JPH01313926A - Vertical type plasma cvd device - Google Patents

Vertical type plasma cvd device

Info

Publication number
JPH01313926A
JPH01313926A JP14622188A JP14622188A JPH01313926A JP H01313926 A JPH01313926 A JP H01313926A JP 14622188 A JP14622188 A JP 14622188A JP 14622188 A JP14622188 A JP 14622188A JP H01313926 A JPH01313926 A JP H01313926A
Authority
JP
Japan
Prior art keywords
susceptor
heat
pipe
substrate
plasma cvd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14622188A
Other languages
Japanese (ja)
Inventor
Noriomi Miyoshi
紀臣 三好
Akira Wada
晃 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP14622188A priority Critical patent/JPH01313926A/en
Publication of JPH01313926A publication Critical patent/JPH01313926A/en
Priority to US07/641,546 priority patent/US5184663A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To shorten the time of the temperature rise of a substrate while equalizing temperature distribution by casting a metallic wire or a metallic band generating heat by conduction into a heat transfer metallic material and constituting a susceptor as a massive heating element with both parallel surfaces on which the substrates are fixed. CONSTITUTION:A sheathed heater 14 is wound in a coil shape and formed so as to obtain a specified resistance value, the sheathed heater 14 is buried in an insulated state from a pipe through aluminum oxide powder into a stainless pipe, and the end sections of nichrome wires are insulated from the stainless pipe at both end sections of the pipe while the end sections of the pipe are sealed in an approximately airtignt manner. A pipe heat source in which a terminal 14a is provided is made to wind repeatedly in parallel to form a heat-generating section, the snaking pipy heat source, the sheathed heater 14, is buried into the ingot 15 of aluminum, and a susceptor 20 is organized as a flat square box-shaped massive heating element. Accordingly, the heating efficiency of the susceptor 20, which must transfer heat to a substrate 4, is improved remarkably, the time of the temperature rise of the substrate is shortened largely, and the temperature distribution on a heating surface is equalized approximately completely.

Description

【発明の詳細な説明】 〔産業上の利用分腎〕 この発明は、基板の被成膜面を鉛直方向にして膜形成を
行う縦型プラズマCVD装置、詳しくは、平行に対向し
反対向面側にそれぞれ薄膜を形成すべき基板が密着状態
に固設される鉛直面の間に発熱体を備えたサセプタが、
順に隣り合い内部でプラズマCVD法による膜形成が行
われる成膜室間を順に移動して前記基板に順次新たな薄
膜を多層に形成させて行く縦型プラズマCVD装置にお
ける前記サセプタの昇温構造に関する。
[Detailed Description of the Invention] [Industrial Applications] This invention relates to a vertical plasma CVD apparatus that forms a film with the surface of the substrate to be filmed vertically. A susceptor is provided with a heating element between the vertical surfaces on which the substrates on which thin films are to be formed are closely fixed.
The present invention relates to a temperature increasing structure of the susceptor in a vertical plasma CVD apparatus that sequentially moves between adjacent film forming chambers in which film formation by plasma CVD is performed to sequentially form new thin films in multiple layers on the substrate. .

〔従来の技術〕[Conventional technology]

第4図に従来のサセプタの構造例を示す。面の方向を鉛
直にして平行に対向し上端縁がコ字状の結合部材2aを
介して結合された金属板2の外側の面にそれぞれ密着状
態に固設された基Fi4を背面側から加熱、昇温するた
めの棒状の赤外線ランプ3が複数、金属板2の対向面の
間に水平にかつ第5図に示すように鉛直方向に間隔をお
いて配され、それぞれの赤外線ランプ3の両端部は、成
膜室1(第4図)の外部から給電される帯状の端子板に
結合されている。なお、第4,5図において、符号2b
は前記コ字状結合部材2aの中央辺上方に該辺と一体的
に形成された屈曲辺縁であって成膜室側の9紙面に垂直
方向に配列された水平軸まわりに回転自在なフリーロー
ラ2Cに懸架され、成膜室1の長孔状開口1a位置に上
部空間1bと成膜空間1cとにわたって配された1図示
されない搬送装置と係合して紙面に垂直な移動力を受け
る。
FIG. 4 shows an example of the structure of a conventional susceptor. The bases Fi4, which are fixed in close contact with the outer surfaces of the metal plates 2, which are parallel to each other with their surfaces facing vertically and are connected via a coupling member 2a having a U-shaped upper edge, are heated from the back side. A plurality of rod-shaped infrared lamps 3 for raising the temperature are arranged horizontally between the opposing surfaces of the metal plate 2 and at intervals in the vertical direction as shown in FIG. The portion is connected to a strip-shaped terminal plate that is supplied with power from outside the film forming chamber 1 (FIG. 4). In addition, in FIGS. 4 and 5, the reference numeral 2b
is a bent edge formed above the center side of the U-shaped coupling member 2a and integrally with the side, and is freely rotatable around a horizontal axis arranged perpendicular to the plane of the paper on the side of the film forming chamber. The roller 2C is suspended by a roller 2C, and is engaged with a transport device (not shown) disposed at the elongated opening 1a of the film forming chamber 1 across the upper space 1b and the film forming space 1c, and receives a moving force perpendicular to the plane of the paper.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

このように構成されたサセプタの昇温構造の問題点は次
の通りである。すなわち、平行に対向している金属板2
にアルミやステンレスのような金属材を用いた場合、金
属材表面の光沢による赤外線の反射率が大きく、赤外線
ランプの容量や本数を増してもなかなか温度があがらず
、基板が所望の温度に到達するのに長時間を要し、成膜
工程間の時間間隔すなわちタクトタイムが長くなり、薄
膜形成のための時間が全製造工程時間中の大きな割合を
占める半導体製造の生産性に支障を生ずるという問題点
があった。しかも、赤外線ランプの間隔配置や、金属材
表面の部分的な反射率の差などにより金属板2の対向空
間の温度分布を均一化することが非常に困難であり、こ
れに伴い基板面の温度分布が不均一となり、従来のプラ
ズマCVD装置では均一なIIQ厚の形成が困難であっ
た。
The problems with the temperature raising structure of the susceptor constructed in this way are as follows. In other words, metal plates 2 facing parallel to each other
When a metal material such as aluminum or stainless steel is used, the gloss of the metal surface has a high reflectance of infrared rays, and even if the capacity and number of infrared lamps are increased, the temperature does not rise easily, making it difficult for the board to reach the desired temperature. It takes a long time to complete the process, and the time interval between film-forming processes, or takt time, becomes long, which hinders the productivity of semiconductor manufacturing, where the time required to form a thin film accounts for a large proportion of the total manufacturing process time. There was a problem. Moreover, it is extremely difficult to equalize the temperature distribution in the space facing the metal plate 2 due to the spacing of the infrared lamps and differences in local reflectance on the surface of the metal material. The distribution becomes non-uniform, making it difficult to form a uniform IIQ thickness using conventional plasma CVD equipment.

この発明の目的は、基板の昇温時間を短縮することがで
きかつ温度分布も均一ならしめうる。昇温構造の簡単化
されたサセプタを有する縦型プラズマCVD装置を提供
することである。
An object of the present invention is to be able to shorten the heating time of a substrate and to make the temperature distribution uniform. An object of the present invention is to provide a vertical plasma CVD apparatus having a susceptor with a simplified temperature raising structure.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題を解決するために、この発明によれば、平行に
対向し反対向面側にそれぞれ薄膜を形成すべき基板が密
着状態に固設される鉛直面の間に発熱体を備えたサセプ
タが、順に隣り合い内部でプラズマCVD法による膜形
成が行われる成膜室間を順に移動して前記基板に順次新
たな薄膜を多層に形成させて行く縦型プラズマCVD装
置における前記サセプタを、通電により発熱する金属線
または金属帯を伝熱性金属材中に鋳込んでなり前記基板
が固設される平行両面を備えた塊状発熱体として構成す
るものとする。
In order to solve the above problems, according to the present invention, a susceptor is provided with a heating element between vertical surfaces facing in parallel and on which substrates on which thin films are to be formed are closely fixed. By energizing the susceptor in a vertical plasma CVD apparatus, the susceptor is sequentially moved between adjacent film forming chambers in which film formation is performed by the plasma CVD method to sequentially form new thin films in multiple layers on the substrate. The heat-generating metal wire or band is cast into a heat-conductive metal material, and the heat-generating body is constructed as a block-like heat-generating body having parallel surfaces to which the substrate is fixedly attached.

〔作用〕[Effect]

サセプタをこのように構成することにより、発熱体とし
ての金属線または金属帯に外部の電源から供給された熱
エネルギはすべてこれを鋳込む伝熱性金属材に伝達され
、基板に熱を伝達すべきサセプタの加熱効率が著しく高
くなる。しかもこのように金属線や金属帯を鋳込んだ伝
熱性金属材は、基板への伝熱面の面方向に沿う肉厚が厚
くなるから、金属線や金属帯が間隔をおいて平行に往復
を操り返しながら蛇行する発熱部位を形成していても、
伝熱面に近づくにつれ温度分布の不均一が急速にならさ
れて行き、伝熱面では面内の温度分布が均一化される。
By configuring the susceptor in this way, all of the heat energy supplied from an external power source to the metal wire or metal strip as a heating element is transferred to the heat conductive metal material into which it is cast, and the heat should be transferred to the substrate. The heating efficiency of the susceptor is significantly increased. Moreover, the heat conductive metal material into which metal wires and metal strips are cast has a thicker wall along the surface direction of the heat transfer surface to the substrate, so the metal wires and metal strips reciprocate in parallel at intervals. Even if it forms a meandering heating area while manipulating the
As it approaches the heat transfer surface, the non-uniformity of the temperature distribution is quickly smoothed out, and the in-plane temperature distribution becomes uniform at the heat transfer surface.

〔実施例〕〔Example〕

第1図および第2図に本発明の一実施例を示す。 An embodiment of the present invention is shown in FIGS. 1 and 2. FIG.

図中、第4図および第5図と同一の部材には同一符号を
付し、説明を省略する。成膜室l内には薄膜が形成され
る基板4と平行に対向し、成膜室1内に導入された成膜
原料ガスを前記対向空間内でプラズマ化する電掻板11
が成膜室1の内壁に絶縁支持部材12を介して絶縁状態
に支持されるとともに絶縁筒13を介して成膜室lから
絶縁状態に引き出され、周波数が通常13゜56MH2
のラジオ周波数を有する高周波型tA19に接続されて
いる。
In the figure, the same members as in FIGS. 4 and 5 are denoted by the same reference numerals, and explanations thereof will be omitted. Inside the film forming chamber 1, there is an electric scraping plate 11 facing parallel to the substrate 4 on which a thin film is to be formed, and converting the film forming raw material gas introduced into the film forming chamber 1 into plasma in the opposing space.
is supported in an insulating state on the inner wall of the film forming chamber 1 via an insulating support member 12, and is drawn out from the film forming chamber 1 in an insulating state via an insulating cylinder 13, and the frequency is normally 13°56 MH2.
It is connected to a high frequency type tA19 having a radio frequency of .

ところで、成膜室上方のローラ6に吊り下げられ外部の
駆動系24により第1図において紙面に垂直方向に搬送
されるサセプタ20は、シーズヒータ 14すなわち通
電により発熱する金属線としてニクロム線をコイル状に
巻いて所定の抵抗値に形成し、これをステンレスパイプ
中に耐熱性vA縁動物質ある酸化アルミ粉末を介してパ
イプから絶縁状態に埋め込み、パイプ両端部に、ニクロ
ム線端部をステンレスパイプから絶縁するとともにパイ
プ端部をほぼ気密に封止する。セラミンクスからなる封
止部材を備えた引出し端子14aが設けられたパイプ状
熱源を平行に繰返し蛇行させて発熱部位を形成し、この
蛇行するパイプ状熱源すなわちシーズヒータ14を熱の
良導体であるアルミのインボッ) 15中に埋め込んだ
、扁平な方形箱状の塊状発熱体として構成されている。
By the way, the susceptor 20, which is suspended from a roller 6 above the film forming chamber and is conveyed in a direction perpendicular to the plane of the paper in FIG. This is wrapped into a shape to form a predetermined resistance value, and it is embedded in a stainless steel pipe insulated from the pipe through aluminum oxide powder, which is a heat-resistant material. The end of the pipe is almost hermetically sealed. A pipe-shaped heat source provided with a lead-out terminal 14a equipped with a sealing member made of ceramics is meandered repeatedly in parallel to form a heat generating area, and this meandering pipe-shaped heat source, that is, the sheathed heater 14, is made of aluminum, which is a good conductor of heat. It is constructed as a flat, rectangular box-shaped block heating element that is embedded in the inboard (15).

インゴット15の下方には、シーズヒータ14の引出し
端子14aをインゴット 15から絶縁状態に該インゴ
ット15に固定するための□固定部15aが形成され、
ブッシング16の頂部に可撓導電板を用いて形成された
摺動接触面にシーズヒータの引出し端子14aを接触さ
せている。インゴット 15にはさらにその側面にサー
モスタット17が取り付けられ、成膜室1外部からのイ
ンゴット15の温度の読取りと、読取り温度によるイン
ゴット 15の加熱電#18の出力調整可能に成膜室1
外部の制御系(図示せず)が構成されている。なお、図
において、21 は真空ポンプであり、成膜室1内に導
入される成膜原料ガスを排気しつつ成膜室I内を所定の
真空圧に保つ役目を果たす。
A fixing part 15a is formed below the ingot 15 for fixing the pull-out terminal 14a of the sheathed heater 14 to the ingot 15 in an insulated state,
A sliding contact surface formed using a flexible conductive plate on the top of the bushing 16 is brought into contact with a pull-out terminal 14a of the sheathed heater. A thermostat 17 is further attached to the side of the ingot 15, and it is possible to read the temperature of the ingot 15 from outside the film forming chamber 1 and adjust the output of the heating electric current #18 of the ingot 15 according to the read temperature.
An external control system (not shown) is configured. In the figure, reference numeral 21 denotes a vacuum pump, which serves to maintain the inside of the film forming chamber I at a predetermined vacuum pressure while evacuating the film forming raw material gas introduced into the film forming chamber 1.

サセプタ20をこのように構成すると、シーズヒータ1
4が平行に繰返し蛇行して面状に形成した発熱部位から
基板4への伝熱面までのインゴット15の肉厚Tが厚く
なり、発熱部位における紙面上下方向の温度分布の不均
一は伝熱面に近づくにつれて小さくなり、伝熱面では面
内の温度分布はほぼ完全に均一となる。
When the susceptor 20 is configured in this way, the sheathed heater 1
The thickness T of the ingot 15 from the heat-generating area formed in a planar shape by meandering repeatedly in parallel to the heat transfer surface to the substrate 4 increases, and the uneven temperature distribution in the vertical direction of the paper at the heat-generating area is due to heat transfer. It becomes smaller as it approaches the surface, and on the heat transfer surface, the in-plane temperature distribution becomes almost completely uniform.

第3図はこのように構成されたサセプタ20が移動する
縦型プラズマCVD装置の正面図である。
FIG. 3 is a front view of a vertical plasma CVD apparatus in which the susceptor 20 configured as described above moves.

ローラ6が水平方向に間隔をおいて並ぶローラ列に吊り
下げられたサセプタ20は、前段の成膜室lにおける成
膜完了後、図示されない搬送駆動機構により矢印の方向
に移動して後段の成膜室1に入り、成膜室1内所定位置
に到達すると、インゴット 15下方の固定部15aか
ら突出するシーズヒータの引出し端子14aが成膜室l
側のブッシング16(第1図)の頂部に可撓導電板を用
いて形成されている摺動接触面に該導電板を撓ませなか
ら摺動接触し、加熱電m t8に接続される。また、こ
こには特に図示しないが、サーモスタット 17(第2
図)もこの位置で成膜室1に設けられた外部引出し端子
の接触面に接触し、外部の温度制御系に接続される。な
お、プラズマCVD装置では通常0.1ないし1oOT
orr範囲のガス圧下で成膜することが多く、このよう
な低圧下では絶縁距離の短い引出し端子部(14a)で
放電が生じやすいため、加熱電源18からサセプタ20
への電流供給は変圧器18aにより電圧を降圧して行う
ように装置を構成している。なお、第3図において、2
2は真空ポンプ21(第1図)の吸気側に接続される排
気管、23は成膜室1の水平度を出しかつ成膜室lの高
さを揃えるためのレベルアジャスタである。
The susceptor 20 suspended from a roller row in which rollers 6 are arranged at intervals in the horizontal direction is moved in the direction of the arrow by a transport drive mechanism (not shown) after the film formation is completed in the film formation chamber l at the front stage, and is moved to the direction of the arrow to carry out the film formation at the rear stage. When the film enters the film chamber 1 and reaches a predetermined position in the film forming chamber 1, the pull-out terminal 14a of the sheathed heater protruding from the fixed part 15a below the ingot 15 is connected to the film forming chamber 1.
A sliding contact surface formed using a flexible conductive plate on the top of the side bushing 16 (FIG. 1) is brought into sliding contact without bending the conductive plate, and is connected to the heating electric current mt8. Also, although not particularly shown here, thermostat 17 (second
2) also comes into contact with the contact surface of the external lead terminal provided in the film forming chamber 1 at this position, and is connected to an external temperature control system. In addition, in plasma CVD equipment, usually 0.1 to 1oOT
Films are often formed under gas pressures in the .
The device is configured such that current is supplied to the device by stepping down the voltage using a transformer 18a. In addition, in Figure 3, 2
2 is an exhaust pipe connected to the intake side of a vacuum pump 21 (FIG. 1), and 23 is a level adjuster for leveling the film forming chamber 1 and adjusting the height of the film forming chamber 1.

〔発明の効果〕〔Effect of the invention〕

以上に述べたように、本発明によれば、平行に対向し反
対向面側にそれぞれ薄膜を形成すべき基板が密着状態に
固設される鉛直面の間に発熱体を備えたサセプタが、順
に隣り合い内部でプラズマCVD法による膜形成が行わ
れる成膜室間を順に移動して前記基板に順次新たな薄膜
を多層に形成させて行く縦型プラズマCVD装置におけ
る前記サセプタを、通電により発熱する金属線または金
属帯を伝熱性金属材中に鋳込んでなり前記基板が固設さ
れる平行両面を備えた塊状発熱体として構成したので、
電源から金属線または金属帯に供給された加熱エネルギ
がすべてこれらを鋳込む伝熱性金属材に伝達され、基板
に熱を伝達すべきサセプタの加熱効率が著しく高くなり
、基板の昇温時間が大幅に短縮される。このため、成膜
工程間の時間間隔すなわちタクトタイムが大きく短縮さ
れ、薄膜形成のための時間が全製造工程時間に占める割
合の大きい半導体製造の生産性が大きく向上する。また
、サセプタは塊状発熱体を構成するから、発熱部位から
基板への伝熱面までの肉厚が厚く、発熱部位を含む面内
の温度分布の不均一は伝熱面に近づくにつれて小さくな
り、伝熱面での面内温度分布はほぼ完全に均一となる。
As described above, according to the present invention, a susceptor is provided with a heating element between vertical surfaces facing in parallel and on which substrates on which thin films are to be formed are closely fixed, In a vertical plasma CVD apparatus, the susceptor is sequentially moved between adjacent film forming chambers in which films are formed by the plasma CVD method, and new thin films are sequentially formed in multiple layers on the substrate. The heating element is constructed by casting a metal wire or band into a heat conductive metal material and having parallel surfaces on which the substrate is fixed.
All of the heating energy supplied from the power source to the metal wire or metal strip is transferred to the heat-conductive metal material into which they are cast, significantly increasing the heating efficiency of the susceptor that transfers heat to the substrate, and significantly reducing the time required to heat up the substrate. It is shortened to . Therefore, the time interval between film-forming processes, that is, the takt time, is greatly shortened, and the productivity of semiconductor manufacturing, in which the time for thin-film formation occupies a large proportion of the total manufacturing process time, is greatly improved. In addition, since the susceptor constitutes a bulk heating element, the wall thickness from the heat generating part to the heat transfer surface to the substrate is thick, and the uneven temperature distribution within the plane including the heat generating part becomes smaller as it approaches the heat transfer surface. The in-plane temperature distribution on the heat transfer surface becomes almost completely uniform.

このため、従来のサセプタの昇温構造では避けることの
できなかった温度分布の不均一に基づく膜厚の不均一が
避けられ、膜厚、従って膜質の均一性の高い薄膜の形成
が可能になる。しかも本発明による昇温構造は従来のも
のに比して簡単、堅牢であり、経済性。
As a result, uneven film thickness due to uneven temperature distribution, which could not be avoided with conventional susceptor heating structures, can be avoided, making it possible to form thin films with highly uniform film thickness and, therefore, film quality. . Moreover, the temperature increasing structure according to the present invention is simpler, more robust, and more economical than conventional ones.

表面汚損に対する保守性にもすぐれるというメリットを
備えている。
It also has the advantage of being easy to maintain against surface stains.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例による昇温構造のサセプタを
備えた縦型プラズマCVD装置例の説明断面図、第2図
は第1図に示すサセプタにおける発熱部位の構成を示す
正面図、第3図′′は第1,2図に示すサセプタが移動
する縦型プラズマCVD装置の全体構成を示す正面図、
第4図はサセプタの使われ方と従来のサセプタにおける
昇温構造とを合わせて示す成膜室の横断面図、第5図は
従来のサセプタの昇温構造の詳細を示すもので、(a)
は正面図、[有])は側面図である。 ■・・・成膜室、2・・・金属板、4・・・基板、14
・・・シーズヒータ(金属線または金属帯)、15・・
・インゴット(伝熱性金属材)、18・・・加熱電源、
20・・・サセプ簀 1 図 第 3 図 応4 (2) ′5−5 図 C4)4′J′1
FIG. 1 is an explanatory sectional view of an example of a vertical plasma CVD apparatus equipped with a susceptor having a temperature increasing structure according to an embodiment of the present invention, and FIG. 2 is a front view showing the configuration of heat generating parts in the susceptor shown in FIG. 1. FIG. 3'' is a front view showing the overall configuration of the vertical plasma CVD apparatus in which the susceptor shown in FIGS. 1 and 2 moves;
Figure 4 is a cross-sectional view of a film forming chamber showing how the susceptor is used and the temperature increasing structure of a conventional susceptor, and Figure 5 shows details of the temperature increasing structure of a conventional susceptor. )
is a front view, and is a side view. ■...Film forming chamber, 2...Metal plate, 4...Substrate, 14
...Sheathed heater (metal wire or metal band), 15...
・Ingot (thermal conductive metal material), 18... heating power source,
20...Sasepu 1 Figure 3 Figure 4 (2) '5-5 Figure C4) 4'J'1

Claims (1)

【特許請求の範囲】[Claims] 1)平行に対向し反対向面側にそれぞれ薄膜を形成すべ
き基板が密着状態に固設される鉛直面の間に発熱体を備
えたサセプタが、順に隣り合い内部でプラズマCVD法
による膜形成が行われる成膜室間を順に移動して前記基
板に順次新たな薄膜を多層に形成させて行く縦型プラズ
マCVD装置において、前記サセプタが通電により発熱
する金属線または金属帯を伝熱性金属材中に鋳込んでな
り前記基板が固設される平行両面を備えた塊状発熱体を
構成していることを特徴とする縦型プラズマCVD装置
1) A susceptor equipped with a heating element is placed between the vertical surfaces of which the substrates on which thin films are to be formed are fixed in close contact with each other, and the substrates face each other in parallel, and the film is formed inside the susceptor by the plasma CVD method. In a vertical plasma CVD apparatus that sequentially moves between film forming chambers where new thin films are sequentially formed on the substrate in multiple layers, the susceptor connects a metal wire or metal band that generates heat when energized to a heat conductive metal material. A vertical plasma CVD apparatus characterized in that it constitutes a bulk heating element having parallel surfaces, into which the substrate is fixed by being cast.
JP14622188A 1988-06-14 1988-06-14 Vertical type plasma cvd device Pending JPH01313926A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP14622188A JPH01313926A (en) 1988-06-14 1988-06-14 Vertical type plasma cvd device
US07/641,546 US5184663A (en) 1988-06-14 1991-01-15 Ventilated disk and process for making same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14622188A JPH01313926A (en) 1988-06-14 1988-06-14 Vertical type plasma cvd device

Publications (1)

Publication Number Publication Date
JPH01313926A true JPH01313926A (en) 1989-12-19

Family

ID=15402849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14622188A Pending JPH01313926A (en) 1988-06-14 1988-06-14 Vertical type plasma cvd device

Country Status (1)

Country Link
JP (1) JPH01313926A (en)

Similar Documents

Publication Publication Date Title
CN102105253B (en) High temperature electrostatic chuck and using method
KR200465330Y1 (en) Heating and cooling of substrate support
JP2619862B2 (en) Plasma equipment for plasma enhanced chemical vapor deposition.
WO2017059645A1 (en) Heating device and heating chamber
JP2001210631A (en) Heat-treating apparatus
US20060011139A1 (en) Heated substrate support for chemical vapor deposition
TW201814826A (en) Method and apparatus for substrate support with multi-zone heating
US6345150B1 (en) Single wafer annealing oven
KR101136892B1 (en) Ceramic plate heater for semiconductor and display device manufacturing process
JP6418573B2 (en) Processing module
CN203983241U (en) Substrate support with having heaters
TW200302541A (en) Heated vacuum support apparatus
US20040226513A1 (en) Chamber for uniform heating of large area substrates
JPH07226383A (en) Plasma generating device and plasma treatment device using this plasma generating device
JPH01313926A (en) Vertical type plasma cvd device
JP2953744B2 (en) Heat treatment equipment
JP3754855B2 (en) Substrate processing apparatus and substrate processing method
JPH022113A (en) Vertical plasma cvd system
JPS61227169A (en) Sputtering device
JPH04318923A (en) Heater
JP2001102314A (en) Vertical heating device
CN114286461B (en) Heater for heating substrate in vacuum equipment
JP3002990B1 (en) Soaking heater
JPH01313924A (en) Vertical type plasma cvd device
JPH0927459A (en) Processing equipment for semiconductor device