KR0155608B1 - The preparation of far-infrared radiating polyester fiber - Google Patents

The preparation of far-infrared radiating polyester fiber Download PDF

Info

Publication number
KR0155608B1
KR0155608B1 KR1019950020757A KR19950020757A KR0155608B1 KR 0155608 B1 KR0155608 B1 KR 0155608B1 KR 1019950020757 A KR1019950020757 A KR 1019950020757A KR 19950020757 A KR19950020757 A KR 19950020757A KR 0155608 B1 KR0155608 B1 KR 0155608B1
Authority
KR
South Korea
Prior art keywords
far
infrared
producing
ceramic
particles
Prior art date
Application number
KR1019950020757A
Other languages
Korean (ko)
Other versions
KR970006375A (en
Inventor
임대우
이창희
김정열
조지숙
Original Assignee
박홍기
주식회사새한
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 박홍기, 주식회사새한 filed Critical 박홍기
Priority to KR1019950020757A priority Critical patent/KR0155608B1/en
Priority to CN96100417A priority patent/CN1140770A/en
Priority to GB9601245A priority patent/GB2303375B/en
Priority to DE19606266A priority patent/DE19606266C2/en
Publication of KR970006375A publication Critical patent/KR970006375A/en
Application granted granted Critical
Publication of KR0155608B1 publication Critical patent/KR0155608B1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/62Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyesters

Abstract

본 발명은 태양광선의 조사에 의해 축열 및 보온효과가 우수한 폴리에스테르의 제조방법에 관한 것으로, 디메틸테레프탈산과 에틸렌글리콜을 주성분으로 하여 폴리에스테르를 제조함에 있어서, 축열보온성이 우수하고 그 효과를 영구적으로 발현시키기 위해 원적외선 방사영역(파장 4∼25㎛) 분광 반사율이 65% 이상이 되는 세라믹 미분말을 폴리머 내에 균일하게 혼련시킴으로써 섬유로 제조시에 백도의 향상과 부드러운 촉감을 지닐 뿐만 아니라 원적외선을 방사하는 폴리에스테르 섬유의 제조방법에 관한 것이다.The present invention relates to a method for producing a polyester having excellent heat storage and thermal insulation effect by irradiation with sunlight, and in producing a polyester containing dimethyl terephthalic acid and ethylene glycol as a main component, the heat storage thermal insulation property is excellent and the effect is permanently produced. In order to express, the finely ceramic ceramic powder having a spectral reflectance of 65% or more in the far-infrared radiation region (wavelength of 4 to 25 µm) is uniformly kneaded in the polymer to improve the whiteness and soft touch as well as to emit far-infrared rays. It relates to a process for producing ester fibers.

Description

원적외선 방사성 폴리에스테르 섬유의 제조방법Method for producing far-infrared radioactive polyester fiber

본 발명은 섬유의 백도(whiteness)를 향상시키고 태양광에 의한 축열 및 보온효과를 거둘 수 있도록 세라믹 입자를 혼련시킨 폴리에스테르 섬유의 제조방법에 관한 것으로, 좀 더 구체적으로는 디메틸테레프탈산과 에틸렌글리콜을 주성분으로 하여 폴리에스테르 섬유를 제조함에 있어서, 축열 보온성이 우수하고 원적외선 방사영역(파장 4∼25㎛)분광 반사율이 65% 이상이 되는 원적외선 방사성 세라믹 미분말을 폴리머내에 균일하게 혼련시켜 배합한 축열 보온성 폴리에스테르 섬유의 제조방법에 관한 것이다.The present invention relates to a method for producing polyester fibers in which ceramic particles are kneaded to improve the whiteness of the fibers and to achieve heat storage and thermal insulation by sunlight. More specifically, the present invention relates to dimethyl terephthalic acid and ethylene glycol. In manufacturing polyester fiber as a main component, heat-retaining heat-retaining poly that is blended by uniformly kneading a far-infrared radiation ceramic fine powder having excellent heat-retaining heat retention and having a far-infrared radiation region (wavelength of 4 to 25 μm) having a spectroscopic reflectance of 65% or more. It relates to a process for producing ester fibers.

태양광 중에서 열효율이 우수한 가시광선과 근적외선을 세라믹 입자가 흡수해서 원적외선으로 변환하여 방출하며 이 방출되는 원적외선의 진동수가 세라믹입자가 가지고 있는 고유 진동계의 진동수와 가까워지면 진동계의 진폭이 증가하는 공명현상이 발생하게 되는데 이 공명현상에 의해 열에너지가 발생하게 되어 섬유의 온도를 상승시키게 된다. 또한, 세라믹입자는 인체에서 발산되는 8∼10㎛의 원적외선을 반사하여 체온을 보온해주는 기능을 동시에 행하게 된다. 따라서, 원적외선방사 기능을 갖는 본 발명 폴리에스테르 섬유는 스포오츠용 의류, 이외에 캐쥬얼용 의류, 패딩용 부직포 등 혹한 동절기용 의류로서 그 용도가 크게 기대된다.Resonance phenomenon that increases the amplitude of vibration system occurs when ceramic particle absorbs visible and near infrared rays with excellent thermal efficiency in sunlight and converts them into far infrared rays, and the frequency of emitted far infrared rays is close to the frequency of natural vibration system of ceramic particles. This resonance causes thermal energy to be generated, increasing the temperature of the fiber. In addition, the ceramic particles simultaneously perform the function of warming the body temperature by reflecting 8-10 μm far infrared rays emitted from the human body. Accordingly, the polyester fiber of the present invention having a far-infrared radiation function is expected to be greatly used for clothing for sports, as well as for winter clothing such as casual clothing and padded nonwoven fabric.

종래에, 탄화지르코늄 미립자를 배합한 축열보온성 섬유가 개발되어 (유럽특허 302141 A) 실용화되고 있으나, 이 섬유는 검은 회색으로 착색되어 있으므로 백도가 요구되는 용도나 염색을 해서 사용하는 용도로 사용할 수 없는 문제점이 있었다.Conventionally, heat storage thermal fiber containing zirconium carbide fine particles has been developed (European Patent 302141 A), but has been put to practical use. However, since this fiber is colored in black and gray, it cannot be used for applications requiring whiteness or dyeing. There was a problem.

따라서 착색개질제를 배합하여 섬유의 백도를 향상시키기 위한 방법으로 예를 들면, 착색개질제를 심부에 배합한 복합방사에 의한 섬유의 제조방법, 산화티탄 등의 백색안료를 다량 첨가하는 방법 등이 제안되었으나, 이러한 제조방법은 탄화지르코늄 미립자를 함유한 축열보온 섬유의 제조에 적용하더라도 축열보온성을 저하시킬 뿐이며 백도를 충분히 향상시키기에는 부족한 단점이 있었다.Therefore, as a method for improving the whiteness of the fiber by blending a color modifier, for example, a method of producing fiber by a composite spinning in which a color modifier is blended into the core, a method of adding a large amount of white pigment such as titanium oxide, etc. have been proposed. In addition, this manufacturing method has a disadvantage in that it is not enough to sufficiently improve the heat storage insulation and improve whiteness even when applied to the production of heat storage thermal fiber containing zirconium carbide fine particles.

한편, 일본특개평3-69675호에서 산화지르코늄, 산화실리콘, 산화알루미늄 등의 세라믹 미분말을 워터배스(water bath)공법에서 토탈 입자함량을 40wt%로 혼련하여 마스터 칩을 제조하고, 이를 레귤러 칩과 섞어서 방사함으로서 스테이플 화이버를 제조하는 기술이 개시된바 있다. 이 방법은 화이버의 백도는 양호하지만, 다량의 세라믹입자가 혼련되어 있어서 입자의 분산성이 불량할 뿐만 아니라 경도가 큰 입자들이 다량으로 섬유중에 혼련되어 있으므로 섬유의 촉감이 아주 불량하고 꺼칠꺼칠한 느낌을 주게되어 의류용으로 적용하기에는 어려움이 있다.On the other hand, in Japanese Patent Laid-Open No. 3-69675, a ceramic chip such as zirconium oxide, silicon oxide, and aluminum oxide is kneaded in a water bath method to prepare a master chip by mixing a total particle content of 40 wt% in a water bath method. Techniques for producing staple fibers by mixing and spinning have been disclosed. In this method, the whiteness of the fiber is good, but a large amount of ceramic particles are kneaded, so that not only the dispersibility of the particles is poor, but also the particles of high hardness are kneaded in the fiber in a large amount, and the feel of the fiber is very poor and gritty. There is a difficulty in applying for clothing.

따라서, 본 발명의 목적은 원적외선 방사성 폴리에스테르의 제조방법을 제공하는데 있다.Accordingly, it is an object of the present invention to provide a method for producing far-infrared radioactive polyester.

이에 본 발명자들은 상기와 같은 문제점을 해결하기 위하여 지속적으로 연구한 결과 섬유의 백도(whiteness)를 향상시키고 섬유의 촉감을 부드럽게 하는 동시에 태양광선의 조사에 의해 축열 및 보온효과가 우수하게 발현되는 원적외선 방사성 세라믹입자를 혼련시킨 폴리에스테르 섬유를 제조함으로써 본 발명을 완성하게 되었다.Accordingly, the present inventors have continuously studied to solve the above problems, and improve the whiteness of the fibers and soften the feel of the fibers, and at the same time, the far-infrared radioactive radiation that exhibits excellent heat storage and thermal insulation effect by irradiation with sunlight. The present invention has been completed by producing polyester fibers kneaded with ceramic particles.

본 발명을 좀 더 구체적으로 설명하면 다음과 같다.The present invention is described in more detail as follows.

디메틸테레프탈산과 에틸렌글리콜을 주성분으로 하여 폴리에스테르 섬유를 제조함에 있어서, 원적외선 방사 영역(λ=4∼25㎛)의 분광 반사율이 65% 이상인 원적외선 방사성 세라믹 미분말을 폴리머 내에 균일하게 혼련시킴을 특징으로 하는 원적외선 방사성 폴리에스테르의 제조방법에 관한 것이다.In preparing a polyester fiber mainly composed of dimethyl terephthalic acid and ethylene glycol, a finely divided far-infrared radioactive ceramic powder having a spectral reflectance of 65% or more in the far-infrared radiation region (λ = 4 to 25 µm) is uniformly kneaded in the polymer. It relates to a method for producing far-infrared radioactive polyester.

통상적으로 사용되고 있는 원적외선 방사성 세라믹 미분말로서는 ZrO2, Al2O3, BaSO4, SiO2, TiO2, MnO2, Fe2O3, CoO, CuO, ZrC, MgO, Cr2O3, ZrSiO4, K2O, SiC, ZrN 등이 있으나, 각 세라믹 입자마다 화학적 특성과 물리적 특성이 다르며 또한 원적외선 방사영역에도 차이가 있다.Commonly used far-infrared radioactive ceramic powders include ZrO 2 , Al 2 O 3 , BaSO 4 , SiO 2 , TiO 2 , MnO 2 , Fe 2 O 3 , CoO, CuO, ZrC, MgO, Cr 2 O 3 , ZrSiO 4 , Although there are K 2 O, SiC, ZrN, etc., each ceramic particle has different chemical and physical properties, and also has a difference in far-infrared radiation region.

본 발명자들은 여러번의 비교실험을 거쳐서 원적외선 방사영역(λ)이 4∼25㎛이고, 분광반사율이 65%이상인 ZrO2, SiO2, TiO2, ZrSiO4등을 선정하여 본 제품의 개발에 적용하였다. ZrO2와 TiO2는 원적외선 방사성이 우수하고 섬유의 색상 즉, 백도를 향상시킬 수 있고 SiO2, ZrSiO4는 원적외선 방사성이 우수하고 자외선 차단효과가 우수한 것이 특징이다.The present inventors selected ZrO 2 , SiO 2 , TiO 2 , ZrSiO 4 , which have a far infrared ray emission region (λ) of 4 to 25 μm and a spectral reflectance of 65% or more through several comparative experiments, and applied them to the development of the product. . ZrO 2 and TiO 2 have excellent far-infrared radiation and can improve the color of fiber, that is, whiteness. SiO 2 and ZrSiO 4 have far-infrared radiation and excellent UV blocking effect.

첨가 세라믹 미분말 입자의 입도 분포는 0.001∼1.0㎛이 바람직하고, 평균입경은 0.02㎛인 것이 좋다. 에틸렌글리콜에 의한 슬러리화 과정과 폴리머 중의 혼련공정에서 동일한 입자끼리 또는 타입자와의 응집발생이 없는 것이 필요한데 만일, 입도 분포가 0.001㎛ 보다 작으면 응집이 쉽게 일어날 가능성이 크며, 1.0㎛ 보다 크면 섬유의 촉감이 좋지 못할 뿐 아니라 섬유의 가공성이 불량하게 된다.The particle size distribution of the additive ceramic fine powder particles is preferably 0.001 to 1.0 m, and the average particle size is 0.02 m. In the slurrying process with ethylene glycol and the kneading process in the polymer, it is necessary that there is no agglomeration of the same particles or type groups. If the particle size distribution is smaller than 0.001 μm, the aggregation is likely to occur easily. Not only does not feel good, but also the processability of the fiber.

세라믹 미분말 분산성 향상을 위해 에틸렌글리콜 80% 이상을 용매로 하고 세라믹 미분말의 함유농도가 10.0∼20.0wt%인 슬러리를 제조하였으며, 이때의 슬러리화 공정은 RPM 2500 이상인 고속으로 교반하였고, 크기가 큰 입자와 이물질을 여과하기 위해서 2㎛, 5㎛, 10㎛의 필터(filter)를 이동용기(vessel) 사이에 설치하여 여과를 실시하였다.In order to improve dispersibility of ceramic fine powder, a slurry having 80% or more of ethylene glycol as a solvent and a concentration of 10.0 to 20.0 wt% of ceramic fine powder was prepared, and the slurrying process was stirred at a high speed of RPM 2500 or higher and large in size. In order to filter particles and foreign substances, a filter having a thickness of 2 μm, 5 μm, and 10 μm was installed between the moving vessels.

또한, 슬러리화하여 분산이 완료된 세라믹 미분말 용액은 폴리머내에 균일하게 분산시키기 위해 반응관으로 이송을 하게 되는데 이때 이송관의 형태 및 길이에 따라서 입자의 침전이 발생하게 되므로 가급적이면 이송관은 직선형태로 하였고, 상층에서 하층으로 용액이 이동되도록 하였으며, 그 길이는 10m 이내로 하였다.In addition, the slurry finely divided ceramic powder solution is transferred to the reaction tube to uniformly disperse in the polymer. At this time, since the precipitation of particles occurs according to the shape and length of the transfer tube, the transfer tube is preferably in the form of a straight line. The solution was allowed to move from the upper layer to the lower layer, and its length was within 10 m.

폴리머 중의 세라믹 미분말의 혼련 함량은 축열보온성 효과의 섬유의 촉감을 고려할 때 폴리머에 대하여 0.5∼9.0wt% 첨가하며 특히, 1.0∼6.0wt%의 첨가하는 것이 바람직하다. 또한, 폴리머 중에 혼련한 세라믹 미분말은 ZrO2+TiO2, ZrO2+TiO2+ SiO2, ZrSiO4+TiO2로 혼합하여서 첨가하되 그 혼합 비율은 ZrO230∼70%, ZrSiO430∼70%, SiO225∼45%, TiO225∼45%로 하여서 세라믹 미립자의 폴리머내에서의 혼련성, 섬유 제조공정, 섬유의 온도상승 효과 및 섬유의 촉감을 비교평가하였다.The kneading content of the ceramic fine powder in the polymer is added in an amount of 0.5 to 9.0 wt% with respect to the polymer in consideration of the touch of the fibers of the heat storage insulating effect, and particularly preferably in an amount of 1.0 to 6.0 wt%. In addition, the fine ceramic powder kneaded in the polymer is added by mixing ZrO 2 + TiO 2 , ZrO 2 + TiO 2 + SiO 2 , ZrSiO 4 + TiO 2, and the mixing ratio is 30 to 70% of ZrO 2, and 30 to 70 ZrSiO 4. %, SiO 2 25-45%, TiO 2 25-45%, and evaluated the kneading property of the ceramic fine particles in the polymer, the fiber manufacturing process, the temperature increase effect of the fiber and the feel of the fiber.

에틸렌글리콜에 의해 농도가 10∼20wt%인 2가지 이상이 혼합된 세라믹미립자의 슬러리는 에스테르 교환반응관과 중합반응관 어디에도 첨가하는 것이 가능하지만 세라믹 미립자의 물리적 특성으로 보아 가급적이면 저온에서 첨가하는 것이 입자 응집을 방지하는데 유리하다. 따라서, 에스테르 교환반응중 메탄올의 유출반응이 끝난 후인 반응관내 온도가 약 155∼200℃에서 세라믹미립자 슬러리를 첨가하였고, 또한 다량의 에틸렌글리콜이 첨가되어 반응관내 문제가 발생되는 것을 방지하기 위해서 첨가시간을 10∼15분 정도로 하였다. 이와 같이하여 세라믹 미립자의 분산성이 양호하고 백도가 우수한 폴리에스테르를 제조하였다.Slurries of ceramic fine particles mixed with two or more concentrations of 10 to 20 wt% by ethylene glycol can be added to either the transesterification tube or the polymerization tube. However, the physical properties of the ceramic fine particles make it possible to add the slurry at low temperatures. It is advantageous to prevent particle aggregation. Therefore, the ceramic particulate slurry was added at a temperature of about 155 to 200 ° C. after the distillation of methanol during the transesterification reaction, and a large amount of ethylene glycol was added to prevent the problem in the reaction tube. Was set to about 10 to 15 minutes. In this manner, a polyester having good dispersibility of ceramic fine particles and excellent whiteness was produced.

다음의 실시예 및 비교예는 본 발명을 좀 더 구체적으로 설명하는 것이지만, 본 발명의 범주를 한정하는 것은 아니다.The following examples and comparative examples illustrate the present invention more specifically, but do not limit the scope of the present invention.

[실시예 1]Example 1

디메틸테레프탈산과 에틸렌글리콜의 중축합 반응에 의해서 폴리에스테르를 제조함에 있어 원적외선 방사영역을 갖는 세라믹 미분말인 ZrO2와 TiO2입자를 58:42의 비율로 혼합하여 에틸렌글리콜에 농도가 18wt%인 슬러리를 제조하였다.In preparing the polyester by polycondensation reaction of dimethyl terephthalic acid and ethylene glycol, a slurry having a concentration of 18wt% in ethylene glycol was mixed by mixing ZrO 2 and TiO 2 particles, which are ceramic fine powders with far-infrared radiation, in a ratio of 58:42. Prepared.

슬러리를 제조할 때는 교반기를 약 2시간 정도 RPM 2500 이상의 고속으로 연속해서 교반해 주어서 세라믹 미분말이 충분하게 분산이 되도록 했다.In preparing the slurry, the stirrer was continuously stirred at a high speed of at least 2500 RPM for about 2 hours to sufficiently disperse the ceramic fine powder.

ZrO2와 TiO2의 입자의 입도 분포는 0.001∼0.6㎛인 것을 적용하였다. 세라믹 미분말 슬러리는 폴리머 대비하여 입자의 함량이 4.5wt%가 되도록 하여서 에스테르 교환반응의 메탄올 유출이 끝난 후인 반응관 온도가 175℃일 때 약 15분 동안 서서히 첨가를 하였다. 에스테르 교환반응 촉매로는 Mn(OAc)2500ppm과 Sb2O3300ppm을 첨가하였으며, 반응종료 온도를 290℃로 하였으며 반응시간은 약 3시간 10분 정도 소요되었다.The particle size distribution of the particles of ZrO 2 and TiO 2 was applied to the 0.001~0.6㎛. The ceramic fine powder slurry was gradually added for about 15 minutes when the reaction tube temperature was 175 ° C. after the end of the methanol exchange of the transesterification reaction so that the content of the particles was 4.5 wt% relative to the polymer. As the transesterification catalyst, 500 ppm of Mn (OAc) 2 and 300 ppm of Sb 2 O 3 were added. The reaction termination temperature was 290 ° C. and the reaction time was about 3 hours 10 minutes.

상기와 같이 제조된 폴리에스테르 칩을 수분율 40ppm 이하로 건조를 하여서 방사온도가 270∼285℃이고, 방사속도를 1850m/min으로 해서 미연신사를 제조한 후 연신공정에서 약 2.7배로 연신하여 섬도가 75데니어인 FY75/36의 필라멘트를 얻어 스키복으로 제조하였다. 물성평가는 폴리머 단계에서는 세라믹입자의 폴리머 내분산성(혼련성)을 평가하였고, 최종 제품인 스키복으로 직물의 촉감과 축열보온성을 평가하였다. 평가방법은 폴리머내 입자의 분산성은 전자현미경으로 플라즈마처리를 한 시료를 수천배로 확대하여 관찰하였으며 방사 및 연신작업성은 공정작업 자료를 근거로 하였고 섬유의 백도는 육안관찰 및 칼라매칭기를 사용하였고 축열보온성은 열화상측정기기를 사용하여 평가하였다. 직물의 촉감은 착용감과 부드러움성으로 평가를 하였는데 그 결과는 표 1에 기재하였다.The polyester chip prepared as described above was dried at a moisture content of 40 ppm or less, and the spinning temperature was 270 to 285 ° C., and an undrawn yarn was manufactured with a spinning speed of 1850 m / min. A filament of denier FY75 / 36 was obtained and manufactured in ski suit. In the polymer property evaluation, polymer dispersion resistance (kneading) of ceramic particles was evaluated at the polymer stage, and the touch and heat storage insulation of the fabric were evaluated by ski suit as the final product. In the evaluation method, the dispersibility of the particles in the polymer was observed by magnification of the sample subjected to plasma treatment by electron microscope thousands of times, and the spinning and drawing work was based on the process data, and the whiteness of the fiber was visual observation and color matching machine. Was evaluated using a thermal imager. The texture of the fabric was evaluated by the fit and softness, the results are shown in Table 1.

또한 상기 제조된 칩으로 스테이플 화이버인 1.2데니어×38㎜ 원면을 제조하여서 T 100의 자켓용 원단을 제조한 후 코트를 만들어서 평가하였다. 평가 내용 및 평가방법은 스키복은 동일하게 진행하였으며, 그 결과를 표 1에 상세하게 표기 하였다.In addition, 1.2 denier x 38 mm of staple fibers were prepared using the prepared chip, and a fabric for T 100 was manufactured to evaluate a fabric. The evaluation contents and evaluation methods were the same for ski suits, and the results are shown in Table 1 in detail.

[실시예 2]Example 2

상기 실시예 1에서 원적외선 방사영역을 갖는 세라믹 미분말인 ZrSiO4와 TiO2입자를 58:42의 비율로 혼합하여 에틸렌글리콜에 농도가 18wt%인 슬러리를 제조하였다. ZrO2와 TiO2의 입자의 입도 분포는 0.01∼1.0㎛인 것을 적용하였다.In Example 1, ZrSiO 4 and TiO 2 particles, which are ceramic fine powders having far-infrared radiation regions, were mixed at a ratio of 58:42 to prepare a slurry having a concentration of 18 wt% in ethylene glycol. The particle size distribution of the particles of ZrO 2 and TiO 2 was applied to the 0.01~1.0㎛.

[실시예 3]Example 3

상기 실시예 1에서 원적외선 방사영역을 갖는 세라믹 미분말인 ZrO2, TiO2, SiO2입자를 30:40:30의 비율로 혼합하여 에틸렌글리콜에 농도가 18wt%인 슬러리를 제조하였다. ZrO2와 TiO2의 입자의 입도 분포는 0.005∼1.0㎛인 것을 적용하였다.In Example 1, ZrO 2 , TiO 2 , and SiO 2 particles, which are ceramic fine powders having far-infrared radiation regions, were mixed in a ratio of 30:40:30 to prepare a slurry having a concentration of 18 wt% in ethylene glycol. The particle size distribution of the particles of ZrO 2 and TiO 2 was applied to the 0.005~1.0㎛.

[비교예 1]Comparative Example 1

상기 실시예 1에서 원적외선 방사영역을 갖는 세라믹 미분말인 ZrO2및 TiO2입자를 50:50의 비율로 혼합하여서 에틸렌글리콜에 농도가 18wt%인 슬러리를 제조하였다. 세라믹 미분말 슬러리는 폴리머 대비하여 입자의 함량이 7.3wt%가 되도록 하여 에스테르 교환반응의 초기중합이 시작 직전인 반응관 온도가 232℃일 때 약 15분 동안 서서히 첨가를 하였다.In Example 1, a slurry having a concentration of 18 wt% in ethylene glycol was prepared by mixing ZrO 2 and TiO 2 particles, which are ceramic fine powders having a far-infrared radiation region, in a ratio of 50:50. The fine ceramic slurry was gradually added for about 15 minutes when the content of the particles was 7.3 wt% relative to the polymer, and the reaction tube temperature immediately before the initial polymerization of the transesterification reaction was 232 ° C.

[비교예 2]Comparative Example 2

상기 실시예 2에서 원적외선 방사영역을 갖는 세라믹 미분말인 ZrSiO4및 TiO2입자를 70:30의 비율로 혼합하여서 에틸렌글리콜에 농도가 18wt%인 슬러리를 제조하였다. 세라믹 미분말 슬러리는 폴리머 대비하여 입자의 함량이 7.3wt%가 되도록 하여 에스테르 교환반응의 초기중합이 시작 직전인 반응관 온도가 232℃일 때 약 15분 동안 서서히 첨가를 하였다.In Example 2, ZrSiO 4 and TiO 2 particles, which are ceramic fine powders having far-infrared radiation regions, were mixed in a ratio of 70:30 to prepare a slurry having a concentration of 18 wt% in ethylene glycol. The fine ceramic slurry was gradually added for about 15 minutes when the content of the particles was 7.3 wt% relative to the polymer, and the reaction tube temperature immediately before the initial polymerization of the transesterification reaction was 232 ° C.

[비교예 3]Comparative Example 3

상기 실시예 3에서 원적외선 방사영역을 갖는 세라믹 미분말인 ZrO2, TiO2, SiO2입자를 30:50:20의 비율로 혼합하여 에틸렌글리콜에 농도가 wt%인 슬러리를 제조하였다. 세라믹 미분말 슬러리는 폴리머 대비하여 입자의 함량이 7.3wt%가 되도록 하여서 에스테르 교환반응의 초기중합이 시작 직전인 반응관의 온도가 232℃일 때 약 15분 동안 첨가를 하였다.In Example 3, ZrO 2 , TiO 2 , and SiO 2 particles, which are ceramic fine powders having far-infrared radiation regions, were mixed in a ratio of 30:50:20 to prepare a slurry having a concentration of wt% in ethylene glycol. The fine ceramic slurry was added for about 15 minutes when the temperature of the reaction tube immediately before the initial polymerization of the transesterification reaction was 232 ° C. such that the content of particles was 7.3 wt% relative to the polymer.

※ 축열보온성 평가는 일반 원사 또는 원면을 사용한 스키복 및 코트와 대비하여 온도가 상승된 효과를 나타내고 있음.※ The heat storage insulation evaluation shows the effect of temperature increase compared to ski clothes and coats using ordinary yarn or cotton.

◎ : 양호, ○ : 보통, × : 불량◎: Good, ○: Normal, ×: Poor

Claims (3)

디메틸테레프탈산과 에틸렌글리콜을 주성분으로 하여 폴리에스테르를 제조함에 있어서, 원적외선 방사 영역(λ=4∼25㎛)의 분광 반사율이 65% 이상인 원적외선 방사성 세라믹 미분말을 적어도 2종 이상 혼합사용하되, 폴리머에 대하여 0.5∼9.0중량% 첨가하고 고속믹서기를 이용하여 에틸렌글리콜에 슬러리화 한 다음 에스테르 반응관에 투입하여 혼련함을 특징으로 하는 원적외선 방사성 폴리에스테르 섬유의 제조방법.In preparing a polyester mainly composed of dimethyl terephthalic acid and ethylene glycol, at least two or more kinds of finely divided far-infrared radioactive ceramic powders having a spectral reflectance of 65% or more in the far-infrared radiation region (λ = 4 to 25 µm) may be mixed and used. A method for producing far-infrared radioactive polyester fibers, characterized in that 0.5 to 9.0% by weight is added and slurried in ethylene glycol using a high speed mixer, followed by mixing into an ester reaction tube. 제1항에 있어서, 원적외선 방사성 세라믹 미분말은 입자크기가 0.001∼1.0㎛이고, 평균입경이 0.02㎛인 ZrO2, ZrSiO4, SiO2, TiO2를 사용함을 특징으로 하는 원적외선 방사성 폴리에스테르 섬유의 제조방법.The method of claim 1, wherein the far-infrared radioactive ceramic fine powder is ZrO 2 , ZrSiO 4 , SiO 2 , TiO 2 having a particle size of 0.001 ~ 1.0㎛, the average particle diameter of 0.02㎛ prepared far-infrared radiation polyester fiber Way. 제1항에 또는 제2항에 있어서, 원적외선 방사성 세라믹 미분말의 첨가량은 ZrO230∼70%, ZrSiO430∼70%, SiO225∼45%, TiO225∼45%로 하여 2종 이상을 혼합사용함을 특징으로 하는 원적외선 방사성 폴리에스테르 섬유의 제조방법.The amount of the far-infrared radioactive ceramic fine powder added according to claim 1 or 2 is 2 or more types of ZrO 2 30 to 70%, ZrSiO 4 30 to 70%, SiO 2 25 to 45%, and TiO 2 25 to 45%. Method for producing a far-infrared radioactive polyester fiber, characterized in that the mixed use.
KR1019950020757A 1995-07-14 1995-07-14 The preparation of far-infrared radiating polyester fiber KR0155608B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1019950020757A KR0155608B1 (en) 1995-07-14 1995-07-14 The preparation of far-infrared radiating polyester fiber
CN96100417A CN1140770A (en) 1995-07-14 1996-01-09 Method for manufacturing far infrared-radiating polyester fibers
GB9601245A GB2303375B (en) 1995-07-14 1996-01-22 Method for manufacturing far infrared-radiating polyester fibers
DE19606266A DE19606266C2 (en) 1995-07-14 1996-02-21 Process for the production of far infrared radiating polyester fibers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019950020757A KR0155608B1 (en) 1995-07-14 1995-07-14 The preparation of far-infrared radiating polyester fiber

Publications (2)

Publication Number Publication Date
KR970006375A KR970006375A (en) 1997-02-19
KR0155608B1 true KR0155608B1 (en) 1998-12-01

Family

ID=19420625

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019950020757A KR0155608B1 (en) 1995-07-14 1995-07-14 The preparation of far-infrared radiating polyester fiber

Country Status (4)

Country Link
KR (1) KR0155608B1 (en)
CN (1) CN1140770A (en)
DE (1) DE19606266C2 (en)
GB (1) GB2303375B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102943314A (en) * 2012-11-22 2013-02-27 吴江江旭纺织有限公司 Method for preparing far-infrared textile through full granulation method

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2763965B1 (en) * 1997-05-28 1999-07-30 Seok Mi Soo ELVAN-BASED FIBROUS PRODUCT
US6797377B1 (en) 1998-06-30 2004-09-28 Kimberly-Clark Worldwide, Inc. Cloth-like nonwoven webs made from thermoplastic polymers
JP2002121270A (en) * 2000-10-16 2002-04-23 Nippon Aerosil Co Ltd Superfine particulate ceramic powder aggregate- dispersively containing glycol raw material which enables production of polyester molded article having high strength and high transparency
EP1197588B1 (en) * 2000-10-16 2007-02-28 Degussa GmbH The kinds of glycols starting material containing dispersed superfine ceramic powders coagulates capable of forming polyester molded body having high mechanical strength and transparency
CN100359053C (en) * 2003-11-27 2008-01-02 厦门翔鹭化纤股份有限公司 Processing method for producing full dull island fiber FDY/POY based on general island fiber production apparatus
GB2404023B (en) 2004-07-02 2005-07-06 Cozart Bioscience Ltd Delta-9-tetrahydrocannabinol detection method
EP2476721B1 (en) 2007-12-14 2016-02-24 Rhodia Poliamida E Especialidades Ltda Use of an item made of a polymer composition to reduce muscle fatigue
US7988804B2 (en) 2008-05-02 2011-08-02 Corning Incorporated Material and method for bonding zircon blocks
IL218083A0 (en) 2012-02-13 2012-03-29 Nilit Ltd Polyamide fabric enhancing body warming
CN102677204A (en) * 2012-05-14 2012-09-19 毛盈军 Fibers capable of warming to emit heat naturally under humid condition, preparation method and fabrics
CN102677205A (en) * 2012-05-14 2012-09-19 毛盈军 Fiber warming and heating naturally under moist condition, preparation method and textile
CN102677206A (en) * 2012-05-14 2012-09-19 毛盈军 Fiber warming and heating naturally under moist condition, preparation method and textile
CN102851772A (en) * 2012-09-10 2013-01-02 昆山市周市惠宏服装厂 Masterbatch method for manufacturing heat-storing temperature-regulating fiber
ES2492215B1 (en) * 2013-02-06 2015-06-29 Jesús CANDEL FABREGAS PHOTOCATALYTIC AND INFRARED EMISSION CERAMIC POWDER, APPLICABLE TO TEXTILE FIBERS AND PROCEDURE FOR OBTAINING THIS POWDER
CN103382584B (en) * 2013-08-06 2015-10-28 上海婉静纺织科技有限公司 Anion terylene fiber and preparation method thereof
CN103451765A (en) * 2013-08-15 2013-12-18 苏州龙杰特种纤维股份有限公司 Method for preparing far-infrared radiation polyester fiber
CN103467929B (en) * 2013-09-13 2016-03-23 江苏启弘新材料科技有限公司 Glittering silk functional agglomerate and preparation method thereof
CN103522675A (en) * 2013-09-29 2014-01-22 吴江市凌通纺织整理有限公司 Multifunctional infrared thermal fabric
CN103643376A (en) * 2013-11-28 2014-03-19 苏州工业园区友顺制衣厂 Blended far-infrared fiber fabric
TWI458683B (en) * 2014-07-08 2014-11-01 Fengyang Production Co Ltd Sodalite-containing composition and polyester composite
CN104277469A (en) * 2014-09-09 2015-01-14 安徽坤城木艺有限公司 Wood fiber capable of radiating far-infrared rays and manufacturing method thereof
KR101623268B1 (en) * 2014-09-26 2016-06-01 주식회사 효성 Polyester fiber having heat storage and conserving property and method for manufacturing the same
CN104988594B (en) * 2015-01-16 2017-09-29 浙江真北纺织新材料研究院有限公司 Discharge the preparation method of anion, far infrared and fire-retardant composite functional polyester fiber
CN108611694A (en) * 2018-06-08 2018-10-02 佛山市南海区佳妍内衣有限公司 Fabric with skin makeup antibacterial functions
CN109137129B (en) * 2018-08-16 2021-08-10 王泉泉 High-light-transmittance and adjustable-refractive-index polyester fiber prepared by organic cadmium carboxylate and preparation method thereof
CN109161039B (en) * 2018-08-16 2021-09-21 王泉泉 High-light-transmittance and adjustable-refractive-index polyester film prepared from organic barium carboxylate and preparation method thereof
CN109112664B (en) * 2018-08-16 2021-06-15 上海环谷新材料科技发展有限公司 Polyester fiber prepared from organic zirconium carboxylate and having high light transmittance and adjustable refractive index and preparation method thereof
CN109112663B (en) * 2018-08-16 2021-06-15 上海环谷新材料科技发展有限公司 High-light-transmittance and adjustable-refractive-index polyester fiber prepared from organic barium carboxylate and preparation method thereof
CN108914323A (en) * 2018-09-03 2018-11-30 广州巨枫科技有限公司 A kind of window curtain fabric that privacy is good
CN108903069A (en) * 2018-09-03 2018-11-30 广州巨枫科技有限公司 Brassiere with privacy protection function
CN109163465A (en) * 2018-09-03 2019-01-08 广州巨枫科技有限公司 Solar water heater water tank based on thermal insulation air bag
CN109295529A (en) * 2018-09-03 2019-02-01 广州巨枫科技有限公司 It can prevent the polyester fiber of infrared perspective
CN111109963B (en) 2018-10-30 2021-09-24 绿能奈米科技有限公司 Bedding structure with non-power energy layer and far infrared fiber
TWI754782B (en) * 2018-10-30 2022-02-11 綠能奈米科技有限公司 Far-infrared fibers to make quilt structure with non-powered energy layer and uses of the same
ES2773604A1 (en) 2019-01-11 2020-07-13 Bionox Group Spain S L TEXTILE MATERIAL WITH BIOCERAMIC MICROPARTICLES THAT EMITS IN THE FAR INFRARED IN FOUR CONCRETE WAVE LENGTHS SIMULTANEOUSLY (Machine-translation by Google Translate, not legally binding)
ES2778948B2 (en) 2019-02-12 2021-08-13 Univ Valladolid INDUSTRIAL METHOD OF SYNTHESIS OF METAL NANOPARTICLES OF GRADUABLE SIZE

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63152413A (en) * 1986-12-15 1988-06-24 Nobuhide Maeda Composite fiber radiating far infrared radiation
ATE72460T1 (en) * 1987-08-07 1992-02-15 Descente Ltd SELECTIVE SOLAR HEAT ABSORBING FIBROUS MATERIAL.
JPH01280016A (en) * 1988-04-26 1989-11-10 Kuraray Co Ltd Production of polyester fiber emitting far-infrared ray
JPH0369675A (en) * 1989-08-07 1991-03-26 Teijin Ltd Wear-resistant far infrared ray-radiating synthetic fiber
JPH03190990A (en) * 1989-12-20 1991-08-20 Toshio Komuro Powder for radiation of infrared ray-weak energy and synthetic fiber containing same powder
JP2585167B2 (en) * 1992-07-16 1997-02-26 スワニー株式会社 Underwear made of metal-containing fibers
JP2585166B2 (en) * 1992-07-16 1997-02-26 スワニー株式会社 Socks made of metal-containing fibers

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102943314A (en) * 2012-11-22 2013-02-27 吴江江旭纺织有限公司 Method for preparing far-infrared textile through full granulation method

Also Published As

Publication number Publication date
GB2303375A (en) 1997-02-19
DE19606266C2 (en) 2002-06-13
CN1140770A (en) 1997-01-22
DE19606266A1 (en) 1997-01-16
GB2303375B (en) 1999-08-04
KR970006375A (en) 1997-02-19
GB9601245D0 (en) 1996-03-20

Similar Documents

Publication Publication Date Title
KR0155608B1 (en) The preparation of far-infrared radiating polyester fiber
CN1552764A (en) Method for preparing uvioresistant polyester by nanometer titania in situ
KR20020019535A (en) Polyester fiber and method for producing a polyester composition
KR101526252B1 (en) Polyester fiber for artificial hair, head ornamental product comprising same, and method for producing same
JP7209547B2 (en) UV shielding polyester fiber
Onar et al. Low‐temperature, sol–gel‐synthesized, silver‐doped titanium oxide coatings to improve ultraviolet‐blocking properties for cotton fabrics
JP2007146306A (en) Artificial-hair fiber
KR0120017B1 (en) Method for manufacturing polyester fiber
KR950013481B1 (en) Polyester fiber having excellent ultraviolet screening and cooling effect
CN106400180B (en) A kind of manufacturing method of polyisocyanate multifunctional terylene low stretch yarn
JP2013237956A (en) Heat-shield composite fiber giving superior cold feeling
JPS6330407B2 (en)
JP3410515B2 (en) 2-layer spun yarn
KR101292081B1 (en) Polyester fiber composition having excellent tactility and drape, and preparing thereof
JPH0340124B2 (en)
JP3172589B2 (en) UV-shielding polyester fiber with good coloring
TWI458683B (en) Sodalite-containing composition and polyester composite
KR830002900B1 (en) Polyester dope dyed fiber avoidable from ultrared rays
CN105273171A (en) Composition containing sodalite and polyester composite
JPH01280016A (en) Production of polyester fiber emitting far-infrared ray
KR930003221B1 (en) Producing method of high-density polyester fiber
CN103451765A (en) Method for preparing far-infrared radiation polyester fiber
KR940004694B1 (en) Method of manufacturing polyester fiber shutted from ultra-violet rays
KR920007108B1 (en) Producing process of polyester fiber
JPH089805B2 (en) Far infrared radiation polyester fiber

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee