on the zirconia addition weight.

[표 4]TABLE 4

Figure kpo00005
Figure kpo00005

(범례 : ◎; 아주양호, ○; 양호, △; 보통, ×; 불량)(Legend: ◎; Very good, ○; Good, △; Normal, ×; Poor)

Claims (3)

주기율표의 제Ⅳ족에 속하는 천이금속산화물, 또는 탄화물을 폴리에스테르의 내부에 분산시켜서 폴리에스테르 섬유를 제조함에 있어서, 다음 일반식(Ⅰ)로 표시되는 고분자 친화조제를 사용함을 특징으로 하는 보온성이 우수한 폴리에스테르 섬유의 제조방법.In preparing polyester fibers by dispersing transition metal oxides or carbides belonging to group IV of the periodic table, the polymer affinity aid represented by the following general formula (I) is used. Method for producing polyester fiber. 다 음
Figure kpo00006
next
Figure kpo00006
단, m, n은 1에서 3까지의 정수, A는 주기율표의 제Ⅳ족에 속하는 천이금속, Y는 수산기, 또는 1-5개의 탄소를 포함하는 수산기, R은 메틸기, 또는 1-5개의 탄소를 포함하는 메톡시기.Provided that m and n are integers from 1 to 3, A is a transition metal belonging to group IV of the periodic table, Y is a hydroxyl group, or a hydroxyl group containing 1-5 carbons, R is a methyl group, or 1-5 carbons Methoxy group containing.
제1항에 있어서, 주기율표상의 제Ⅳ족의 천이금속산화물, 또는 탄화물의 첨가량이 폴리머에 대하여 0.1∼60중량%인 것을 특징으로 하는 보온성이 우수한 폴리에스테르 섬유의 제조방법.The method for producing a polyester fiber having excellent thermal insulation according to claim 1, wherein the amount of transition metal oxide or carbide of Group IV on the periodic table is 0.1 to 60% by weight relative to the polymer. 제1항에 있어서, 고분자 친화조제의 첨가량이 주기율표상의 제Ⅳ족의 천이금속화합물, 또는 탄화물의 첨가량에 대하여 0.1∼30중량%인 것을 특징으로 하는 보온성이 우수한 폴리에스테르 섬유의 제조방법.The method according to claim 1, wherein the amount of the polymer affinity aid added is 0.1 to 30% by weight based on the amount of the transition metal compound or carbide of the group IV on the periodic table.
KR1019890019896A 1989-12-28 1989-12-28 Producing process of polyester fiber KR920007108B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019890019896A KR920007108B1 (en) 1989-12-28 1989-12-28 Producing process of polyester fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019890019896A KR920007108B1 (en) 1989-12-28 1989-12-28 Producing process of polyester fiber

Publications (2)

Publication Number Publication Date
KR910012388A KR910012388A (en) 1991-08-07
KR920007108B1 true KR920007108B1 (en) 1992-08-24

Family

ID=19293957

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019890019896A KR920007108B1 (en) 1989-12-28 1989-12-28 Producing process of polyester fiber

Country Status (1)

Country Link
KR (1) KR920007108B1 (en)

Also Published As

Publication number Publication date
KR910012388A (en) 1991-08-07

Similar Documents

Publication Publication Date Title
EP3626758A1 (en) Graphene composite material and preparation method therefor
CN110863252A (en) Plant functional polyester filament and preparation method thereof
KR0155608B1 (en) The preparation of far-infrared radiating polyester fiber
CN1223712C (en) Polyester fiber and method for producing polyester composition
CN105002595A (en) Polymer composite function fibers containing partial graphene, and preparation method thereof
EP3202848B1 (en) Composite polyester material, composite polyester fibre, preparation method therefor and use thereof
CN102337603A (en) Fiber with function of infrared ray absorption, and its preparation method and textile
KR20160037319A (en) Polyester fiber having heat storage and conserving property and method for manufacturing the same
KR101495966B1 (en) Method for preparing electrically conductive polyamide- polyolefin composite fiber and electrically conductive composite fiber prepared thereby
JPH05239716A (en) Thermally insulating conjugate fiber
EP0035796B1 (en) Thermoplastic synthetic filaments and process for producing the same
CN1053714C (en) Far infrared fiber with good spinning property and its manufacture
KR920007108B1 (en) Producing process of polyester fiber
CN115341302B (en) Preparation method of sheath-core type photo-thermal conversion-heat storage temperature regulation polyester fiber
KR100650885B1 (en) Polyester conjugated fiber with excellent stretchability and anti-microbial property and process of making
KR100450530B1 (en) Method for producing functional polyester fiber
JPH05117910A (en) Radiation shielding fiber or its production
JP2013237956A (en) Heat-shield composite fiber giving superior cold feeling
KR950013481B1 (en) Polyester fiber having excellent ultraviolet screening and cooling effect
JPS63203873A (en) Far infrared ray radiant composite fiber
JP2004083651A (en) Hygroscopic polyester composition and polyester fiber
JPS61102474A (en) Production of conductive composite fiber
JP2816552B2 (en) Solar thermal absorber
KR920009002B1 (en) Process for production of far infared radiation heat welding covering fiber
KR0120017B1 (en) Method for manufacturing polyester fiber

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 19970730

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee